500
Views
0
CrossRef citations to date
0
Altmetric
Review

Strategies for Validation and Testing of DNA Methylation Biomarkers

, , , , , , , , , , , , , , & show all
Pages 603-622 | Published online: 22 Dec 2014

References

  • Lister R , PelizzolaM , DowenRHet al. Human DNA methylomes at base resolution show widespread epigenomic differences . Nature462 ( 7271 ), 315 – 322 ( 2009 ).
  • Cedar H , SolageA , GlaserG , RazinA . Direct detection of methylated cytosine in DNA by use of the restriction enzyme MspI . Nucleic Acids Res.6 ( 6 ), 2125 – 2132 ( 1979 ).
  • Hashimoto K , KokubunS , ItoiE , RoachHI . Improved quantification of DNA methylation using methylation-sensitive restriction enzymes and real-time PCR . Epigenetics2 ( 2 ), 86 – 91 ( 2007 ).
  • Lopez Castel A , NakamoriM , ThorntonCA , PearsonCE . Identification of restriction endonucleases sensitive to 5-cytosine methylation at non-CpG sites, including expanded (CAG)n/(CTG)n repeats . Epigenetics6 ( 4 ), 416 – 420 ( 2011 ).
  • Tarasova GV , NayakshinaTN , DegtyarevSK . Substrate specificity of new methyl-directed DNA endonuclease GlaI . BMC Mol. Biol.9 , 7 ( 2008 ).
  • Wielscher M , PulvererW , PehamJet al. Methyl-binding domain protein-based DNA isolation from human blood serum combines DNA analyses and serum-autoantibody testing . BMC Clin. Pathol.11 , 11 ( 2011 ).
  • Rozen S , SkaletskyH . Primer3 on the WWW for general users and for biologist programmers . Methods Mol. Biol.132 , 365 – 386 ( 2000 ).
  • Kent WJ , SugnetCW , FureyTSet al. The human genome browser at UCSC . Genome Res.12 ( 6 ), 996 – 1006 ( 2002 ).
  • Bustin SA , BenesV , GarsonJAet al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments . Clin. Chem.55 ( 4 ), 611 – 622 ( 2009 ).
  • Pfaffl MW . A new mathematical model for relative quantification in real-time RT-PCR . Nucleic Acids Res.29 ( 9 ), e45 ( 2001 ).
  • Pulverer W , WielscherM , Panzer-GrumayerRet al. The stem cell signature of CHH/CHG methylation is not present in 271 cancer associated 5’UTR gene regions . Biochimie94 ( 11 ), 2345 – 2352 ( 2012 ).
  • Weinhaeusel A , ThieleS , HofnerM , HiortO , NoehammerC . PCR-based analysis of differentially methylated regions of GNAS enables convenient diagnostic testing of pseudohypoparathyroidism type Ib . Clin. Chem.54 ( 9 ), 1537 – 1545 ( 2008 ).
  • Pulverer W , HofnerM , PreusserM , DirnbergerE , HainfellnerJA , WeinhaeuselA . A simple quantitative diagnostic alternative for MGMT DNA-methylation testing on RCL2 fixed paraffin embedded tumors using restriction coupled qPCR . Clin. Neuropathol.33 ( 1 ), 50 – 60 ( 2013 ).
  • Fraga MF , BallestarE , MontoyaG , TaysavangP , WadePA , EstellerM . The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties . Nucleic Acids Res.31 ( 6 ), 1765 – 1774 ( 2003 ).
  • Robinson MD , StirzakerC , StathamALet al. Evaluation of affinity-based genome-wide DNA methylation data: effects of CpG density, amplification bias, and copy number variation . Genome Res.20 ( 12 ), 1719 – 1729 ( 2010 ).
  • Serre D , LeeBH , TingAH . MBD-isolated genome sequencing provides a high-throughput and comprehensive survey of DNA methylation in the human genome . Nucleic Acids Res.38 ( 2 ), 391 – 399 ( 2010 ).
  • Yegnasubramanian S , LinX , HaffnerMC , DeMarzoAM , NelsonWG . Combination of methylated-DNA precipitation and methylation-sensitive restriction enzymes (COMPARE-MS) for the rapid, sensitive and quantitative detection of DNA methylation . Nucleic Acids Res.34 ( 3 ), e19 ( 2006 ).
  • Mikeska T , BockC , DoH , DobrovicA . DNA methylation biomarkers in cancer: progress towards clinical implementation . Expert Rev. Mol. Diagn.12 ( 5 ), 473 – 487 ( 2012 ).
  • Kholod N , BoniverJ , DelvenneP . A new dimethyl sulfoxide-based method for gene promoter methylation detection . J. Mol. Diagn.9 ( 5 ), 574 – 581 ( 2007 ).
  • Aird D , RossMG , ChenWSet al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries . Genome Biol.12 ( 2 ), R18 ( 2011 ).
  • McCarthy DR , CotterPD , HannaMM . MethylMeter®: a quantitative, sensitive and bisulfite-free method for analysis of DNA methylation . DNA Methylation - From Genomics to TechnologyTatarinovaT , KertonO (Eds) . InTech , Rijeka, Croatia , 93 – 116 ( 2012 ).
  • Frommer M , McDonaldLE , MillarDSet al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands . Proc. Natl Acad. Sci. USA89 ( 5 ), 1827 – 1831 ( 1992 ).
  • Eads CA , DanenbergKD , KawakamiKet al. MethyLight: a high-throughput assay to measure DNA methylation . Nucleic Acids Res.28 ( 8 ), E32 ( 2000 ).
  • Campan M , WeisenbergerDJ , TrinhB , LairdPW . MethyLight . Methods Mol. Biol.507 , 325 – 337 ( 2009 ).
  • Schuffler P , MikeskaT , WahaA , LengauerT , BockC . MethMarker: user-friendly design and optimization of gene-specific DNA methylation assays . Genome Biol.10 ( 10 ), R105 ( 2009 ).
  • He Q , ChenHY , BaiEQet al. Development of a multiplex MethyLight assay for the detection of multigene methylation in human colorectal cancer . Cancer Genet. Cytogenet.202 ( 1 ), 1 – 10 ( 2010 ).
  • Weisenberger DJ , TrinhBN , CampanMet al. DNA methylation analysis by digital bisulfite genomic sequencing and digital MethyLight . Nucleic Acids Res.36 ( 14 ), 4689 – 4698 ( 2008 ).
  • Nikolaidis G , RajiOY , MarkopoulouSet al. DNA methylation biomarkers offer improved diagnostic efficiency in lung cancer . Cancer Res.72 ( 22 ), 5692 – 5701 ( 2012 ).
  • Hibi K , GotoT , ShirahataAet al. Detection of TFPI2 methylation in the serum of colorectal cancer patients . Cancer Lett.311 ( 1 ), 96 – 100 ( 2011 ).
  • Shames DS , ElkinsK , WalterKet al. Loss of NAPRT1 expression by tumor-specific promoter methylation provides a novel predictive biomarker for NAMPT inhibitors . Clin. Cancer Res.19 ( 24 ), 6912 – 6923 ( 2013 ).
  • Kristensen LS , MikeskaT , KrypuyM , DobrovicA . Sensitive melting analysis after real time- methylation specific PCR (SMART-MSP): high-throughput and probe-free quantitative DNA methylation detection . Nucleic Acids Res.36 ( 7 ), e42 ( 2008 ).
  • Cottrell SE , DistlerJ , GoodmanNSet al. A real-time PCR assay for DNA-methylation using methylation-specific blockers . Nucleic Acids Res.32 ( 1 ), e10 ( 2004 ).
  • Wojdacz TK , DobrovicA . Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation . Nucleic Acids Res.35 ( 6 ), e41 ( 2007 ).
  • Lofton-Day C , ModelF , DevosTet al. DNA methylation biomarkers for blood-based colorectal cancer screening . Clin. Chem.54 ( 2 ), 414 – 423 ( 2008 ).
  • Schmidt B , LiebenbergV , DietrichDet al. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer based on bronchial aspirates . BMC Cancer10 , 600 ( 2010 ).
  • Tost J , GutIG . DNA methylation analysis by pyrosequencing . Nat. Protoc.2 ( 9 ), 2265 – 2275 ( 2007 ).
  • Daskalos A , LogothetiS , MarkopoulouSet al. Global DNA hypomethylation-induced DeltaNp73 transcriptional activation in non-small cell lung cancer . Cancer Lett.300 ( 1 ), 79 – 86 ( 2011 ).
  • Schache AG , HallG , WoolgarJAet al. Quantitative promoter methylation differentiates carcinoma ex pleomorphic adenoma from pleomorphic salivary adenoma . Br. J. Cancer103 ( 12 ), 1846 – 1851 ( 2010 ).
  • Shaw RJ , LiloglouT , RogersSNet al. Promoter methylation of P16, RARbeta, E-cadherin, cyclin A1 and cytoglobin in oral cancer: quantitative evaluation using pyrosequencing . Br. J. Cancer94 ( 4 ), 561 – 568 ( 2006 ).
  • Gries J , SchumacherD , ArandJet al. Bi-PROF: bisulfite profiling of target regions using 454 GS FLX Titanium technology . Epigenetics8 ( 7 ), 765 – 771 ( 2013 ).
  • Taylor KH , KramerRS , DavisJWet al. Ultradeep bisulfite sequencing analysis of DNA methylation patterns in multiple gene promoters by 454 sequencing . Cancer Res.67 ( 18 ), 8511 – 8518 ( 2007 ).
  • Li LC , DahiyaR . MethPrimer: designing primers for methylation PCRs . Bioinformatics18 ( 11 ), 1427 – 1431 ( 2002 ).
  • Tusnady GE , SimonI , VaradiA , AranyiT . BiSearch: primer-design and search tool for PCR on bisulfite-treated genomes . Nucleic Acids Res.33 ( 1 ), e9 ( 2005 ).
  • Brandes JC , CarrawayH , HermanJG . Optimal primer design using the novel primer design program: MSPprimer provides accurate methylation analysis of the ATM promoter . Oncogene26 ( 42 ), 6229 – 6237 ( 2007 ).
  • Miura F , UematsuC , SakakiY , ItoT . A novel strategy to design highly specific PCR primers based on the stability and uniqueness of 3’-end subsequences . Bioinformatics21 ( 24 ), 4363 – 4370 ( 2005 ).
  • van Vlodrop IJ , NiessenHE , DerksSet al. Analysis of promoter CpG island hypermethylation in cancer: location, location, location! Clin. Cancer Res. 17 ( 13 ), 4225 – 4231 ( 2011 ).
  • Hughes S , JonesJL . The use of multiple displacement amplified DNA as a control for methylation specific PCR, pyrosequencing, bisulfite sequencing and methylation-sensitive restriction enzyme PCR . BMC Mol. Biol.8 , 91 ( 2007 ).
  • Xi Y , LiW . BSMAP: whole genome bisulfite sequence MAPping program . BMC Bioinformatics10 , 232 ( 2009 ).
  • Ehrich M , NelsonMR , StanssensPet al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry . Proc. Natl Acad. Sci. USA102 ( 44 ), 15785 – 15790 ( 2005 ).
  • Ehrich M , TurnerJ , GibbsPet al. Cytosine methylation profiling of cancer cell lines . Proc. Natl Acad. Sci. USA105 ( 12 ), 4844 – 4849 ( 2008 ).
  • van den Boom D , EhrichM . Mass spectrometric analysis of cytosine methylation by base-specific cleavage and primer extension methods . Methods Mol. Biol.507 , 207 – 227 ( 2009 ).
  • Baer C , ClausR , FrenzelLPet al. Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia . Cancer Res.72 ( 15 ), 3775 – 3785 ( 2012 ).
  • Bullinger L , EhrichM , DohnerKet al. Quantitative DNA methylation predicts survival in adult acute myeloid leukemia . Blood115 ( 3 ), 636 – 642 ( 2010 ).
  • Novak P , StampferMR , Munoz-RodriguezJLet al. Cell-type specific DNA methylation patterns define human breast cellular identity . PLoS ONE7 ( 12 ), e52299 ( 2012 ).
  • Ehrich M , ZollS , SurS , van den BoomD . A new method for accurate assessment of DNA quality after bisulfite treatment . Nucleic Acids Res.35 ( 5 ), e29 ( 2007 ).
  • Grunau C , ClarkSJ , RosenthalA . Bisulfite genomic sequencing: systematic investigation of critical experimental parameters . Nucleic Acids Res.29 ( 13 ), E65 – E65 ( 2001 ).
  • EpiTYPERassay design . http://epidesigner.com
  • Reid TFG , J. M. MassArray: analytical tools for MassArray data . R-Package ( 2009 ). www.bioconductor.org
  • Frankel A . Formalin fixation in the ‘-omics’ era: a primer for the surgeon-scientist . ANZ J. Surg.82 ( 6 ), 395 – 402 ( 2012 ).
  • Campos PF , GilbertTM . DNA extraction from formalin-fixed material . Methods Mol. Biol.840 , 81 – 85 ( 2012 ).
  • Bussolati G , AnnaratoneL , MedicoE , D’ArmentoG , SapinoA . Formalin fixation at low temperature better preserves nucleic acid integrity . PLoS ONE6 ( 6 ), e21043 ( 2011 ).
  • Doyle B , O’RiainC , AppletonK . Pyrosequencing of DNA extracted from formalin-fixed paraffin-embedded tissue . Methods Mol. Biol.724 , 181 – 190 ( 2011 ).
  • Infinium FFPE DNA restoration solution . http://www.illumina.com/products/infinium_ffpe_dna_restoration_solution.ilmn
  • Hamilton MG , RoldanG , MaglioccoA , McIntyreJB , ParneyI , EasawJC . Determination of the methylation status of MGMT in different regions within glioblastoma multiforme . J. Neurooncol.102 ( 2 ), 255 – 260 ( 2010 ).
  • Denouel A , Boissiere-MichotF , RochaixP , BibeauF , BoulleN . An alternative fixative to formalin fixation for molecular applications: the RCL2((R))-CS100 approach . Methods Mol. Biol.724 , 297 – 307 ( 2011 ).
  • Staff S , KujalaP , KarhuRet al. Preservation of nucleic acids and tissue morphology in paraffin-embedded clinical samples: comparison of five molecular fixatives . J. Clin. Pathol.66 ( 9 ), 807 – 810 ( 2013 ).
  • Swarup V , RajeswariMR . Circulating (cell-free) nucleic acids‐‐a promising, non-invasive tool for early detection of several human diseases . FEBS Lett.581 ( 5 ), 795 – 799 ( 2007 ).
  • O’Driscoll L . Extracellular nucleic acids and their potential as diagnostic, prognostic and predictive biomarkers . Anticancer Res.27 ( 3A ), 1257 – 1265 ( 2007 ).
  • Jahr S , HentzeH , EnglischSet al. DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells . Cancer Res.61 ( 4 ), 1659 – 1665 ( 2001 ).
  • Holdenrieder S , BurgesA , ReichO , SpelsbergFW , StieberP . DNA integrity in plasma and serum of patients with malignant and benign diseases . Ann. NY Acad. Sci.1137 , 162 – 170 ( 2008 ).
  • Diehl F , LiM , DressmanDet al. Detection and quantification of mutations in the plasma of patients with colorectal tumors . Proc. Natl Acad. Sci. USA102 ( 45 ), 16368 – 16373 ( 2005 ).
  • Chan KC , ZhangJ , HuiABet al. Size distributions of maternal and fetal DNA in maternal plasma . Clin. Chem.50 ( 1 ), 88 – 92 ( 2004 ).
  • Su YH , WangM , BrennerDEet al. Human urine contains small, 150 to 250 nucleotide-sized, soluble DNA derived from the circulation and may be useful in the detection of colorectal cancer . J. Mol. Diagn.6 ( 2 ), 101 – 107 ( 2004 ).
  • Jung M , KlotzekS , LewandowskiM , FleischhackerM , JungK . Changes in concentration of DNA in serum and plasma during storage of blood samples . Clin. Chem.49 ( 6 Pt 1 ), 1028 – 1029 ( 2003 ).
  • El Messaoudi S , RoletF , MouliereF , ThierryAR . Circulating cell free DNA: Preanalytical considerations . Clin. Chim. Acta424 , 222 – 230 ( 2013 ).
  • Lam NY , RainerTH , ChiuRW , LoYM . EDTA is a better anticoagulant than heparin or citrate for delayed blood processing for plasma DNA analysis . Clin. Chem.50 ( 1 ), 256 – 257 ( 2004 ).
  • Chan KC , YeungSW , LuiWB , RainerTH , LoYM . Effects of preanalytical factors on the molecular size of cell-free DNA in blood . Clin. Chem.51 ( 4 ), 781 – 784 ( 2005 ).
  • Chiu RW , PoonLL , LauTK , LeungTN , WongEM , LoYM . Effects of blood-processing protocols on fetal and total DNA quantification in maternal plasma . Clin. Chem.47 ( 9 ), 1607 – 1613 ( 2001 ).
  • Swinkels DW , WiegerinckE , SteegersEA , de KokJB . Effects of blood-processing protocols on cell-free DNA quantification in plasma . Clin. Chem.49 ( 3 ), 525 – 526 ( 2003 ).
  • Xue X , TeareMD , HolenI , ZhuYM , WollPJ . Optimizing the yield and utility of circulating cell-free DNA from plasma and serum . Clin. Chim. Acta404 ( 2 ), 100 – 104 ( 2009 ).
  • Mori T , O’DaySJ , UmetaniNet al. Predictive utility of circulating methylated DNA in serum of melanoma patients receiving biochemotherapy . J. Clin. Oncol.23 ( 36 ), 9351 – 9358 ( 2005 ).
  • Gal S , FidlerC , LoYMet al. Quantitation of circulating DNA in the serum of breast cancer patients by real-time PCR . Br. J. Cancer90 ( 6 ), 1211 – 1215 ( 2004 ).
  • Wu TL , ZhangD , ChiaJH , TsaoK , SunCF , WuJT . Cell-free DNA: measurement in various carcinomas and establishment of normal reference range . Clin. Chim. Acta321 ( 1–2 ), 77 – 87 ( 2002 ).
  • Board RE , WilliamsVS , KnightLet al. Isolation and extraction of circulating tumor DNA from patients with small cell lung cancer . Ann. NY Acad. Sci.1137 , 98 – 107 ( 2008 ).
  • Gautschi O , BigoschC , HuegliBet al. Circulating deoxyribonucleic Acid as prognostic marker in non-small-cell lung cancer patients undergoing chemotherapy . J. Clin. Oncol.22 ( 20 ), 4157 – 4164 ( 2004 ).
  • Herrera LJ , RajaS , GoodingWEet al. Quantitative analysis of circulating plasma DNA as a tumor marker in thoracic malignancies . Clin. Chem.51 ( 1 ), 113 – 118 ( 2005 ).
  • Jung K , StephanC , LewandowskiMet al. Increased cell-free DNA in plasma of patients with metastatic spread in prostate cancer . Cancer Lett.205 ( 2 ), 173 – 180 ( 2004 ).
  • Deligezer U , YamanF , ErtenN , DalayN . Frequent copresence of methylated DNA and fragmented nucleosomal DNA in plasma of lymphoma patients . Clin. Chim. Acta335 ( 1–2 ), 89 – 94 ( 2003 ).
  • Stemmer C , Beau-FallerM , Pencreac’hEet al. Use of magnetic beads for plasma cell-free DNA extraction: toward automation of plasma DNA analysis for molecular diagnostics . Clin. Chem.49 ( 11 ), 1953 – 1955 ( 2003 ).
  • Chang HW , LeeSM , GoodmanSNet al. Assessment of plasma DNA levels, allelic imbalance, and CA 125 as diagnostic tests for cancer . J. Natl Cancer Inst.94 ( 22 ), 1697 – 1703 ( 2002 ).
  • Gormally E , CabouxE , VineisP , HainautP . Circulating free DNA in plasma or serum as biomarker of carcinogenesis: practical aspects and biological significance . Mutat. Res.635 ( 2–3 ), 105 – 117 ( 2007 ).
  • Pintilie M , LakovlevV , FylesA , HedleyD , MilosevicM , HillRP . Heterogeneity and power in clinical biomarker studies . J. Clin. Oncol.27 ( 9 ), 1517 – 1521 ( 2009 ).
  • How Kit A , NielsenHM , TostJ . DNA methylation based biomarkers: practical considerations and applications . Biochimie94 ( 11 ), 2314 – 2337 ( 2012 ).
  • de Vos T , TetznerR , ModelFet al. Circulating methylated SEPT9 DNA in plasma is a biomarker for colorectal cancer . Clin. Chem.55 ( 7 ), 1337 – 1346 ( 2009 ).
  • Chen WD , HanZJ , SkoletskyJet al. Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene . J. Natl Cancer Inst.97 ( 15 ), 1124 – 1132 ( 2005 ).
  • Itzkowitz S , BrandR , JandorfLet al. A simplified, noninvasive stool DNA test for colorectal cancer detection . Am. J. Gastroenterol.103 ( 11 ), 2862 – 2870 ( 2008 ).
  • Zou H , AllawiH , CaoXet al. Quantification of methylated markers with a multiplex methylation-specific technology . Clin. Chem.58 ( 2 ), 375 – 383 ( 2012 ).
  • Kneip C , SchmidtB , SeegebarthAet al. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer in plasma . J. Thorac Oncol.6 ( 10 ), 1632 – 1638 ( 2011 ).
  • Nakayama M , BennettCJ , HicksJLet al. Hypermethylation of the human glutathione S-transferase-pi gene (GSTP1) CpG island is present in a subset of proliferative inflammatory atrophy lesions but not in normal or hyperplastic epithelium of the prostate: a detailed study using laser-capture microdissection . Am. J. Pathol.163 ( 3 ), 923 – 933 ( 2003 ).
  • Van Neste L , BigleyJ , TollAet al. A tissue biopsy-based epigenetic multiplex PCR assay for prostate cancer detection . BMC Urol.12 , 16 ( 2012 ).
  • Renard I , JoniauS , van CleynenbreugelBet al. Identification and validation of the methylated TWIST1 and NID2 genes through real-time methylation-specific polymerase chain reaction assays for the noninvasive detection of primary bladder cancer in urine samples . Eur. Urol.58 ( 1 ), 96 – 104 ( 2010 ).
  • Costa VL , HenriqueR , DanielsenSAet al. Three epigenetic biomarkers, GDF15, TMEFF2, and VIM, accurately predict bladder cancer from DNA-based analyses of urine samples . Clin. Cancer Res.16 ( 23 ), 5842 – 5851 ( 2010 ).
  • Reinert T , BorreM , ChristiansenA , HermannGG , OrntoftTF , DyrskjotL . Diagnosis of bladder cancer recurrence based on urinary levels of EOMES, HOXA9, POU4F2, TWIST1, VIM, and ZNF154 hypermethylation . PLoS ONE7 ( 10 ), e46297 ( 2012 ).
  • Esteller M , Garcia-FoncillasJ , AndionEet al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents . N. Engl. J. Med.343 ( 19 ), 1350 – 1354 ( 2000 ).
  • Hegi ME , DiserensAC , GorliaTet al. MGMT gene silencing and benefit from temozolomide in glioblastoma . N. Engl. J. Med.352 ( 10 ), 997 – 1003 ( 2005 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.