414
Views
0
CrossRef citations to date
0
Altmetric
Review

Histone Deacetylase Inhibitors: a Potential Epigenetic Treatment for Duchenne Muscular Dystrophy

, &
Pages 547-560 | Published online: 28 Nov 2014

References

  • Mercuri E , MuntoniF . Muscular dystrophies . Lancet381 , 845 – 860 ( 2013 ).
  • Bonilla E , SamittCE , MirandaAFet al. Duchenne muscular dystrophy: deficiency of dystrophin at the muscle cell surface . Cell54 ( 4 ), 447 – 452 ( 1988 ).
  • Hoffman EP , BrownRH , KunkelLM . Dystrophin: the protein product of the Duchenne muscular dystrophy locus . Cell51 ( 6 ), 919 – 928 ( 1987 ).
  • Ervasti JM . Dystrophin, its interactions with other proteins, and implications for muscular dystrophy . Biochim. Biophys. Acta1772 ( 2 ), 108 – 117 ( 2007 ).
  • Ervasti JM , OhlendieckK , KahlSD , GaverMG , CampbellKP . Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle . Nature345 ( 6273 ), 315 – 319 ( 1990 ).
  • Benedetti S , HoshiyaH , TedescoFS . Repair or replace? Exploiting novel gene and cell therapy strategies for muscular dystrophies . FEBS J.280 ( 17 ), 4263 – 4280 ( 2013 ).
  • Mozzetta C , MinettiG , PuriPL . Regenerative pharmacology in the treatment of genetic diseases: the paradigm of muscular dystrophy . Int. J. Biochem. Cell Biol.41 ( 4 ), 701 – 710 ( 2009 ).
  • Fairclough RJ , PerkinsKJ , DaviesKE . Pharmacologically targeting the primary defect and downstream pathology in Duchenne muscular dystrophy . Curr. Gene Ther.12 ( 3 ), 206 – 244 ( 2012 ).
  • Chargé SBP , RudnickiMA . Cellular and molecular regulation of muscle regeneration . Physiol. Rev.84 ( 1 ), 209 – 238 ( 2004 ).
  • Wang YX , RudnickiMA . Satellite cells, the engines of muscle repair . Nat. Rev. Mol. Cell Biol.13 ( 2 ), 127 – 133 ( 2012 ).
  • Brack AS , RandoTA . Tissue-specific stem cells: lessons from the skeletal muscle satellite cell . Cell Stem Cell10 ( 5 ), 504 – 514 ( 2012 ).
  • Collins CA , OlsenI , ZammitPSet al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche . Cell122 ( 2 ), 289 – 301 ( 2005 ).
  • Sousa-Victor P , GutarraS , García-PratLet al. Geriatric muscle stem cells switch reversible quiescence into senescence . Nature506 ( 7488 ), 316 – 321 ( 2014 ).
  • Carlson ME , ConboyIM . Loss of stem cell regenerative capacity within aged niches . Aging Cell6 ( 3 ), 371 – 382 ( 2007 ).
  • Sacco A , MourkiotiF , TranRet al. Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice . Cell143 ( 7 ), 1059 – 1071 ( 2010 ).
  • Bentzinger CF , WangYX , DumontNA , RudnickiMA . Cellular dynamics in the muscle satellite cell niche . EMBO Rep.14 ( 12 ), 1062 – 1072 ( 2013 ).
  • Judson RN , ZhangRH , RossiFM . Tissue-resident mesenchymal stem/progenitor cells in skeletal muscle: collaborators or saboteurs?FEBS J.280 ( 17 ), 4100 – 4108 ( 2013 ).
  • Sampaolesi M , BlotS , D’AntonaGet al. Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs . Nature444 ( 7119 ), 574 – 579 ( 2006 ).
  • Sampaolesi M , TorrenteY , InnocenziAet al. Cell therapy of alpha-sarcoglycan null dystrophic mice through intra-arterial delivery of mesoangioblasts . Science301 ( 5632 ), 487 – 492 ( 2003 ).
  • Dellavalle A , SampaolesiM , TonlorenziRet al. Pericytes of human skeletal muscle are myogenic precursors distinct from satellite cells . Nat. Cell Biol.9 ( 3 ), 255 – 267 ( 2007 ).
  • Dellavalle A , MaroliG , CovarelloDet al. Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells . Nat. Commun.11 ( 2 ), 499 ( 2011 ).
  • Asakura A , SealeP , Girgis-GabardoA , RudnickiMA . Myogenic specification of side population cells in skeletal muscle . J. Cell Biol.159 ( 1 ), 123 – 134 ( 2002 ).
  • Uezumi A , OjimaK , FukadaSet al. Functional heterogeneity of side population cells in skeletal muscle . Biochem. Biophys. Res. Commun.341 ( 3 ), 864 – 873 ( 2006 ).
  • Gussoni E , SoneokaY , StricklandCDet al. Dystrophin expression in the mdx mouse restored by stem cell transplantation . Nature401 ( 6751 ), 390 – 394 ( 1999 ).
  • Mitchell KJ , PannérecA , CadotBet al. Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development . Nat. Cell Biol.12 ( 3 ), 257 – 266 ( 2010 ).
  • Saccone V , ConsalviS , GiordaniLet al. HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles . Genes Dev.28 ( 8 ), 841 – 857 ( 2014 ).
  • Joe AWB , YiL , NatarajanAet al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis . Nat. Cell Biol.12 ( 2 ), 153 – 163 ( 2010 ).
  • Uezumi A , FukadaS , YamamotoN , TakedaS , TsuchidaK . Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle . Nat. Cell Biol.12 ( 2 ), 143 – 152 ( 2010 ).
  • Mozzetta C , ConsalviS , SacconeVet al. Fibroadipogenic progenitors mediate the ability of HDAC inhibitors to promote regeneration in dystrophic muscles of young, but not old Mdx mice . EMBO Mol. Med.5 ( 4 ), 626 – 639 ( 2013 ).
  • Uezumi A , ItoT , MorikawaDet al. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle . J. Cell Sci.124 ( Pt 21 ), 3654 – 3664 ( 2011 ).
  • Dulauroy S , Di CarloSE , LangaF , EberlG , PedutoL . Lineage tracing and genetic ablation of ADAM12+ perivascular cells identify a major source of profibrotic cells during acute tissue injury . Nat. Med.18 ( 8 ), 1262 – 1270 ( 2012 ).
  • Heredia JE , MukundanL , ChenFMet al. Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration . Cell153 ( 2 ), 376 – 388 ( 2013 ).
  • Tidball JG , VillaltaSA . Regulatory interactions between muscle and the immune system during muscle regeneration . Am. J. Physiol. Regul. Integr. Comp. Physiol.298 ( 5 ), R1173 – R1187 ( 2010 ).
  • Brunelli S , Rovere-QueriniP . The immune system and the repair of skeletal muscle . Pharmacol. Res.58 ( 2 ), 117 – 121 ( 2008 ).
  • Brack AS , ConboyMJ , RoySet al. Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis . Science317 ( 5839 ), 807 – 810 ( 2007 ).
  • Chakkalakal J V , JonesKM , BassonMA , BrackAS . The aged niche disrupts muscle stem cell quiescence . Nature490 ( 7420 ), 355 – 360 ( 2012 ).
  • Conboy IM , ConboyMJ , WagersAJ , GirmaER , WeissmanIL , RandoTA . Rejuvenation of aged progenitor cells by exposure to a young systemic environment . Nature433 ( 7027 ), 760 – 764 ( 2005 ).
  • Carlson ME , SuettaC , ConboyMJet al. Molecular aging and rejuvenation of human muscle stem cells . EMBO Mol. Med.1 ( 8–9 ), 381 – 391 ( 2009 ).
  • Penton CM , Thomas-AhnerJM , JohnsonEK , McAllisterC , MontanaroF . Muscle side population cells from dystrophic or injured muscle adopt a fibro-adipogenic fate . PLoS One8 ( 1 ), e54553 ( 2013 ).
  • Yin H , PasutA , SoleimaniVDet al. Article microRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16 . Cell Metab.17 ( 2 ), 210 – 224 ( 2013 ).
  • Cencetti F , BernacchioniC , NincheriP , DonatiC , BruniP . Transforming growth factor-beta1 induces transdifferentiation of myoblasts into myofibroblasts via up-regulation of sphingosine kinase-1/S1P3 axis . Mol. Biol. Cell21 ( 6 ), 1111 – 1124 ( 2010 ).
  • Asakura A , KomakiM , RudnickiM . Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation . Differentiation68 ( 4–5 ), 245 – 253 ( 2001 ).
  • Sartorelli V , JuanAH . Sculpting chromatin beyond the double helix: epigenetic control of skeletal myogenesis . Curr. Top. Dev. Biol.96 , 57 – 83 ( 2011 ).
  • Guasconi V , PuriPL . Chromatin: the interface between extrinsic cues and the epigenetic regulation of muscle regeneration . Trends Cell Biol.19 ( 6 ), 286 – 294 ( 2009 ).
  • Giordani L , PuriPL . Epigenetic control of skeletal muscle regeneration: integrating genetic determinants and environmental changes . FEBS J.280 ( 17 ), 4014 – 4025 ( 2013 ).
  • Kouzarides T . Chromatin modifications and their function . Cell128 ( 4 ), 693 – 705 ( 2007 ).
  • Puri PL , SartorelliV . Regulation of muscle regulatory factors by DNA-binding, interacting proteins, and post-transcriptional modifications . J. Cell. Physiol.185 ( 2 ), 155 – 173 ( 2000 ).
  • McKinsey TA , ZhangCL , OlsonEN . Control of muscle development by dueling HATs and HDACs . Curr. Opin. Genet. Dev.11 ( 5 ), 497 – 504 ( 2001 ).
  • Puri PL , IezziS , StieglerPet al. Class I histone deacetylases sequentially interact with MyoD and pRb during skeletal myogenesis . Mol. Cell8 ( 4 ), 885 – 897 ( 2001 ).
  • Lu J , McKinseyTA , ZhangCL , OlsonEN . Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases . Mol. Cell6 ( 2 ), 233 – 244 ( 2000 ).
  • McKinsey TA , ZhangCL , LuJ , OlsonEN . Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation . Nature408 ( 6808 ), 106 – 111 ( 2000 ).
  • Iezzi S , Di PadovaM , SerraCet al. Deacetylase inhibitors increase muscle cell size by promoting myoblast recruitment and fusion through induction of follistatin . Dev. Cell6 ( 5 ), 673 – 684 ( 2004 ).
  • Iezzi S , CossuG , NerviC , SartorelliV , PuriPL . Stage-specific modulation of skeletal myogenesis by inhibitors of nuclear deacetylases . Proc. Natl Acad. Sci. USA99 ( 11 ), 7757 – 7762 ( 2002 ).
  • Greer EL , ShiY . Histone methylation: a dynamic mark in health, disease and inheritance . Nat. Rev. Genet.13 ( 5 ), 343 – 357 ( 2012 ).
  • Asp P , BlumR , VethanthamVet al. Genome-wide remodeling of the epigenetic landscape during myogenic differentiation . Proc. Natl Acad. Sci. USA108 ( 22 ), E149 – E158 ( 2011 ).
  • Caretti G , Di PadovaM , MicalesB , LyonsGE , SartorelliV . The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation . Genes Dev.18 ( 21 ), 2627 – 2638 ( 2004 ).
  • Juan AH , KumarRM , MarxJG , YoungRA , SartorelliV . Mir-214-dependent regulation of the polycomb protein Ezh2 in skeletal muscle and embryonic stem cells . Mol. Cell36 ( 1 ), 61 – 74 ( 2009 ).
  • Juan AH , DerfoulA , FengXet al. Polycomb EZH2 controls self-renewal and safeguards the transcriptional identity of skeletal muscle stem cells . Genes Dev.25 ( 8 ), 789 – 794 ( 2011 ).
  • Mozzetta C , ConsalviS , SacconeV , ForcalesS V , PuriPL , PalaciosD . Selective control of Pax7 expression by TNF-activated p38α/polycomb repressive complex 2 (PRC2) signaling during muscle satellite cell differentiation . Cell Cycle10 ( 2 ), 191 – 198 ( 2011 ).
  • Palacios D , MozzettaC , ConsalviSet al. TNF/p38α/polycomb signaling to Pax7 locus in satellite cells links inflammation to the epigenetic control of muscle regeneration . Cell Stem Cell7 ( 4 ), 455 – 469 ( 2010 ).
  • Seenundun S , RampalliS , LiuQ-Cet al. UTX mediates demethylation of H3K27me3 at muscle-specific genes during myogenesis . EMBO J.29 ( 8 ), 1401 – 1411 ( 2010 ).
  • Stojic L , JasencakovaZ , PreziosoCet al. Chromatin regulated interchange between polycomb repressive complex 2 (PRC2)-Ezh2 and PRC2-Ezh1 complexes controls myogenin activation in skeletal muscle cells . Epigenetics Chromatin5 ( 4 ), 16 ( 2011 ).
  • Robson LG , Di FoggiaV , RadunovicA , BirdK , ZhangX , MarinoS . Bmi1 is expressed in postnatal myogenic satellite cells, controls their maintenance and plays an essential role in repeated muscle regeneration . PLoS One6 ( 11 ), e27116 ( 2011 ).
  • Ait-Si-Ali S , GuasconiV , FritschLet al. A Suv39h-dependent mechanism for silencing S-phase genes in differentiating but not in cycling cells . EMBO J.23 ( 3 ), 605 – 615 ( 2004 ).
  • Guasconi V , PritchardL-L , FritschLet al. Preferential association of irreversibly silenced E2F-target genes with pericentromeric heterochromatin in differentiated muscle cells . Epigenetics5 ( 8 ), 704 – 709 ( 2010 ).
  • Zhang C , McKinseyT , OlsonE . Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation . Mol. Cell. Biol.22 ( 20 ), 7302 – 7312 ( 2002 ).
  • Mal AK . Histone methyltransferase Suv39h1 represses MyoD-stimulated myogenic differentiation . EMBO J.25 ( 14 ), 3323 – 3334 ( 2006 ).
  • Gillespie MA , Le GrandF , ScimèAet al. P38-{gamma}-dependent gene silencing restricts entry into the myogenic differentiation program . J. Cell Biol.187 ( 7 ), 991 – 1005 ( 2009 ).
  • Ling BMT , BharathyN , ChungT-Ket al. Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation . Proc. Natl Acad. Sci. USA109 ( 3 ), 841 – 846 ( 2012 ).
  • Ohno H , ShinodaK , OhyamaK , SharpLZ , KajimuraS . EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex . Nature 16504 ( 7478 ), 163 – 167 ( 2013 ).
  • Seale P , BjorkB , YangWet al. PRDM16 controls a brown fat/skeletal muscle switch . Nature454 ( 7207 ), 961 – 967 ( 2008 ).
  • Verrier L , EscaffitF , ChailleuxC , TroucheD , VandrommeM . A new isoform of the histone demethylase JMJD2A/KDM4A is required for skeletal muscle differentiation . PLoS Genet.7 ( 6 ), e1001390 ( 2011 ).
  • Wang AH , ZareH , MousaviKet al. The histone chaperone Spt6 coordinates histone H3K27 demethylation and myogenesis . EMBO J.32 , 1075 – 1086 ( 2013 ).
  • Rampalli S , LiL , MakEet al. p38 MAPK signaling regulates recruitment of Ash2L-containing methyltransferase complexes to specific genes during differentiation . Nat. Struct. Mol. Biol.14 ( 12 ), 1150 – 1156 ( 2007 ).
  • Liu L , CheungTH , CharvilleGWet al. Resource chromatin modifications as determinants of muscle stem cell quiescence and chronological aging . Cell Rep.4 ( 1 ), 189 – 204 ( 2013 ).
  • Arrowsmith CH , BountraC , FishPV , LeeK , SchapiraM . Epigenetic protein families: a new frontier for drug discovery . Nat. Rev. Drug Discov.11 ( 5 ), 384 – 400 ( 2012 ).
  • Minetti GC , ColussiC , AdamiRet al. Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors . Nat. Med.12 ( 10 ), 1147 – 1150 ( 2006 ).
  • Colussi C , MozzettaC , GurtnerAet al. HDAC2 blockade by nitric oxide and histone deacetylase inhibitors reveals a common target in Duchenne muscular dystrophy treatment . Proc. Natl Acad. Sci. USA105 ( 49 ), 19183 – 19187 ( 2008 ).
  • Consalvi S , MozzettaC , BetticaPet al. Preclinical studies in the mdx mouse model of duchenne muscular dystrophy with the histone deacetylase inhibitor givinostat . Mol. Med.20 ( 19 ), 79 – 87 ( 2013 ).
  • Consalvi S , SacconeV , GiordaniL , MinettiG , MozzettaC , PuriPL . Histone deacetylase inhibitors in the treatment of muscular dystrophies: epigenetic drugs for genetic diseases . Mol. Med.17 ( 5–6 ), 457 – 465 .
  • Colussi C , GurtnerA , RosatiJet al. Nitric oxide deficiency determines global chromatin changes in Duchenne muscular dystrophy . FASEB J.23 ( 7 ), 2131 – 2141 ( 2009 ).
  • Brenman JE , ChaoDS , XiaH , AldapeK , BredtDS . Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy . Cell82 ( 5 ), 743 – 752 ( 1995 ).
  • Chao DS , GorospeJR , BrenmanJEet al. Selective loss of sarcolemmal nitric oxide synthase in Becker muscular dystrophy . J. Exp. Med.184 ( 2 ), 609 – 618 ( 1996 ).
  • Nott A , WatsonPM , RobinsonJD , CrepaldiL , RiccioA . S-Nitrosylation of histone deacetylase 2 induces chromatin remodelling in neurons . Nature455 ( 7211 ), 411 – 415 ( 2008 ).
  • Wehling M , SpencerMJ , TidballJG . A nitric oxide synthase transgene ameliorates muscular dystrophy in mdx mice . J. Cell Biol.155 ( 1 ), 123 – 131 ( 2001 ).
  • Brunelli S , ScioratiC , D’AntonaGet al. Nitric oxide release combined with nonsteroidal antiinflammatory activity prevents muscular dystrophy pathology and enhances stem cell therapy . Proc. Natl Acad. Sci. USA104 ( 1 ), 264 – 269 ( 2007 ).
  • Pisconti A , BrunelliS , Di PadovaMet al. Follistatin induction by nitric oxide through cyclic GMP: a tightly regulated signaling pathway that controls myoblast fusion . J. Cell Biol.172 ( 2 ), 233 – 244 ( 2006 ).
  • Rodino-Klapac LR , HaidetAM , KotaJ , HandyC , KasparBK , MendellJR . Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease . Muscle Nerve39 ( 3 ), 283 – 296 ( 2009 ).
  • Cacchiarelli D , MartoneJ , GirardiEet al. MicroRNAs involved in molecular circuitries relevant for the Duchenne muscular dystrophy pathogenesis are controlled by the dystrophin/nNOS pathway . Cell Metab.12 ( 4 ), 341 – 351 ( 2010 ).
  • Elaut G , RogiersV , VanhaeckeT . The pharmaceutical potential of histone deacetylase inhibitors . Curr. Pharm. Des.13 ( 25 ), 2584 – 2620 ( 2007 ).
  • Ware CB , WangL , MechamBHet al. Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells . Cell Stem Cell4 ( 4 ), 359 – 369 ( 2009 ).
  • Liang J , WanM , ZhangYet al. Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells . Nat. Cell Biol.10 ( 6 ), 731 – 739 ( 2008 ).
  • Karantzali E , SchulzH , HummelO , HubnerN , HatzopoulosA , KretsovaliA . Histone deacetylase inhibition accelerates the early events of stem cell differentiation: transcriptomic and epigenetic analysis . Genome Biol.9 ( 4 ), R65 ( 2008 ).
  • Bernstein BE , MikkelsenTS , XieXet al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells . Cell125 ( 2 ), 315 – 326 ( 2006 ).
  • Mikkelsen TS , KuM , JaffeDBet al. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells . Nature448 ( 7153 ), 553 – 560 ( 2007 ).
  • Consalvi S , SacconeV , GiordaniL , MinettiG , MozzettaC , PuriPL . Histone deacetylase inhibitors in the treatment of muscular dystrophies: epigenetic drugs for genetic diseases . Mol. Med.17 ( 5–6 ), 457 – 465 ( 2011 ).
  • Forcales S V , AlbiniS , GiordaniLet al. Signal-dependent incorporation of MyoD–BAF60c into Brg1-based SWI/SNF chromatin-remodelling complex . EMBO J.31 ( 2 ), 301 – 316 ( 2011 ).
  • Colussi C , BanfiC , BrioschiMet al. Proteomic profile of differentially expressed plasma proteins from dystrophic mice and following suberoylanilide hydroxamic acid treatment . Proteomics Clin. Appl.4 ( 1 ), 71 – 83 ( 2010 ).
  • Vojinovic J , DamjanovN , D’UrzoCet al. Safety and efficacy of an oral histone deacetylase inhibitor in systemic-onset juvenile idiopathic arthritis . Arthritis Rheum.63 ( 5 ), 1452 – 1458 ( 2011 ).
  • Furlan A , MonzaniV , ReznikovLLet al. Pharmacokinetics, safety and inducible cytokine responses during a Phase 1 trial of the oral histone deacetylase inhibitor ITF2357 (givinostat) . Mol. Med.17 ( 5–6 ), 353 – 362 ( 2011 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.