591
Views
0
CrossRef citations to date
0
Altmetric
Review

Chromatin Remodeler Mutations in Human Cancers: Epigenetic Implications

, , &
Pages 397-414 | Published online: 21 Oct 2014

References

  • Sharma S , KellyTK , JonesPA . Epigenetics in cancer . Carcinogenesis31 ( 1 ), 27 – 36 ( 2010 ).
  • Taberlay PC , JonesPA . DNA methylation and cancer . Prog. Drug Res.67 , 1 – 23 ( 2011 ).
  • Jones PA , BaylinSB . The epigenomics of cancer . Cell128 ( 4 ), 683 – 692 ( 2007 ).
  • Shen H , LairdPW . Interplay between the cancer genome and epigenome . Cell153 ( 1 ), 38 – 55 ( 2013 ).
  • You JS , JonesPA . Cancer genetics and epigenetics: two sides of the same coin?Cancer Cell22 ( 1 ), 9 – 20 ( 2012 ).
  • Reisman D , GlarosS , ThompsonEA . The SWI/SNF complex and cancer . Oncogene28 ( 14 ), 1653 – 1668 ( 2009 ).
  • Staynov DZ , ProykovaYG . Topological constraints on the possible structures of the 30 nm chromatin fibre . Chromosoma117 ( 1 ), 67 – 76 ( 2008 ).
  • Allfrey VG , LittauVC , MirskyAE . On the role of histones in regulation of ribonucleic acid synthesis in the cell nucleus . Proc. Natl Acad. Sci. USA49 , 414 – 421 ( 1963 ).
  • Hawkins RD , LarjoA , TripathiSKet al. Global chromatin state analysis reveals lineage-specific enhancers during the initiation of human T helper 1 and T helper 2 cell polarization . Immunity38 ( 6 ), 1271 – 1284 ( 2013 ).
  • Heintzman ND , HonGC , HawkinsRDet al. Histone modifications at human enhancers reflect global cell-type-specific gene expression . Nature459 ( 7243 ), 108 – 112 ( 2009 ).
  • Heinz S , BennerC , SpannNet al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities . Mol. Cell38 ( 4 ), 576 – 589 ( 2010 ).
  • Gifford CA , ZillerMJ , GuHet al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells . Cell153 ( 5 ), 1149 – 1163 ( 2013 ).
  • Stopka T , SkoultchiAI . The ISWI ATPase Snf2h is required for early mouse development . Proc. Natl Acad. Sci. USA100 ( 24 ), 14097 – 14102 ( 2003 ).
  • Curtis CD , GriffinCT . The chromatin-remodeling enzymes BRG1 and CHD4 antagonistically regulate vascular Wnt signaling . Mol. Cell Biol.32 ( 7 ), 1312 – 1320 ( 2012 ).
  • Ingram KG , CurtisCD , Silasi-MansatR , LupuF , GriffinCT . The NuRD chromatin-remodeling enzyme CHD4 promotes embryonic vascular integrity by transcriptionally regulating extracellular matrix proteolysis . PLoS Genet.9 ( 12 ), e1004031 ( 2013 ).
  • Neuman SD , IhryRJ , GruetzmacherKM , BashirullahA . INO80-dependent regression of ecdysone-induced transcriptional responses regulates developmental timing in Drosophila . Dev. Biol.387 ( 2 ), 229 – 239 ( 2014 ).
  • Chen T , DentSY . Chromatin modifiers and remodellers: regulators of cellular differentiation . Nat. Rev. Genet.15 ( 2 ), 93 – 106 ( 2014 ).
  • Nord AS , BlowMJ , AttanasioCet al. Rapid and pervasive changes in genome-wide enhancer usage during mammalian development . Cell155 ( 7 ), 1521 – 1531 ( 2013 ).
  • Clapier CR , CairnsBR . The biology of chromatin remodeling complexes . Annu. Rev. Biochem.78 , 273 – 304 ( 2009 ).
  • Wilson BG , RobertsCW . SWI/SNF nucleosome remodellers and cancer . Nat. Rev. Cancer11 ( 7 ), 481 – 492 ( 2011 ).
  • Chen L , CaiY , JinJet al. Subunit organization of the human INO80 chromatin remodeling complex: an evolutionarily conserved core complex catalyzes ATP-dependent nucleosome remodeling . J. Biol. Chem.286 ( 13 ), 11283 – 11289 ( 2011 ).
  • Jin J , CaiY , YaoTet al. A mammalian chromatin remodeling complex with similarities to the yeast INO80 complex . J. Biol. Chem.280 ( 50 ), 41207 – 41212 ( 2005 ).
  • Leroy G , LoyolaA , LaneWS , ReinbergD . Purification and characterization of a human factor that assembles and remodels chromatin . J. Biol. Chem.275 ( 20 ), 14787 – 14790 ( 2000 ).
  • Loyola A , HuangJY , LeroyGet al. Functional analysis of the subunits of the chromatin assembly factor RSF . Mol. Cell Biol.23 ( 19 ), 6759 – 6768 ( 2003 ).
  • Vignali M , HassanAH , NeelyKE , WorkmanJL . ATP-dependent chromatin-remodeling complexes . Mol. Cell Biol.20 ( 6 ), 1899 – 1910 ( 2000 ).
  • Becker PB , WorkmanJL . Nucleosome remodeling and epigenetics . Cold Spring Harb. Perspect. Biol.5 ( 9 ), piia017905 ( 2013 ).
  • Flaus A , Owen-HughesT . Mechanisms for nucleosome mobilization . Biopolymers68 ( 4 ), 563 – 578 ( 2003 ).
  • Kulic IM , SchiesselH . Chromatin dynamics: nucleosomes go mobile through twist defects . Phys. Rev. Lett.91 ( 14 ), 148103 ( 2003 ).
  • Richmond TJ , DaveyCA . The structure of DNA in the nucleosome core . Nature423 ( 6936 ), 145 – 150 ( 2003 ).
  • Langst G , BeckerPB . Nucleosome remodeling: one mechanism, many phenomena?Biochim. Biophys. Acta1677 ( 1–3 ), 58 – 63 ( 2004 ).
  • Lia G , PralyE , FerreiraHet al. Direct observation of DNA distortion by the RSC complex . Mol. Cell21 ( 3 ), 417 – 425 ( 2006 ).
  • Lorch Y , DavisB , KornbergRD . Chromatin remodeling by DNA bending, not twisting . Proc. Natl Acad. Sci. USA102 ( 5 ), 1329 – 1332 ( 2005 ).
  • Saha A , WittmeyerJ , CairnsBR . Mechanisms for nucleosome movement by ATP-dependent chromatin remodeling complexes . Results Probl. Cell Differ. ( 41 ) 127 – 148 ( 2006 ).
  • Narlikar GJ , SundaramoorthyR , Owen-HughesT . Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes . Cell154 ( 3 ), 490 – 503 ( 2013 ).
  • Schwanbeck R , XiaoH , WuC . Spatial contacts and nucleosome step movements induced by the NURF chromatin remodeling complex . J. Biol. Chem.279 ( 38 ), 39933 – 39941 ( 2004 ).
  • Blosser TR , YangJG , StoneMD , NarlikarGJ , ZhuangX . Dynamics of nucleosome remodelling by individual ACF complexes . Nature462 ( 7276 ), 1022 – 1027 ( 2009 ).
  • Deindl S , HwangWL , HotaSKet al. ISWI remodelers slide nucleosomes with coordinated multi-base-pair entry steps and single-base-pair exit steps . Cell152 ( 3 ), 442 – 452 ( 2013 ).
  • Bruno M , FlausA , StockdaleC , RencurelC , FerreiraH , Owen-HughesT . Histone H2A/H2B dimer exchange by ATP-dependent chromatin remodeling activities . Mol. Cell12 ( 6 ), 1599 – 1606 ( 2003 ).
  • Dechassa ML , SabriA , PondugulaSet al. SWI/SNF has intrinsic nucleosome disassembly activity that is dependent on adjacent nucleosomes . Mol. Cell38 ( 4 ), 590 – 602 ( 2010 ).
  • Ichinose H , GarnierJM , ChambonP , LossonR . Ligand-dependent interaction between the estrogen receptor and the human homologues of SWI2/SNF2 . Gene188 ( 1 ), 95 – 100 ( 1997 ).
  • King HA , TrotterKW , ArcherTK . Chromatin remodeling during glucocorticoid receptor regulated transactivation . Biochim. Biophys. Acta1819 ( 7 ), 716 – 726 ( 2012 ).
  • Lessard J , WuJI , RanishJAet al. An essential switch in subunit composition of a chromatin remodeling complex during neural development . Neuron55 ( 2 ), 201 – 215 ( 2007 ).
  • Lickert H , TakeuchiJK , Von BothIet al. Baf60c is essential for function of BAF chromatin remodelling complexes in heart development . Nature432 ( 7013 ), 107 – 112 ( 2004 ).
  • Morris SA , BaekS , SungMHet al. Overlapping chromatin-remodeling systems collaborate genome wide at dynamic chromatin transitions . Nat. Struct. Mol. Biol.21 ( 1 ), 73 – 81 ( 2014 ).
  • Gao H , LukinK , RamirezJ , FieldsS , LopezD , HagmanJ . Opposing effects of SWI/SNF and Mi-2/NuRD chromatin remodeling complexes on epigenetic reprogramming by EBF and Pax5 . Proc. Natl Acad. Sci. USA106 ( 27 ), 11258 – 11263 ( 2009 ).
  • Moshkin YM , ChalkleyGE , KanTWet al. Remodelers organize cellular chromatin by counteracting intrinsic histone-DNA sequence preferences in a class-specific manner . Mol. Cell Biol.32 ( 3 ), 675 – 688 ( 2012 ).
  • Neely KE , WorkmanJL . The complexity of chromatin remodeling and its links to cancer . Biochim. Biophys. Acta1603 ( 1 ), 19 – 29 ( 2002 ).
  • Lai AY , WadePA . Cancer biology and NuRD. a multifaceted chromatin remodelling complex . Nat. Rev. Cancer11 ( 8 ), 588 – 596 ( 2011 ).
  • Phelan ML , SifS , NarlikarGJ , KingstonRE . Reconstitution of a core chromatin remodeling complex from SWI/SNF subunits . Mol. Cell3 ( 2 ), 247 – 253 ( 1999 ).
  • Kim Y , FedoriwAM , MagnusonT . An essential role for a mammalian SWI/SNF chromatin-remodeling complex during male meiosis . Development139 ( 6 ), 1133 – 1140 ( 2012 ).
  • Reisman DN , StrobeckMW , BetzBLet al. Concomitant down-regulation of BRM and BRG1 in human tumor cell lines: differential effects on RB-mediated growth arrest vs CD44 expression . Oncogene21 ( 8 ), 1196 – 1207 ( 2002 ).
  • Chandler RL , BrennanJ , SchislerJC , SerberD , PattersonC , MagnusonT . ARID1a-DNA interactions are required for promoter occupancy by SWI/SNF . Mol. Cell Biol.33 ( 2 ), 265 – 280 ( 2013 ).
  • Bultman S , GebuhrT , YeeDet al. A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes . Mol. Cell6 ( 6 ), 1287 – 1295 ( 2000 ).
  • Sumi-Ichinose C , IchinoseH , MetzgerD , ChambonP . SNF2beta-BRG1 is essential for the viability of F9 murine embryonal carcinoma cells . Mol. Cell Biol.17 ( 10 ), 5976 – 5986 ( 1997 ).
  • Smith-Roe SL , BultmanSJ . Combined gene dosage requirement for SWI/SNF catalytic subunits during early mammalian development . Mamm. Genome24 ( 1–2 ), 21 – 29 ( 2013 ).
  • Strobeck MW , ReismanDN , GunawardenaRWet al. Compensation of BRG-1 function by Brm: insight into the role of the core SWI-SNF subunits in retinoblastoma tumor suppressor signaling . J. Biol. Chem.277 ( 7 ), 4782 – 4789 ( 2002 ).
  • Oike T , OgiwaraH , TominagaYet al. A synthetic lethality-based strategy to treat cancers harboring a genetic deficiency in the chromatin remodeling factor BRG1 . Cancer Res.73 ( 17 ), 5508 – 5518 ( 2013 ).
  • Flores-Alcantar A , Gonzalez-SandovalA , Escalante-AlcaldeD , LomeliH . Dynamics of expression of ARID1A and ARID1B subunits in mouse embryos and in cells during the cell cycle . Cell Tissue Res.345 ( 1 ), 137 – 148 ( 2011 ).
  • Wang X , NaglNG , WilskerDet al. Two related ARID family proteins are alternative subunits of human SWI/SNF complexes . Biochem. J.383 ( Pt 2 ), 319 – 325 ( 2004 ).
  • Xu F , FlowersS , MoranE . Essential role of ARID2 protein-containing SWI/SNF complex in tissue-specific gene expression . J. Biol. Chem.287 ( 7 ), 5033 – 5041 ( 2012 ).
  • Nagl NG , Jr. , WangX , PatsialouA , Van ScoyM , MoranE . Distinct mammalian SWI/SNF chromatin remodeling complexes with opposing roles in cell-cycle control . EMBO J.26 ( 3 ), 752 – 763 ( 2007 ).
  • Yan Z , WangZ , SharovaLet al. BAF250B-associated SWI/SNF chromatin-remodeling complex is required to maintain undifferentiated mouse embryonic stem cells . Stem Cells26 ( 5 ), 1155 – 1165 ( 2008 ).
  • Kia SK , GorskiMM , GiannakopoulosS , VerrijzerCP . SWI/SNF mediates polycomb eviction and epigenetic reprogramming of the INK4b-ARF-INK4a locus . Mol. Cell Biol.28 ( 10 ), 3457 – 3464 ( 2008 ).
  • Tamkun JW , DeuringR , ScottMPet al. Brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2 . Cell68 ( 3 ), 561 – 572 ( 1992 ).
  • Wilson BG , WangX , ShenXet al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation . Cancer Cell18 ( 4 ), 316 – 328 ( 2010 ).
  • Barrales RR , KorberP , JimenezJ , IbeasJI . Chromatin modulation at the FLO11 promoter of Saccharomyces cerevisiae by HDAC and Swi/Snf complexes . Genetics191 ( 3 ), 791 – 803 ( 2012 ).
  • Kim JH , SarafA , FlorensL , WashburnM , WorkmanJL . Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/Snf2 . Genes Dev.24 ( 24 ), 2766 – 2771 ( 2010 ).
  • Mitra D , ParnellEJ , LandonJW , YuY , StillmanDJ . SWI/SNF binding to the HO promoter requires histone acetylation and stimulates TATA-binding protein recruitment . Mol. Cell Biol.26 ( 11 ), 4095 – 4110 ( 2006 ).
  • Zhang HS , GavinM , DahiyaAet al. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF . Cell101 ( 1 ), 79 – 89 ( 2000 ).
  • Ogiwara H , UiA , OtsukaAet al. Histone acetylation by CBP and p300 at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors . Oncogene30 ( 18 ), 2135 – 2146 ( 2011 ).
  • Zhao J , LiuC , ZhaoZ . ARID1A. a potential prognostic factor for breast cancer . Tumour Biol. ( 2014 ).
  • Yokoyama Y , MatsushitaY , ShigetoT , FutagamiM , MizunumaH . Decreased ARID1A expression is correlated with chemoresistance in epithelial ovarian cancer . J. Gynecol. Oncol.25 ( 1 ), 58 – 63 ( 2014 ).
  • Song S , WalterV , KaracaMet al. Gene silencing associated with SWI/SNF complex loss during NSCLC development . Mol. Cancer Res.12 ( 4 ), 560 – 570 ( 2014 ).
  • Buscarlet M , KrastevaV , HoLet al. Essential role of BRG, the ATPase subunit of BAF chromatin remodeling complexes, in leukemia maintenance . Blood123 ( 11 ), 1720 – 1728 ( 2014 ).
  • Yan HB , WangXF , ZhangQet al. Reduced expression of the chromatin remodeling gene ARID1A enhances gastric cancer cell migration and invasion via downregulation of E-cadherin transcription . Carcinogenesis35 ( 4 ) 867 – 876 ( 2013 ).
  • Shi J , WhyteWA , Zepeda-MendozaCJet al. Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation . Genes Dev.27 ( 24 ), 2648 – 2662 ( 2013 ).
  • Shain AH , PollackJR . The spectrum of SWI/SNF mutations, ubiquitous in human cancers . PloS One8 ( 1 ), e55119 ( 2013 ).
  • Romero OA , Torres-DizM , ProsEet al. MAX inactivation in small-cell lung cancer disrupts the MYC-SWI/SNF programs and is synthetic lethal with BRG1 . Cancer Discov.4 ( 3 ), 292 – 303 ( 2013 ).
  • Oike T , OgiwaraH , NakanoT , YokotaJ , KohnoT . Inactivating mutations in SWI/SNF chromatin remodeling genes in human cancer . Jpn J. Clin. Oncol.43 ( 9 ), 849 – 855 ( 2013 ).
  • Mao TL , ArdighieriL , AyhanAet al. Loss of ARID1A expression correlates with stages of tumor progression in uterine endometrioid carcinoma . Am. J. Surg. Pathol.37 ( 9 ), 1342 – 1348 ( 2013 ).
  • Cho H , KimJS , ChungH , PerryC , LeeH , KimJH . Loss of ARID1A/BAF250a expression is linked to tumor progression and adverse prognosis in cervical cancer . Hum. Pathol.44 ( 7 ), 1365 – 1374 ( 2013 ).
  • Bosse T , Ter HaarNT , SeeberLMet al. Loss of ARID1A expression and its relationship with PI3K-Akt pathway alterations, TP53 and microsatellite instability in endometrial cancer . Mod. Pathol.26 ( 11 ), 1525 – 1535 ( 2013 ).
  • Bai J , MeiP , ZhangCet al. BRG1 is a prognostic marker and potential therapeutic target in human breast cancer . PloS One8 ( 3 ), e59772 ( 2013 ).
  • Katagiri A , NakayamaK , RahmanMTet al. Loss of ARID1A expression is related to shorter progression-free survival and chemoresistance in ovarian clear cell carcinoma . Mod. Pathol.25 ( 2 ), 282 – 288 ( 2012 ).
  • Roberts CW , BiegelJA . The role of SMARCB1/INI1 in development of rhabdoid tumor . Cancer Biol. Ther.8 ( 5 ), 412 – 416 ( 2009 ).
  • Roy DM , WalshLA , ChanTA . Driver mutations of cancer epigenomes . Protein Cell5 ( 4 ), 265 – 296 ( 2014 ).
  • Roberts CW , OrkinSH . The SWI/SNF complex–chromatin and cancer . Nat. Rev. Cancer4 ( 2 ), 133 – 142 ( 2004 ).
  • Wilson BG , HelmingKC , WangXet al. Residual complexes containing SMARCA2 (BRM) underlie the oncogenic drive of SMARCA4 (BRG1) mutation . Mol. Cell Biol.34 ( 6 ), 1136 – 1144 ( 2014 ).
  • Sun A , TawfikO , GayedBet al. Aberrant expression of SWI/SNF catalytic subunits BRG1/BRM is associated with tumor development and increased invasiveness in prostate cancers . Prostate67 ( 2 ), 203 – 213 ( 2007 ).
  • Mckenna ES , SansamCG , ChoYJet al. Loss of the epigenetic tumor suppressor SNF5 leads to cancer without genomic instability . Mol. Cell Biol.28 ( 20 ), 6223 – 6233 ( 2008 ).
  • Tolstorukov MY , SansamCG , LuPet al. Swi/Snf chromatin remodeling/tumor suppressor complex establishes nucleosome occupancy at target promoters . Proc. Natl Acad. Sci. USA110 ( 25 ), 10165 – 10170 ( 2013 ).
  • He HH , MeyerCA , ShinHet al. Nucleosome dynamics define transcriptional enhancers . Nat. Genet.42 ( 4 ), 343 – 347 ( 2010 ).
  • Andreu-Vieyra C , LaiJ , BermanBPet al. Dynamic nucleosome-depleted regions at androgen receptor enhancers in the absence of ligand in prostate cancer cells . Mol. Cell Biol.31 ( 23 ), 4648 – 4662 ( 2011 ).
  • Hu G , SchonesDE , CuiKet al. Regulation of nucleosome landscape and transcription factor targeting at tissue-specific enhancers by BRG1 . Genome Res.21 ( 10 ), 1650 – 1658 ( 2011 ).
  • Li L , LiuD , BuDet al. Brg1-dependent epigenetic control of vascular smooth muscle cell proliferation by hydrogen sulfide . Biochim. Biophys. Acta1833 ( 6 ), 1347 – 1355 ( 2013 ).
  • Bultman SJ , GebuhrTC , MagnusonT . A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in beta-globin expression and erythroid development . Genes Dev.19 ( 23 ), 2849 – 2861 ( 2005 ).
  • Harte MT , O’brienGJ , RyanNMet al. BRD7, a subunit of SWI/SNF complexes, binds directly to BRCA1 and regulates BRCA1-dependent transcription . Cancer Res.70 ( 6 ), 2538 – 2547 ( 2010 ).
  • Miranda TB , VossTC , SungMHet al. Reprogramming the chromatin landscape: interplay of the estrogen and glucocorticoid receptors at the genomic level . Cancer Res.73 ( 16 ), 5130 – 5139 ( 2013 ).
  • Fryer CJ , ArcherTK . Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex . Nature393 ( 6680 ), 88 – 91 ( 1998 ).
  • Li J , FuJ , ToumazouC , YoonHG , WongJ . A role of the amino-terminal (N) and carboxyl-terminal (C) interaction in binding of androgen receptor to chromatin . Mol. Endocrinol.20 ( 4 ), 776 – 785 ( 2006 ).
  • Ostlund Farrants AK , BlomquistP , KwonH , WrangeO . Glucocorticoid receptor-glucocorticoid response element binding stimulates nucleosome disruption by the SWI/SNF complex . Mol. Cell Biol.17 ( 2 ), 895 – 905 ( 1997 ).
  • Marshall TW , LinkKA , Petre-DraviamCE , KnudsenKE . Differential requirement of SWI/SNF for androgen receptor activity . J. Biol. Chem.278 ( 33 ), 30605 – 30613 ( 2003 ).
  • Zhang B , ChambersKJ , FallerDV , WangS . Reprogramming of the SWI/SNF complex for co-activation or co-repression in prohibitin-mediated estrogen receptor regulation . Oncogene26 ( 50 ), 7153 – 7157 ( 2007 ).
  • Gorski JJ , JamesCR , QuinnJEet al. BRCA1 transcriptionally regulates genes associated with the basal-like phenotype in breast cancer . Breast Cancer Res. Treat.122 ( 3 ), 721 – 731 ( 2010 ).
  • Mazaris E , TsiotrasA . Molecular pathways in prostate cancer . Nephrourol. Mon.5 ( 3 ), 792 – 800 ( 2013 ).
  • Ung M , MaX , JohnsonKC , ChristensenBC , ChengC . Effect of estrogen receptor alpha binding on functional DNA methylation in breast cancer . Epigenetics9 ( 4 ), 523 – 532 ( 2014 ).
  • Duong V , BretC , AltucciLet al. Specific activity of class II histone deacetylases in human breast cancer cells . Mol. Cancer Res.6 ( 12 ), 1908 – 1919 ( 2008 ).
  • Feng D , WuJ , TianYet al. Targeting of histone deacetylases to reactivate tumour suppressor genes and its therapeutic potential in a human cervical cancer xenograft model . PloS One8 ( 11 ), e80657 ( 2013 ).
  • Wang G , HeJ , ZhaoJet al. Class I and class II histone deacetylases are potential therapeutic targets for treating pancreatic cancer . PloS One7 ( 12 ), e52095 ( 2012 ).
  • Shen W , XuC , HuangWet al. Solution structure of human Brg1 bromodomain and its specific binding to acetylated histone tails . Biochemistry46 ( 8 ), 2100 – 2110 ( 2007 ).
  • Luebben WR , SharmaN , NyborgJK . Nucleosome eviction and activated transcription require p300 acetylation of histone H3 lysine 14 . Proc. Natl Acad. Sci. USA107 ( 45 ), 19254 – 19259 ( 2010 ).
  • Naidu SR , LoveIM , ImbalzanoAN , GrossmanSR , AndrophyEJ . The SWI/SNF chromatin remodeling subunit BRG1 is a critical regulator of p53 necessary for proliferation of malignant cells . Oncogene28 ( 27 ), 2492 – 2501 ( 2009 ).
  • Tie F , BanerjeeR , ConradPA , ScacheriPC , HartePJ . Histone demethylase UTX and chromatin remodeler BRM bind directly to CBP and modulate acetylation of histone H3 lysine 27 . Mol. Cell Biol.32 ( 12 ), 2323 – 2334 ( 2012 ).
  • Zeisig DT , BittnerCB , ZeisigBB , Garcia-CuellarMP , HessJL , SlanyRK . The eleven-nineteen-leukemia protein ENL connects nuclear MLL fusion partners with chromatin . Oncogene24 ( 35 ), 5525 – 5532 ( 2005 ).
  • Nie Z , YanZ , ChenEHet al. Novel SWI/SNF chromatin-remodeling complexes contain a mixed-lineage leukemia chromosomal translocation partner . Mol. Cell Biol.23 ( 8 ), 2942 – 2952 ( 2003 ).
  • Chodavarapu RK , FengS , BernatavichuteYVet al. Relationship between nucleosome positioning and DNA methylation . Nature466 ( 7304 ), 388 – 392 ( 2010 ).
  • Choi SH , HeoK , ByunHM , AnW , LuW , YangAS . Identification of preferential target sites for human DNA methyltransferases . Nucleic Acids Res.39 ( 1 ), 104 – 118 ( 2011 ).
  • Collings CK , WaddellPJ , AndersonJN . Effects of DNA methylation on nucleosome stability . Nucleic Acids Res.41 ( 5 ), 2918 – 2931 ( 2013 ).
  • Jeong S , LiangG , SharmaSet al. Selective anchoring of DNA methyltransferases 3A and 3B to nucleosomes containing methylated DNA . Mol. Cell Biol.29 ( 19 ), 5366 – 5376 ( 2009 ).
  • Kelly TK , LiuY , LayFD , LiangG , BermanBP , JonesPA . Genome-wide mapping of nucleosome positioning and DNA methylation within individual DNA molecules . Genome Res.22 ( 12 ), 2497 – 2506 ( 2012 ).
  • Sharma S , De CarvalhoDD , JeongS , JonesPA , LiangG . Nucleosomes containing methylated DNA stabilize DNA methyltransferases 3A/3B and ensure faithful epigenetic inheritance . PLoS Genet.7 ( 2 ), e1001286 ( 2011 ).
  • You JS , KellyTK , De CarvalhoDD , TaberlayPC , LiangG , JonesPA . OCT4 establishes and maintains nucleosome-depleted regions that provide additional layers of epigenetic regulation of its target genes . Proc. Natl Acad. Sci. USA108 ( 35 ), 14497 – 14502 ( 2011 ).
  • Hinshelwood RA , MelkiJR , HuschtschaLIet al. Aberrant de novo methylation of the p16INK4A CpG island is initiated post gene silencing in association with chromatin remodelling and mimics nucleosome positioning . Hum. Mol. Genet.18 ( 16 ), 3098 – 3109 ( 2009 ).
  • Banine F , BartlettC , GunawardenaRet al. SWI/SNF chromatin-remodeling factors induce changes in DNA methylation to promote transcriptional activation . Cancer Res.65 ( 9 ), 3542 – 3547 ( 2005 ).
  • Choi JK . Contrasting chromatin organization of CpG islands and exons in the human genome . Genome Biol.11 ( 7 ), R70 ( 2010 ).
  • Ndlovu MN , DenisH , FuksF . Exposing the DNA methylome iceberg . Trends Biochem. Sci.36 ( 7 ), 381 – 387 ( 2011 ).
  • Gelfman S , CohenN , YearimA , AstG . DNA-methylation effect on cotranscriptional splicing is dependent on GC architecture of the exon-intron structure . Genome Res.23 ( 5 ), 789 – 799 ( 2013 ).
  • Maunakea AK , ChepelevI , CuiK , ZhaoK . Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition . Cell Res.23 ( 11 ), 1256 – 1269 ( 2013 ).
  • Shukla S , KavakE , GregoryMet al. CTCF-promoted RNA polymerase II pausing links DNA methylation to splicing . Nature479 ( 7371 ), 74 – 79 ( 2011 ).
  • Batsche E , YanivM , MuchardtC . The human SWI/SNF subunit Brm is a regulator of alternative splicing . Nat. Struct. Mol. Biol.13 ( 1 ), 22 – 29 ( 2006 ).
  • Zraly CB , DingwallAK . The chromatin remodeling and mRNA splicing functions of the Brahma (SWI/SNF) complex are mediated by the SNR1/SNF5 regulatory subunit . Nucleic Acids Res.40 ( 13 ), 5975 – 5987 ( 2012 ).
  • Glaros S , CirrincioneGM , MuchardtC , KleerCG , MichaelCW , ReismanD . The reversible epigenetic silencing of BRM: implications for clinical targeted therapy . Oncogene26 ( 49 ), 7058 – 7066 ( 2007 ).
  • Gao X , TateP , HuP , TjianR , SkarnesWC , WangZ . ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a . Proc. Natl Acad. Sci. USA105 ( 18 ), 6656 – 6661 ( 2008 ).
  • Lei I , GaoX , ShamMH , WangZ . SWI/SNF protein component BAF250a regulates cardiac progenitor cell differentiation by modulating chromatin accessibility during second heart field development . J. Biol. Chem.287 ( 29 ), 24255 – 24262 ( 2012 ).
  • Bochar DA , WangL , BeniyaHet al. BRCA1 is associated with a human SWI/SNF-related complex: linking chromatin remodeling to breast cancer . Cell102 ( 2 ), 257 – 265 ( 2000 ).
  • Zhang L , ChenH , GongM , GongF . The chromatin remodeling protein BRG1 modulates BRCA1 response to UV irradiation by regulating ATR/ATM activation . Front. Oncol. doi:10.3389/fonc.2013.00007 ( 2013 ) ( Epub ahead of print ).
  • Wang J , GuH , LinH , ChiT . Essential roles of the chromatin remodeling factor BRG1 in spermatogenesis in mice . Biol. Reprod.86 ( 6 ), 186 ( 2012 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.