389
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Modifications in Prostate Cancer

, , , , , , , , & show all
Pages 415-426 | Published online: 21 Oct 2014

References

  • Chin SP , DickinsonJL , HollowayAF . Epigenetic regulation of prostate cancer . Clin. Epigenetics2 ( 2 ), 151 – 169 ( 2011 ).
  • Reik W . Stability and flexibility of epigenetic gene regulation in mammalian development . Nature447 ( 7143 ), 425 – 432 ( 2007 ).
  • Jurkowska RZ , JurkowskiTP , JeltschA . Structure and function of mammalian DNA methyltransferases . Chembiochem12 ( 2 ), 206 – 222 ( 2011 ).
  • Gravina GL , RanieriG , MuziPet al. Increased levels of DNA methyltransferases are associated with the tumorigenic capacity of prostate cancer cells . Oncol. Rep.29 ( 3 ), 1189 – 1195 ( 2013 ).
  • Ehrlich M . Cancer-linked DNA hypomethylation and its relationship to hypermethylation . Curr. Top. Microbiol. Immunol.310 , 251 – 274 ( 2006 ).
  • Watanabe Y , MaekawaM . Methylation of DNA in cancer . Adv. Clin. Chem.52 , 145 – 167 ( 2010 ).
  • Wilson AS , PowerBE , MolloyPL . DNA hypomethylation and human diseases . Biochim. Biophys. Acta1775 ( 1 ), 138 – 162 ( 2007 ).
  • Yu YP , DingY , ChenRet al. Whole-genome methylation sequencing reveals distinct impact of differential methylations on gene transcription in prostate cancer . Am. J. Pathol.183 ( 6 ), 1960 – 1970 ( 2013 ).
  • Vardi A , BosvielR , RabiauNet al. Soy phytoestrogens modify DNA methylation of GSTP1, RASSF1A, EPH2 and BRCA1 promoter in prostate cancer cells . In Vivo24 ( 4 ), 393 – 400 ( 2010 ).
  • Rabiau N , ThiamMO , SatihSet al. Methylation analysis of BRCA1, RASSF1, GSTP1 and EPHB2 promoters in prostate biopsies according to different degrees of malignancy . In Vivo23 ( 3 ), 387 – 391 ( 2009 ).
  • Adjakly M , BosvielR , RabiauNet al. DNA methylation and soy phytoestrogens: quantitative study in DU-145 and PC-3 human prostate cancer cell lines . Epigenomics3 ( 6 ), 795 – 803 ( 2011 ).
  • Yoon H-Y , KimS-K , KimY-Wet al. Combined hypermethylation of APC and GSTP1 as a molecular marker for prostate cancer: quantitative pyrosequencing analysis . J. Biomol. Screen.17 ( 7 ), 987 – 992 ( 2012 ).
  • Dumitrescu RG . Epigenetic markers of early tumor development . Methods Mol. Biol.863 , 3 – 14 ( 2012 ).
  • Yegnasubramanian S , KowalskiJ , GonzalgoMLet al. Hypermethylation of CpG islands in primary and metastatic human prostate cancer . Cancer Res.64 ( 6 ), 1975 – 1986 ( 2004 ).
  • Liu L , YoonJ-H , DammannR , PfeiferGP . Frequent hypermethylation of the RASSF1A gene in prostate cancer . Oncogene21 ( 44 ), 6835 – 6840 ( 2002 ).
  • Cho N-Y , KimJH , MoonKC , KangGH . Genomic hypomethylation and CpG island hypermethylation in prostatic intraepithelial neoplasm . Virchows Arch.454 ( 1 ), 17 – 23 ( 2009 ).
  • Li D , KumaraswamyE , Harlan-WilliamsLM , JensenRA . The role of BRCA1 and BRCA2 in prostate cancer . Front. Biosci. (Landmark Edition)18 , 1445 – 1459 ( 2013 ).
  • Agarwal S , AminKS , JagadeeshSet al. Mahanine restores RASSF1A expression by down-regulating DNMT1 and DNMT3B in prostate cancer cells . Mol. Cancer12 ( 1 ), 99 ( 2013 ).
  • Zhang C , SuZ-Y , KhorTO , ShuL , KongA-NT . Sulforaphane enhances Nrf2 expression in prostate cancer TRAMP C1 cells through epigenetic regulation . Biochem. Pharmacol.85 ( 9 ), 1398 – 1404 ( 2013 ).
  • Wu G , YiN , AbsherD , ZhiD . Statistical quantification of methylation levels by next-generation sequencing . PloS One6 ( 6 ), e21034 ( 2011 ).
  • Yu YP , DingY , ChenRet al. Whole-genome methylation sequencing reveals distinct impact of differential methylations on gene transcription in prostate cancer . Am. J. Pathol.183 ( 6 ), 1960 – 1970 ( 2013 ).
  • Chiam K , CenteneraMM , ButlerLM , TilleyWD , Bianco-MiottoT . GSTP1 DNA methylation and expression status is indicative of 5-aza-2′-deoxycytidine efficacy in human prostate cancer cells . PloS One6 ( 9 ), e25634 ( 2011 ).
  • Kawamoto K , OkinoST , PlaceRFet al. Epigenetic modifications of RASSF1A gene through chromatin remodeling in prostate cancer . Clin. Cancer Res.13 ( 9 ), 2541 – 2548 ( 2007 ).
  • Loh YH , MitrouPN , BowmanRet al. MGMT Ile143Val polymorphism, dietary factors and the risk of breast, colorectal and prostate cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk study . DNA Repair (Amsterdam)9 ( 4 ), 421 – 428 ( 2010 ).
  • Wegiel B , BjartellA , TuomelaJet al. Multiple cellular mechanisms related to cyclin A1 in prostate cancer invasion and metastasis . J. Natl Cancer Inst.100 ( 14 ), 1022 – 1036 ( 2008 ).
  • Brett A , PandeyS , FraizerG . The Wilms’ tumor gene (WT1) regulates E-cadherin expression and migration of prostate cancer cells . Mol. Cancer12 , 3 ( 2013 ).
  • Fujii S , ItoK , ItoY , OchiaiA . Enhancer of zeste homologue 2 (EZH2) down-regulates RUNX3 by increasing histone H3 methylation . J. Biol. Chem.283 ( 25 ), 17324 – 17332 ( 2008 ).
  • Daniels G , GellertLL , MelamedJet al. Decreased expression of stromal estrogen receptor α and β in prostate cancer . Am. J. Transl. Res.6 ( 2 ), 140 – 146 ( 2014 ).
  • Ameri A , AlidoostiA , HosseiniSYet al. Prognostic value of promoter hypermethylation of retinoic acid receptor beta (RARB) and CDKN2 (p16/MTS1) in prostate cancer . Chin. J. Cancer Res.23 ( 4 ), 306 – 311 ( 2011 ).
  • Moison C , Senamaud-BeaufortC , FourrièreLet al. DNA methylation associated with polycomb repression in retinoic acid receptor β silencing . FASEB J.27 ( 4 ), 1468 – 1478 ( 2013 ).
  • Sullivan L , MurphyTM , BarrettCet al. IGFBP7 promoter methylation and gene expression analysis in prostate cancer . J. Urol.188 ( 4 ), 1354 – 1360 ( 2012 ).
  • Perry AS , O’HurleyG , RaheemOAet al. Gene expression and epigenetic discovery screen reveal methylation of SFRP2 in prostate cancer . Int. J. Cancer132 ( 8 ), 1771 – 1780 ( 2013 ).
  • Bhaumik SR , SmithE , ShilatifardA . Covalent modifications of histones during development and disease pathogenesis . Nat. Struct. Mol. Biol.14 ( 11 ), 1008 – 1016 ( 2007 ).
  • Dagdemir A , DurifJ , NgolloM , BignonY-J , Bernard-GallonD . Histone lysine trimethylation or acetylation can be modulated by phytoestrogen, estrogen or anti-HDAC in breast cancer cell lines . Epigenomics5 ( 1 ), 51 – 63 ( 2013 ).
  • Lachner M , JenuweinT . The many faces of histone lysine methylation . Curr. Opin. Cell Biol.14 ( 3 ), 286 – 298 ( 2002 ).
  • Kirmizis A , BartleySM , KuzmichevAet al. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27 . Genes Dev.18 ( 13 ), 1592 – 1605 ( 2004 ).
  • Müller J , HartCM , FrancisNJet al. Histone methyltransferase activity of a Drosophila polycomb group repressor complex . Cell111 ( 2 ), 197 – 208 ( 2002 ).
  • Li G , MargueronR , KuM , ChambonP , BernsteinBE , ReinbergD . Jarid2 and PRC2, partners in regulating gene expression . Genes Dev.24 ( 4 ), 368 – 380 ( 2010 ).
  • Viré E , BrennerC , DeplusRet al. The Polycomb group protein EZH2 directly controls DNA methylation . Nature439 ( 7078 ), 871 – 874 ( 2006 ).
  • Karanikolas BDW , FigueiredoML , WuL . Polycomb group protein enhancer of zeste 2 is an oncogene that promotes the neoplastic transformation of a benign prostatic epithelial cell line . Mol. Cancer Res.7 ( 9 ), 1456 – 1465 ( 2009 ).
  • Ngollo M , DagdemirA , JudesGet al. Epigenetics of prostate cancer: distribution of histone H3K27me3 biomarkers in peri-tumoral tissue . OMICS18 ( 3 ), 207 – 209 ( 2014 ).
  • Bracken AP , PasiniD , CapraM , ProsperiniE , ColliE , HelinK . EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer . EMBO J.22 ( 20 ), 5323 – 5335 ( 2003 ).
  • Shiogama S , YoshibaS , SogaD , MotohashiH , ShintaniS . Aberrant expression of EZH2 is associated with pathological findings and P53 alteration . Anticancer Res.33 ( 10 ), 4309 – 4317 ( 2013 ).
  • Ghosh AK , SteeleR , RayRB . MBP-1 physically associates with histone deacetylase for transcriptional repression . Biochem. Biophys. Res. Commun.260 ( 2 ), 405 – 409 ( 1999 ).
  • Au SL-K , WongCC-L , LeeJM-F , WongC-M , NgIO-L . EZH2-mediated H3K27me3 is involved in epigenetic repression of deleted in liver cancer 1 in human cancers . PloS One8 ( 6 ), e68226 ( 2013 ).
  • Ke X-S , QuY , RostadKet al. Genome-wide profiling of histone h3 lysine 4 and lysine 27 trimethylation reveals an epigenetic signature in prostate carcinogenesis . PloS One4 ( 3 ), e4687 ( 2009 ).
  • Chng KR , ChangCW , TanSKet al. A transcriptional repressor co-regulatory network governing androgen response in prostate cancers . EMBO J.31 ( 12 ), 2810 – 2823 ( 2012 ).
  • Metzger E , WissmannM , YinNet al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription . Nature437 ( 7057 ), 436 – 439 ( 2005 ).
  • Cai C , HeHH , ChenSet al. Androgen receptor gene expression in prostate cancer is directly suppressed by the androgen receptor through recruitment of lysine-specific demethylase 1 . Cancer Cell20 ( 4 ), 457 – 471 ( 2011 ).
  • Wissmann M , YinN , MüllerJMet al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression . Nat. Cell Biol.9 ( 3 ), 347 – 353 ( 2007 ).
  • Xiang Y , ZhuZ , HanG , LinH , XuL , ChenCD . JMJD3 is a histone H3K27 demethylase . Cell Res.17 ( 10 ), 850 – 857 ( 2007 ).
  • Agger K , CloosPAC , ChristensenJet al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development . Nature449 ( 7163 ), 731 – 734 ( 2007 ).
  • Lu F , LiG , CuiX , LiuC , WangX-J , CaoX . Comparative analysis of JmjC domain-containing proteins reveals the potential histone demethylases in Arabidopsis and rice . J. Integr. Plant Biol.50 ( 7 ), 886 – 896 ( 2008 ).
  • Coffey K , RogersonL , Ryan-MundenCet al. The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover . Nucleic Acids Res.41 ( 8 ), 4433 – 4446 ( 2013 ).
  • Shi Y , LanF , MatsonCet al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1 . Cell119 ( 7 ), 941 – 953 ( 2004 ).
  • Shiau C , TrnkaMJ , BozicevicAet al. Reconstitution of nucleosome demethylation and catalytic properties of a jumonji histone demethylase . Chem. Biol.20 ( 4 ), 494 – 499 ( 2013 ).
  • Kouzarides T . Chromatin modifications and their function . Cell128 ( 4 ), 693 – 705 ( 2007 ).
  • Shilatifard A . The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis . Annu. Rev. Biochem.81 , 65 – 95 ( 2012 ).
  • Cho Y-W , HongT , HongSet al. PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex . J. Biol. Chem.282 ( 28 ), 20395 – 20406 ( 2007 ).
  • Benson LJ , PhillipsJA , GuY , ParthunMR , HoffmanCS , AnnunziatoAT . Properties of the type B histone acetyltransferase Hat1: H4 tail interaction, site preference, and involvement in DNA repair . J. Biol. Chem.282 ( 2 ), 836 – 842 ( 2007 ).
  • Gaughan L , LoganIR , CookS , NealDE , RobsonCN . Tip60 and histone deacetylase 1 regulate androgen receptor activity through changes to the acetylation status of the receptor . J. Biol. Chem.277 ( 29 ), 25904 – 25913 ( 2002 ).
  • Culig Z , SanterFR . Androgen receptor co-activators in the regulation of cellular events in prostate cancer . World J. Urol.30 ( 3 ), 297 – 302 ( 2012 ).
  • Gong A-Y , EischeidAN , XiaoJet al. miR-17–5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells . BMC Cancer12 ( 1) , 492  ( 2012 ).
  • Fialova B , Smesny TrtkovaK , PaskovaL , LangovaK , KolarZ . Effect of histone deacetylase and DNA methyltransferase inhibitors on the expression of the androgen receptor gene in androgen-independent prostate cancer cell lines . Oncol. Rep.29 ( 5 ), 2039 – 2045 ( 2013 ).
  • Strunnikova M , SchagdarsurenginU , KehlenA , GarbeJC , StampferMR , DammannR . Chromatin inactivation precedes de novo DNA methylation during the progressive epigenetic silencing of the RASSF1A promoter . Mol. Cell. Biol.25 ( 10 ), 3923 – 3933 ( 2005 ).
  • He L , HannonGJ . MicroRNAs: small RNAs with a big role in gene regulation . Nat. Rev. Genet.5 ( 7 ), 522 – 531 ( 2004 ).
  • Wang N , LiQ , FengN-Het al. miR-205 is frequently downregulated in prostate cancer and acts as a tumor suppressor by inhibiting tumor growth . Asian J. Androl.15 ( 6 ), 735 – 741 ( 2013 ).
  • Sun D , LayerR , MuellerACet al. Regulation of several androgen-induced genes through the repression of the miR-99a/let-7c/miR-125b-2 miRNA cluster in prostate cancer cells . Oncogene33 ( 11 ), 1448 – 1457 ( 2014 ).
  • Friedman JM , JonesPA , LiangG . The tumor suppressor microRNA-101 becomes an epigenetic player by targeting the polycomb group protein EZH2 in cancer . Cell Cycle Georget. Tex.8 ( 15 ), 2313 – 2314 ( 2009 ).
  • Schubert M , SpahnM , KneitzSet al. Distinct microRNA expression profile in prostate cancer patients with early clinical failure and the impact of let-7 as prognostic marker in high-risk prostate cancer . PloS One8 ( 6 ), e65064 ( 2013 ).
  • Formosa A , LenaAM , MarkertEKet al. DNA methylation silences miR-132 in prostate cancer . Oncogene32 ( 1 ), 127 – 134 ( 2013 ).
  • Qu Y , HuangX , LiZet al. New avenue for prostate cancer treatment: miR-199a-3p inhibits aurora kinase A and attenuates prostate cancer growth . Am. J. Pathol.9440 ( 14 ), 91 ( 2014 ).
  • Majid S , DarAA , SainiSet al. miRNA-34b inhibits prostate cancer through demethylation, active chromatin modifications, and AKT pathways . Clin. Cancer Res.19 ( 1 ), 73 – 84 ( 2013 ).
  • Shen P-F , ChenX-Q , LiaoY-Cet al. MicroRNA-494–3p targets CXCR4 to suppress the proliferation, invasion, and migration of prostate cancer . Prostate74 ( 6 ), 1 – 12 ( 2014 ).
  • Zhang W , ZangJ , JingXet al. Identification of candidate miRNA biomarkers from miRNA regulatory network with application to prostate cancer . J. Transl. Med.12 ( 1 ), 66 ( 2014 ).
  • Singh PK , PreusL , HuQet al. Serum microRNA expression patterns that predict early treatment failure in prostate cancer patients . Oncotarget5 ( 3 ), 824 – 840 ( 2014 ).
  • Noonan EJ , PlaceRF , PookotDet al. miR-449a targets HDAC-1 and induces growth arrest in prostate cancer . Oncogene28 ( 14 ), 1714 – 1724 ( 2009 ).
  • Stresemann C , BruecknerB , MuschT , StopperH , LykoF . Functional diversity of DNA methyltransferase inhibitors in human cancer cell lines . Cancer Res.66 ( 5 ), 2794 – 2800 ( 2006 ).
  • Graça I , SousaE , BaptistaTet al. Anti-tumoral effect of the non-nucleoside DNMT inhibitor RG108 in human prostate cancer cells . Curr. Pharm. Des.19 ( 1 ), 1 – 9 ( 2013 ).
  • Dong X , XuW , SikesRA , WuC . Combination of low dose of genistein and daidzein has synergistic preventive effects on isogenic human prostate cancer cells when compared with individual soy isoflavone . Food Chem.141 ( 3 ), 1923 – 1933 ( 2013 ).
  • Roy S , PackmanK , JeffreyR , TenniswoodM . Histone deacetylase inhibitors differentially stabilize acetylated p53 and induce cell cycle arrest or apoptosis in prostate cancer cells . Cell Death Differ.12 ( 5 ), 482 – 491 ( 2005 ).
  • Paskova L , TrtkovaKS , FialovaB , BenedikovaA , LangovaK , KolarZ . Different effect of sodium butyrate on cancer and normal prostate cells . Toxicol. In Vitro27 ( 5 ), 1489 – 1495 ( 2013 ).
  • Patra N , DeU , KimTHet al. A novel histone deacetylase (HDAC) inhibitor MHY219 induces apoptosis via up-regulation of androgen receptor expression in human prostate cancer cells . Biomed. Pharmacother.67 ( 5 ), 407 – 415 ( 2013 ).
  • Laurenzana A , BalliuM , CellaiC , RomanelliMN , PaolettiF .  Effectiveness of the histone deacetylase inhibitor (S)-2 against LNCaP and PC3 human prostate cancer cells .  PloS One8 ( 3 ),  e58267  ( 2013 ).
  • Hauptstock V , KuriakoseS , SchmidtDet al. Glutathione-S-transferase pi 1(GSTP1) gene silencing in prostate cancer cells is reversed by the histone deacetylase inhibitor depsipeptide . Biochem. Biophys. Res. Commun.412 ( 4 ), 606 – 611 ( 2011 ).
  • Glazer RI , KnodeMC , TsengCK , HainesDR , MarquezVE .  3-Deazaneplanocin A: a new inhibitor of S-adenosylhomocysteine synthesis and its effects in human colon carcinoma cells .  Biochem. Pharmacol.35 ( 24 ),  4523 – 4527  ( 1986 ).
  • Tan J , YangX , ZhuangLet al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells . Genes Dev.21 ( 9 ), 1050 – 1063 ( 2007 ).
  • Miranda TB , CortezCC , YooCBet al. DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation . Mol. Cancer Ther.8 ( 6 ), 1579 – 1588 ( 2009 ).
  • Shiota M , TakeuchiA , YokomizoA , KashiwagiE , TatsugamiK , NaitoS . Methyltransferase inhibitor adenosine dialdehyde suppresses androgen receptor expression and prostate cancer growth . J. Urol.188 ( 1 ), 300 – 306 ( 2012 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.