245
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Architects of the genome: CHD dysfunction in cancer, developmental disorders and neurological syndromes

&
Pages 381-395 | Published online: 21 Oct 2014

References

  • Clapier CR , CairnsBR . The biology of chromatin remodeling complexes . Annu. Rev. Biochem.78 , 273 – 304 ( 2009 ).
  • Wang GG , AllisCD , ChiP . Chromatin remodeling and cancer, part II: ATP-dependent chromatin remodeling . Trends Mol. Med.13 ( 9 ), 373 – 380 ( 2007 ).
  • Marfella CG , ImbalzanoAN . The Chd family of chromatin remodelers . Mutat. Res.618 ( 1–2 ), 30 – 40 ( 2007 ).
  • Hall JA , GeorgelPT . CHD proteins: a diverse family with strong ties . Biochem. Cell. Biol.85 ( 4 ), 463 – 476 ( 2007 ).
  • Woodage T , BasraiMA , BaxevanisAD , HieterP , CollinsFS . Characterization of the CHD family of proteins . Proc. Natl Acad. Sci. USA94 ( 21 ), 11472 – 11477 ( 1997 ).
  • Delmas V , StokesDG , PerryRP . A mammalian DNA-binding protein that contains a chromodomain and an SNF2/SWI2-like helicase domain . Proc. Natl Acad. Sci. USA90 ( 6 ), 2414 – 2418 ( 1993 ).
  • Watson AA , MahajanP , MertensHDet al. The PHD and chromo domains regulate the ATPase activity of the human chromatin remodeler CHD4 . J. Mol. Biol422 ( 1 ), 3 – 17 ( 2012 ).
  • Bouazoune K , KingstonRE . Chromatin remodeling by the CHD7 protein is impaired by mutations that cause human developmental disorders . Proc. Natl Acad. Sci. USA109 ( 47 ), 19238 – 19243 ( 2012 ).
  • Thompson BA , TremblayV , LinG , BocharDA . CHD8 is an ATP-dependent chromatin remodeling factor that regulates beta-catenin target genes . Mol. Cell. Biol.28 ( 12 ), 3894 – 3904 ( 2008 ).
  • Lutz T , StogerR , NietoA . CHD6 is a DNA-dependent ATPase and localizes at nuclear sites of mRNA synthesis . FEBS Lett.580 ( 25 ), 5851 – 5857 ( 2006 ).
  • Lusser A , UrwinDL , KadonagaJT . Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly . Nat. Struct. Mol. Biol.12 ( 2 ), 160 – 166 ( 2005 ).
  • Eissenberg JC . Structural biology of the chromodomain: form and function . Gene496 ( 2 ), 69 – 78 ( 2012 ).
  • Bouazoune K , MitterwegerA , LangstGet al. The dMi-2 chromodomains are DNA binding modules important for ATP-dependent nucleosome mobilization . EMBO J.21 ( 10 ), 2430 – 2440 ( 2002 ).
  • Ramirez J , DegeC , KutateladzeTG , HagmanJ . MBD2 and multiple domains of CHD4 are required for transcriptional repression by Mi-2/NuRD complexes . Mol. Cell. Biol.32 ( 24 ), 5078 – 5088 ( 2012 ).
  • Flanagan JF , MiLZ , ChruszczMet al. Double chromodomains cooperate to recognize the methylated histone H3 tail . Nature438 ( 7071 ), 1181 – 1185 ( 2005 ).
  • Egan CM , NymanU , SkotteJet al. CHD5 is required for neurogenesis and has a dual role in facilitating gene expression and polycomb gene repression . Dev. Cell.26 ( 3 ), 223 – 236 ( 2013 ).
  • Musselman CA , KutateladzeTG . Handpicking epigenetic marks with PHD fingers . Nucleic Acids Res.39 ( 21 ), 9061 – 9071 ( 2011 ).
  • Sanchez R , ZhouMM . The PHD finger: a versatile epigenome reader . Trends Biochem. Sci.36 ( 7 ), 364 – 372 ( 2011 ).
  • Mansfield RE , MusselmanCA , KwanAHet al. Plant homeodomain (PHD) fingers of CHD4 are histone H3-binding modules with preference for unmodified H3K4 and methylated H3K9 . J. Biol. Chem.286 ( 13 ), 11779 – 11791 ( 2011 ).
  • Musselman CA , MansfieldRE , GarskeALet al. Binding of the CHD4 PHD2 finger to histone H3 is modulated by covalent modifications . Biochem. J.423 ( 2 ), 179 – 187 ( 2009 ).
  • Musselman CA , RamirezJ , SimsJKet al. Bivalent recognition of nucleosomes by the tandem PHD fingers of the CHD4 ATPase is required for CHD4-mediated repression . Proc. Natl Acad. Sci. USA109 ( 3 ), 787 – 792 ( 2012 ).
  • Paul S , KuoA , SchalchTet al. Chd5 requires PHD-mediated histone 3 binding for tumor suppression . Cell Rep.3 ( 1 ), 92 – 102 ( 2013 ).
  • Ooi SKT , QiuC , BernsteinEet al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA . Nature448 ( 7154 ), 714 – 717 ( 2007 ).
  • Li HT , IlinS , WangWKet al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF . Nature442 ( 7098 ), 91 – 95 ( 2006 ).
  • Pena PV , DavrazouF , ShiXBet al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2 . Nature442 ( 7098 ), 100 – 103 ( 2006 ).
  • Wysocka J , SwigutT , XiaoHet al. A PHD finger of NURF couples histone H3 lysine 4 trimethylation with chromatin remodelling . Nature442 ( 7098 ), 86 – 90 ( 2006 ).
  • Lan F , CollinsRE , De CegliRet al. Recognition of unmethylated histone H3 lysine 4 links BHC80 to LSD1-mediated gene repression . Nature448 ( 7154 ), 718 – 722 ( 2007 ).
  • Boyer LA , LatekRR , PetersonCL . The SANT domain: a unique histone-tail-binding module ? Nat. Rev. Mol. Cell Biol.5 ( 2 ), 158 – 163 ( 2004 ).
  • Urquhart AJ , GateiM , RichardDJ , KhannaKK . ATM mediated phosphorylation of CHD4 contributes to genome maintenance . Genome Integr.2 ( 1 ), 1 ( 2011 ).
  • O’shaughnessy A , HendrichB . CHD4 in the DNA-damage response and cell cycle progression: not so NuRDy now . Biochem. Soc. Trans.41 ( 3 ), 777 – 782 ( 2013 ).
  • Larsen DH , PoinsignonC , GudjonssonTet al. The chromatin-remodeling factor CHD4 coordinates signaling and repair after DNA damage . J. Cell Biol.190 ( 5 ), 731 – 740 ( 2010 ).
  • Pan MR , HsiehHJ , DaiHet al. Chromodomain helicase DNA-binding protein 4 (CHD4) regulates homologous recombination DNA repair, and its deficiency sensitizes cells to poly(ADP-ribose) polymerase (PARP) inhibitor treatment . J. Biol. Chem.287 ( 9 ), 6764 – 6772 ( 2012 ).
  • Goodarzi AA , KurkaT , JeggoPA . KAP-1 phosphorylation regulates CHD3 nucleosome remodeling during the DNA double-strand break response . Nat. Struct. Mol. Biol.18 ( 7 ), 831 – 839 ( 2011 ).
  • Rajagopalan S , NepaJ , VenkatachalamS . Chromodomain helicase DNA-binding protein 2 affects the repair of X-ray and UV-induced DNA damage . Environ. Mol. Mutagen.53 ( 1 ), 44 – 50 ( 2012 ).
  • Nagarajan P , OnamiTM , RajagopalanS , KaniaS , DonnellR , VenkatachalamS . Role of chromodomain helicase DNA-binding protein 2 in DNA damage response signaling and tumorigenesis . Oncogene28 ( 8 ), 1053 – 1062 ( 2009 ).
  • Ling T , XieW , LuoMet al. CHD4/NuRD maintains demethylation state of rDNA promoters through inhibiting the expression of the rDNA methyltransferase recruiter TIP5 . Biochem. Biophys. Res. Commun.437 ( 1 ), 101 – 107 ( 2013 ).
  • Zentner GE , HurdEA , SchnetzMPet al. CHD7 functions in the nucleolus as a positive regulator of ribosomal RNA biogenesis . Hum. Mol. Genet.19 ( 18 ), 3491 – 3501 ( 2010 ).
  • Yuan CC , ZhaoX , FlorensL , SwansonSK , WashburnMP , HernandezN . CHD8 associates with human Staf and contributes to efficient U6 RNA polymerase III transcription . Mol. Cell. Biol.27 ( 24 ), 8729 – 8738 ( 2007 ).
  • Stanley FK , MooreS , GoodarziAA . CHD chromatin remodelling enzymes and the DNA damage response . Mutat. Res.750 ( 1–2 ), 31 – 44 ( 2013 ).
  • Bagchi A , PapazogluC , WuYet al. CHD5 is a tumor suppressor at human 1p36 .  Cell128 ( 3 ),  459 – 475  ( 2007 ).
  • Bagchi A , MillsAA . The quest for the 1p36 tumor suppressor . Cancer Res.68 ( 8 ), 2551 – 2556 ( 2008 ).
  • Oliver SS , MusselmanCA , SrinivasanR , SvarenJP , KutateladzeTG , DenuJM . Multivalent recognition of histone tails by the PHD fingers of CHD5 . Biochemistry51 ( 33 ), 6534 – 6544 ( 2012 ).
  • Fujita T , IgarashiJ , OkawaERet al. CHD5, a tumor suppressor gene deleted from 1p36.31 in neuroblastomas . J. Natl Cancer Inst.100 ( 13 ), 940 – 949 ( 2008 ).
  • Garcia I , MayolG , RodriguezEet al. Expression of the neuron-specific protein CHD5 is an independent marker of outcome in neuroblastoma . Mol. Cancer9 , 277 ( 2010 ).
  • Li H , XuW , HuangY , HuangX , XuL , LvZ . Genistein demethylates the promoter of CHD5 and inhibits neuroblastoma growth in vivo . Int. J. Mol. Med.30 ( 5 ), 1081 – 1086 ( 2012 ).
  • Koyama H , ZhuangT , LightJEet al. Mechanisms of CHD5 Inactivation in neuroblastomas . Clin. Cancer Res.18 ( 6 ), 1588 – 1597 ( 2012 ).
  • Thompson PM , GotohT , KokM , WhitePS , BrodeurGM . CHD5, a new member of the chromodomain gene family, is preferentially expressed in the nervous system . Oncogene22 ( 7 ), 1002 – 1011 ( 2003 ).
  • Mulero-Navarro S , EstellerM . Chromatin remodeling factor CHD5 is silenced by promoter CpG island hypermethylation in human cancer . Epigenetics3 ( 4 ), 210 – 215 ( 2008 ).
  • Wang L , HeS , TuYet al. Downregulation of chromatin remodeling factor CHD5 is associated with a poor prognosis in human glioma . J. Clin. Neurosci.20 ( 7 ), 958 – 963 ( 2013 ).
  • Wu X , ZhuZ , LiWet al. Chromodomain helicase DNA binding protein 5 plays a tumor suppressor role in human breast cancer . Breast Cancer Res.14 ( 3 ), R73 ( 2012 ).
  • Zhao R , YanQ , LvJet al. CHD5, a tumor suppressor that is epigenetically silenced in lung cancer . Lung Cancer76 ( 3 ), 324 – 331 ( 2012 ).
  • Wong RR , ChanLK , TsangTPet al. CHD5 downregulation associated with poor prognosis in epithelial ovarian cancer . Gynecol. Obstet. Invest.72 ( 3 ), 203 – 207 ( 2011 ).
  • Wang X , LauKK , SoLK , LamYW . CHD5 is down-regulated through promoter hypermethylation in gastric cancer . J. Biomed. Sci.16 , 95 ( 2009 ).
  • Du X , WuT , LuJet al. Decreased expression of chromodomain helicase DNA-binding protein 5 is an unfavorable prognostic marker in patients with primary gallbladder carcinoma . Clin. Transl. Oncol.15 ( 3 ), 198 – 204 ( 2013 ).
  • Cai C , AshktorabH , PangXet al. MicroRNA-211 expression promotes colorectal cancer cell growth in vitro and in vivo by targeting tumor suppressor CHD5 . PloS One7 ( 1 ), e29750 ( 2012 ).
  • Fatemi M , PaulTA , BrodeurGM , ShokraniB , BrimH , AshktorabH . Epigenetic silencing of CHD5, a novel tumor-suppressor gene, occurs in early colorectal cancer stages . Cancer120 ( 2 ), 172 – 180 ( 2014 ).
  • Zhao R , WangN , HuangH , MaW , YanQ . CHD5, a tumor suppressor is epigenetically silenced in hepatocellular carcinoma . Liver Int.34 ( 6 ), e151 – 160 ( 2014 ).
  • Lang J , TobiasES , MackieR . Preliminary evidence for involvement of the tumour suppressor gene CHD5 in a family with cutaneous melanoma . Br. J. Dermatol.164 ( 5 ), 1010 – 1016 ( 2011 ).
  • Zhao R , MengF , WangN , MaW , YanQ . Silencing of CHD5 gene by promoter methylation in leukemia . PloS One9 ( 1 ), e85172 ( 2014 ).
  • Wang J , ChenH , FuS , XuZM , SunKL , FuWN . The involvement of CHD5 hypermethylation in laryngeal squamous cell carcinoma . Oral Oncol.47 ( 7 ), 601 – 608 ( 2011 ).
  • Egan CM , JulieSkotte , GundulaStreubelet al. CHD5 is required for neurogenesis and has a dual role in facilitating gene expression and polycomb gene repression . Dev. Cell26 ( 3 ), 223 – 236 ( 2013 ).
  • Potts RC , ZhangP , WursterALet al. CHD5, a brain-specific paralog of Mi2 chromatin remodeling enzymes, regulates expression of neuronal genes . PloS One6 ( 9 ), e24515 ( 2011 ).
  • Vestin A , MillsAA . The tumor suppressor Chd5 is induced during neuronal differentiation in the developing mouse brain . Gene Expr. Patterns13 ( 8 ), 482 – 489 ( 2013 ).
  • Li W , WuJ , KimSYet al. Chd5 orchestrates chromatin remodelling during sperm development . Nat. Commun.5 , 3812 ( 2014 ).
  • Zhuang T , HessRA , KollaV , HigashiM , RaabeTD , BrodeurGM . CHD5 is required for spermiogenesis and chromatin condensation . Mech. Dev.131 , 35 – 46 ( 2014 ).
  • Vestin A , MillsAA . The tumor suppressor Chd5 is induced during neuronal differentiation in the developing mouse brain . Gene Expr. Patterns13 ( 8 ), 482 – 489 ( 2013 ).
  • Kim MS , ChungNG , KangMR , YooNJ , LeeSH . Genetic and expressional alterations of CHD genes in gastric and colorectal cancers . Histopathology58 ( 5 ), 660 – 668 ( 2011 ).
  • Tahara T , YamamotoE , MadireddiPet al. Colorectal carcinomas with CpG island methylator phenotype 1 frequently contain mutations in chromatin regulators . Gastroenterology146 ( 2 ), 530 – 538e535 ( 2014 ).
  • Sawada G , UeoH , MatsumuraTet al. CHD8 is an independent prognostic indicator that regulates Wnt/beta-catenin signaling and the cell cycle in gastric cancer . Oncol. Rep.30 ( 3 ), 1137 – 1142 ( 2013 ).
  • Rodriguez-Paredes M , Ceballos-ChavezM , EstellerM , Garcia-DominguezM , ReyesJC . The chromatin remodeling factor CHD8 interacts with elongating RNA polymerase II and controls expression of the cyclin E2 gene . Nucleic Acids Res.37 ( 8 ), 2449 – 2460 ( 2009 ).
  • Colbert LE , PetrovaAV , FisherSBet al. CHD7 expression predicts survival outcomes in patients with resected pancreatic cancer . Cancer Res.74 ( 10 ), 2677 – 2687 ( 2014 ).
  • Pleasance ED , StephensPJ , O’mearaSet al. A small-cell lung cancer genome with complex signatures of tobacco exposure . Nature463 ( 7278 ), 184 – 190 ( 2010 ).
  • Campbell PJ , StephensPJ , PleasanceEDet al. Identification of somatically acquired rearrangements in cancer using genome-wide massively parallel paired-end sequencing . Nat. Genet.40 ( 6 ), 722 – 729 ( 2008 ).
  • Burkhardt L , FuchsS , KrohnAet al. CHD1 is a 5q21 tumor suppressor required for ERG rearrangement in prostate cancer . Cancer Res.73 ( 9 ), 2795 – 2805 ( 2013 ).
  • Liu W , LindbergJ , SuiGet al. Identification of novel CHD1-associated collaborative alterations of genomic structure and functional assessment of CHD1 in prostate cancer . Oncogene31 ( 35 ), 3939 – 3948 ( 2012 ).
  • Huang S , GulzarZG , SalariK , LapointeJ , BrooksJD , PollackJR . Recurrent deletion of CHD1 in prostate cancer with relevance to cell invasiveness . Oncogene31 ( 37 ), 4164 – 4170 ( 2012 ).
  • Berger MF , LawrenceMS , DemichelisFet al. The genomic complexity of primary human prostate cancer . Nature470 ( 7333 ), 214 – 220 ( 2011 ).
  • Grasso CS , WuYM , RobinsonDRet al. The mutational landscape of lethal castration-resistant prostate cancer . Nature487 ( 7406 ), 239 – 243 ( 2012 ).
  • Le Gallo M , O’haraAJ , RuddMLet al. Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes . Nat. Genet.44 ( 12 ), 1310 – 1315 ( 2012 ).
  • Zhao S , ChoiM , OvertonJDet al. Landscape of somatic single-nucleotide and copy-number . Proc. Natl Acad. Sci. USA110 ( 8 ), 2916 – 2921 ( 2013 ).
  • Polo SE , KaidiA , BaskcombL , GalantyY , JacksonSP . Regulation of DNA-damage responses and cell-cycle progression by the chromatin remodelling factor CHD4 . EMBO J.29 ( 18 ), 3130 – 3139 ( 2010 ).
  • Lai AY , WadePA . Cancer biology and NuRD: a multifaceted chromatin remodelling complex . Nat. Rev. Cancer11 ( 8 ), 588 – 596 ( 2011 ).
  • Li R , ZhangH , YuWet al. ZIP: a novel transcription repressor, represses EGFR oncogene and suppresses breast carcinogenesis . EMBO J.28 ( 18 ), 2763 – 2776 ( 2009 ).
  • Mouradov D , SloggettC , JorissenRNet al. Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer . Cancer Res.74 ( 12 ), 3238 – 3247 ( 2014 ).
  • Ali Hassan NZ , MokhtarNM , Kok SinTet al. Integrated analysis of copy number variation and genome-wide expression profiling in colorectal cancer tissues . PloS One9 ( 4 ), e92553 ( 2014 ).
  • Gui Y , GuoG , HuangYet al. Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder . Nat. Genet.43 ( 9 ), 875 – 878 ( 2011 ).
  • Kulkarni S , NagarajanP , WallJet al. Disruption of chromodomain helicase DNA binding protein 2 (CHD2) causes scoliosis . Am. J. Med. Genet. A146A ( 9 ), 1117 – 1127 ( 2008 ).
  • O’roak BJ , VivesL , FuWet al. Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders . Science338 ( 6114 ), 1619 – 1622 ( 2012 ).
  • Neale BM , KouY , LiuLet al. Patterns and rates of exonic de novo mutations in autism spectrum disorders . Nature485 ( 7397 ), 242 – 245 ( 2012 ).
  • Talkowski ME , RosenfeldJA , BlumenthalIet al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries . Cell149 ( 3 ), 525 – 537 ( 2012 ).
  • O’roak BJ , VivesL , GirirajanSet al. Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations . Nature485 ( 7397 ), 246 – 250 ( 2012 ).
  • Mccarthy SE , GillisJ , KramerMet al. De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability . Mol. Psychiatry19 ( 6 ), 652 – 658 ( 2014 ).
  • Bergman JE , JanssenN , HoefslootLH , JongmansMC , HofstraRM , Van Ravenswaaij-ArtsCM . CHD7 mutations and CHARGE syndrome: the clinical implications of an expanding phenotype . J. Med. Genet.48 ( 5 ), 334 – 342 ( 2011 ).
  • De Arriba Munoz A , Monge GalindoL , Lopez PisonJet al. CHARGE syndrome and CHD7 gene mutation . Neurologia26 ( 4 ), 255 ( 2011 ).
  • Jongmans MC , AdmiraalRJ , Van Der DonkKPet al. CHARGE syndrome: the phenotypic spectrum of mutations in the CHD7 gene . J. Med. Genet.43 ( 4 ), 306 – 314 ( 2006 ).
  • Wincent J , HolmbergE , StromlandKet al. CHD7 mutation spectrum in 28 Swedish patients diagnosed with CHARGE syndrome . Clin. Genet.74 ( 1 ), 31 – 38 ( 2008 ).
  • Martin DM . Chromatin remodeling in development and disease: focus on CHD7 . PLoS Genet.6 ( 7 ), e1001010 ( 2010 ).
  • Layman WS , HurdEA , MartinDM . Chromodomain proteins in development: lessons from CHARGE syndrome . Clin. Genet.78 ( 1 ), 11 – 20 ( 2010 ).
  • Johansson M , GillbergC , RastamM . Autism spectrum conditions in individuals with Mobius sequence, CHARGE syndrome and oculo-auriculo-vertebral spectrum: diagnostic aspects . Res. Dev. Disabil.31 ( 1 ), 9 – 24 ( 2010 ).
  • Vervloed MP , Hoevenaars-Van Den BoomMA , KnoorsH , Van RavenswaaijCM , AdmiraalRJ . CHARGE syndrome: relations between behavioral characteristics and medical conditions . Am. J. Med. Genet. A140 ( 8 ), 851 – 862 ( 2006 ).
  • Hartshorne TS , GrialouTL , ParkerKR . Autistic-like behavior in CHARGE syndrome . Am. J. Med. Genet. A133A ( 3 ), 257 – 261 ( 2005 ).
  • Smith IM , NicholsSL , IssekutzK , BlakeK . Canadian paediatric surveillance P: behavioral profiles and symptoms of autism in CHARGE syndrome: preliminary Canadian epidemiological data . Am. J. Med. Genet. A133A ( 3 ), 248 – 256 ( 2005 ).
  • Patient CMDIA , JiangYH , YuenRKet al. Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing . Am. J. Hum. Genet.93 ( 2 ), 249 – 263 ( 2013 ).
  • Pinto D , DelabyE , MericoDet al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders . Am. J. Hum. Genet.94 ( 5 ), 677 – 694 ( 2014 ).
  • Capelli LP , KrepischiAC , Gurgel-GiannettiJet al. Deletion of the RMGA and CHD2 genes in a child with epilepsy and mental deficiency . Eur. J. Med. Genet.55 ( 2 ), 132 – 134 ( 2012 ).
  • Carvill GL , HeavinSB , YendleSCet al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1 . Nat. Genet.45 ( 7 ), 825 – 830 ( 2013 ).
  • Suls A , JaehnJA , KecskesAet al. De novo loss-of-function mutations in CHD2 cause a fever-sensitive myoclonic epileptic encephalopathy sharing features with Dravet syndrome . Am. J. Hum. Genet.93 ( 5 ), 967 – 975 ( 2013 ).
  • Lund C , BrodtkorbE , OyeAM , RosbyO , SelmerKK . CHD2 mutations in Lennox–Gastaut syndrome . Epilepsy Behav.33 , 18 – 21 ( 2014 ).
  • Epi KC , Epilepsy Phenome/GenomeP , AllenASet al. De novo mutations in epileptic encephalopathies . Nature501 ( 7466 ), 217 – 221 ( 2013 ).
  • Rauch A , WieczorekD , GrafEet al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study . Lancet380 ( 9854 ), 1674 – 1682 ( 2012 ).
  • Yamada K , FukushiD , OnoTet al. Characterization of a de novo balanced t(4;20)(q33;q12) translocation in a patient with mental retardation . Am. J. Med. Genet. A152A ( 12 ), 3057 – 3067 ( 2010 ).
  • Bennetts JS , RendtorffND , SimpsonF , TranebjaergL , WickingC . The coding region of TP53INP2, a gene expressed in the developing nervous system, is not altered in a family with autosomal recessive non-progressive infantile ataxia on chromosome 20q11-q13 . Dev. Dyn.236 ( 3 ), 843 – 852 ( 2007 ).
  • Hertz JM , SivertsenB , SilahtarogluAet al. Early onset, non-progressive, mild cerebellar ataxia co-segregating with a familial balanced translocation t(8;20)(p22;q13) . J. Med. Genet.41 ( 3 ), e25 ( 2004 ).
  • Tranebjaerg L , TeslovichTM , JonesMet al. Genome-wide homozygosity mapping localizes a gene for autosomal recessive non-progressive infantile ataxia to 20q11-q13 . Hum. Genet.113 ( 3 ), 293 – 295 ( 2003 ).
  • Lathrop MJ , ChakrabartiL , EngJet al. Deletion of the Chd6 exon 12 affects motor coordination . Mamm. Genome21 ( 3–4 ), 130 – 142 ( 2010 ).
  • Hung H , KohnkenR , SvarenJ . The nucleosome remodeling and deacetylase chromatin remodeling (NuRD) complex is required for peripheral nerve myelination . J. Neurosci.32 ( 5 ), 1517 – 1527 ( 2012 ).
  • Iourov IY , VorsanovaSG , KurinnaiaOS , ZelenovaMA , SilvanovichAP , YurovYB . Molecular karyotyping by array CGH in a Russian cohort of children with intellectual disability, autism, epilepsy and congenital anomalies . Mol. Cytogenet.5 ( 1 ), 46 ( 2012 ).
  • Kaminsky EB , KaulV , PaschallJet al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities . Genet. Med.13 ( 9 ), 777 – 784 ( 2011 ).
  • Janssen N , BergmanJE , SwertzMAet al. Mutation update on the CHD7 gene involved in CHARGE syndrome . Hum Mutat.33 ( 8 ), 1149 – 1160 ( 2012 ).
  • Schnetz MP , BartelsCF , ShastriKet al. Genomic distribution of CHD7 on chromatin tracks H3K4 methylation patterns . Genome Res.19 ( 4 ), 590 – 601 ( 2009 ).
  • Jacobs-Mcdaniels NL , AlbertsonRC . Chd7 plays a critical role in controlling left-right symmetry during zebrafish somitogenesis . Dev. Dyn.240 ( 10 ), 2272 – 2280 ( 2011 ).
  • Hurd EA , CapersPL , BlauwkampMNet al. Loss of Chd7 function in gene-trapped reporter mice is embryonic lethal and associated with severe defects in multiple developing tissues . Mamm. Genome18 ( 2 ), 94 – 104 ( 2007 ).
  • Feng W , KhanMA , BellvisPet al. The chromatin remodeler CHD7 regulates adult neurogenesis via activation of soxc transcription factors . Cell Stem Cell13 ( 1 ), 62 – 72 ( 2013 ).
  • Gao X , GordonD , ZhangDet al. CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis . Am. J. Hum. Genet.80 ( 5 ), 957 – 965 ( 2007 ).
  • Marfella CG , HenningerN , LeblancSEet al. A mutation in the mouse Chd2 chromatin remodeling enzyme results in a complex renal phenotype . Kidney Blood Press. Res.31 ( 6 ), 421 – 432 ( 2008 ).
  • Marfella CG , OhkawaY , ColesAH , GarlickDS , JonesSN , ImbalzanoAN . Mutation of the SNF2 family member Chd2 affects mouse development and survival . J. Cell. Physiol.209 ( 1 ), 162 – 171 ( 2006 ).
  • Qin Y , JiJ , DuGet al. Comprehensive pathway-based analysis identifies associations of BCL2, GNAO1 and CHD2 with non-obstructive azoospermia risk . Hum. Reprod.29 ( 4 ), 860 – 866 ( 2014 ).
  • Sparmann A , XieY , VerhoevenEet al. The chromodomain helicase Chd4 is required for Polycomb-mediated inhibition of astroglial differentiation . EMBO J.32 ( 11 ), 1598 – 1612 ( 2013 ).
  • Williams CJ , NaitoT , ArcoPGDet al. The chromatin remodeler Mi-2 beta is required for CD4 expression and T cell development . Immunity20 ( 6 ), 719 – 733 ( 2004 ).
  • Hosokawa H , TanakaT , SuzukiYet al. Functionally distinct Gata3/Chd4 complexes coordinately establish T helper 2 (Th2) cell identity . Proc. Natl. Acad. Sci. USA110 ( 12 ), 4691 – 4696 ( 2013 ).
  • Kashiwagi M , MorganBA , GeorgopoulosK . The chromatin remodeler Mi-2beta is required for establishment of the basal epidermis and normal differentiation of its progeny . Development134 ( 8 ), 1571 – 1582 ( 2007 ).
  • Targoff IN , ReichlinM . The association between Mi-2 antibodies and dermatomyositis . Arthritis Rheum.28 ( 7 ), 796 – 803 ( 1985 ).
  • Nishiyama M , NakayamaK , TsunematsuR , TsukiyamaT , KikuchiA , NakayamaKI . Early embryonic death in mice lacking the beta-catenin-binding protein Duplin . Mol. Cell. Biol.24 ( 19 ), 8386 – 8394 ( 2004 ).
  • Nishiyama M , OshikawaK , TsukadaYet al. CHD8 suppresses p53-mediated apoptosis through histone H1 recruitment during early embryogenesis . Nat. Cell Biol.11 ( 2 ), 172 – 182 ( 2009 ).
  • Sakamoto I , KishidaS , FukuiAet al. A novel beta-catenin-binding protein inhibits beta-catenin-dependent Tcf activation and axis formation . J. Biol. Chem.275 ( 42 ), 32871 – 32878 ( 2000 ).
  • Mcdaniel IE , LeeJM , BergerMS , HanagamiCK , ArmstrongJA . Investigations of CHD1 function in transcription and development of Drosophila melanogaster . Genetics178 ( 1 ), 583 – 587 ( 2008 ).
  • Papantonis A , TsatsarounosS , Vanden BroeckJ , LecanidouR . CHD1 assumes a central role during follicle development . J. Mol. Biol.383 ( 5 ), 957 – 969 ( 2008 ).
  • Gaspar-Maia A , AlajemA , PolessoFet al. Chd1 regulates open chromatin and pluripotency of embryonic stem cells . Nature460 ( 7257 ), 863 – 868 ( 2009 ).
  • Shavelle RM , StraussDJ , PickettJ . Causes of death in autism . J. Autism Dev. Disord.31 ( 6 ), 569 – 576 ( 2001 ).
  • Kao HT , BukaSL , KelseyKT , GruberDF , PortonB . The correlation between rates of cancer and autism: an exploratory ecological investigation . PLoS One5 ( 2 ), e9372 ( 2010 ).
  • Eisenberg ML , BettsP , HerderD , LambDJ , LipshultzLI . Increased risk of cancer among azoospermic men . Fertil. Steril.100 ( 3 ), 681 – 685 ( 2013 ).
  • Peng X , ZengX , PengS , DengD , ZhangJ . The association risk of male subfertility and testicular cancer: a systematic review . PloS One4 ( 5 ), e5591 ( 2009 ).
  • Mallette FA , RichardS . JMJD2A promotes cellular transformation by blocking cellular senescence through transcriptional repression of the tumor suppressor CHD5 . Cell Rep.2 ( 5 ), 1233 – 1243 ( 2012 ).
  • Macdonald BT , TamaiK , HeX . Wnt/beta-catenin signaling: components, mechanisms, and diseases . Dev. Cell.17 ( 1 ), 9 – 26 ( 2009 ).
  • Inestrosa NC , ToledoEM . The role of Wnt signaling in neuronal dysfunction in Alzheimer’s Disease . Mol. Neurodegener.3 , 9 ( 2008 ).
  • De Ferrari GV , MoonRT . The ups and downs of Wnt signaling in prevalent neurological disorders . Oncogene25 ( 57 ), 7545 – 7553 ( 2006 ).
  • Ronan JL , WuW , CrabtreeGR . From neural development to cognition: unexpected roles for chromatin . Nat. Rev. Genet.14 ( 5 ), 347 – 359 ( 2013 ).
  • Harada A , OkadaS , KonnoDet al. Chd2 interacts with H3.3 to determine myogenic cell fate . EMBO J.31 ( 13 ), 2994 – 3007 ( 2012 ).
  • Srinivasan R , MagerGM , WardRM , MayerJ , SvarenJ . NAB2 represses transcription by interacting with the CHD4 subunit of the nucleosome remodeling and deacetylase (NuRD) complex . J. Biol. Chem.281 ( 22 ), 15129 – 15137 ( 2006 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.