331
Views
0
CrossRef citations to date
0
Altmetric
Review

The Mitochondrial Epigenome: a Role in Alzheimer’s Disease?

, &
Pages 665-675 | Published online: 22 Dec 2014

References

  • Prince M , AlbaneseE , GuerchetM , PrinaM . World Alzheimer Report 2014. Alzheimer’s Disease International.www.alz.co.uk/research/WorldAlzheimerReport2014.pdf .
  • Hardy JA , HigginsGA . Alzheimer’s disease: the amyloid cascade hypothesis . Science256 ( 5054 ), 184 – 185 ( 1992 ).
  • Hardy J , SelkoeDJ . The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics . Science297 ( 5580 ), 353 – 356 ( 2002 ).
  • Mattson MP , ChengB , DavisD , BryantK , LieberburgI , RydelRE . Beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity . J. Neurosci.12 ( 2 ), 376 – 389 ( 1992 ).
  • Lacor PN , BunielMC , FurlowPWet al. Abeta oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease . J. Neurosci.27 ( 4 ), 796 – 807 ( 2007 ).
  • Kadowaki H , NishitohH , UranoFet al. Amyloid beta induces neuronal cell death through ROS-mediated ASK1 activation . Cell Death Differ.12 ( 1 ), 19 – 24 ( 2005 ).
  • Manczak M , ParkBS , JungY , ReddyPH . Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: implications for early mitochondrial dysfunction and oxidative damage . Neuromol. Med.5 ( 2 ), 147 – 162 ( 2004 ).
  • Ankarcrona M , MangialascheF , WinbladB . Rethinking Alzheimer’s disease therapy: are mitochondria the key?J. Alzheimers Dis.20 ( Suppl. 2 ), S579 – S590 ( 2010 ).
  • Lunnon K , IbrahimZ , ProitsiPet al. Mitochondrial dysfunction and immune activation are detectable in early Alzheimer’s disease blood . J. Alzheimers Dis.30 ( 3 ), 685 – 710 ( 2012 ).
  • Lunnon K , SattleckerM , FurneySet al. A blood gene expression marker of early Alzheimer’s disease . J. Alzheimers Dis.33 ( 3 ), 737 – 753 ( 2013 ).
  • Anderson S , BankierAT , BarrellBGet al. Sequence and organization of the human mitochondrial genome . Nature290 ( 5806 ), 457 – 465 ( 1981 ).
  • Pradelli LA , BeneteauM , RicciJE . Mitochondrial control of caspase-dependent and -independent cell death . Cell. Mol. Life Sci.67 ( 10 ), 1589 – 1597 ( 2010 ).
  • Chan SL , LiuD , KyriazisGA , BagsiyaoP , OuyangX , MattsonMP . Mitochondrial uncoupling protein-4 regulates calcium homeostasis and sensitivity to store depletion-induced apoptosis in neural cells . J. Biol. Chem.281 ( 49 ), 37391 – 37403 ( 2006 ).
  • Fu W , RuangkittisakulA , MacTavishD , BakerGB , BallanyiK , JhamandasJH . Activity and metabolism-related Ca2+ and mitochondrial dynamics in co-cultured human fetal cortical neurons and astrocytes . Neuroscience250 , 520 – 535 ( 2013 ).
  • Zhao Y , ZhaoB . Oxidative stress and the pathogenesis of Alzheimer’s disease . Oxid. Med. Cell. Longev.2013 , 316523 ( 2013 ).
  • Devi L , OhnoM . Mitochondrial dysfunction and accumulation of the beta-secretase-cleaved C-terminal fragment of APP in Alzheimer’s disease transgenic mice . Neurobiol. Dis.45 ( 1 ), 417 – 424 ( 2012 ).
  • Pinto M , PickrellAM , FukuiH , MoraesCT . Mitochondrial DNA damage in a mouse model of Alzheimer’s disease decreases amyloid beta plaque formation . Neurobiol. Aging34 ( 10 ), 2399 – 2407 ( 2013 ).
  • Swerdlow RH , BurnsJM , KhanSM . The Alzheimer’s disease mitochondrial cascade hypothesis . J. Alzheimers Dis.20 ( Suppl. 2 ), S265 – S279 ( 2010 ).
  • Chinnery PF , ElliottHR , HudsonG , SamuelsDC , ReltonCL . Epigenetics, epidemiology and mitochondrial DNA diseases . Int. J. Epidemiol.41 ( 1 ), 177 – 187 ( 2012 ).
  • Manczak M , JungY , ParkBS , PartoviD , ReddyPH . Time-course of mitochondrial gene expressions in mice brains: implications for mitochondrial dysfunction, oxidative damage, and cytochrome c in aging . J. Neurochem.92 ( 3 ), 494 – 504 ( 2005 ).
  • Reddy PH , McWeeneyS , ParkBSet al. Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer’s disease . Hum. Mol. Genet.13 ( 12 ), 1225 – 1240 ( 2004 ).
  • Manczak M , ReddyPH . Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer’s disease . Hum. Mol. Genet.21 ( 23 ), 5131 – 5146 ( 2012 ).
  • Du H , GuoL , FangFet al. Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease . Nat. Med.14 ( 10 ), 1097 – 1105 ( 2008 ).
  • Gatz M , ReynoldsCA , FratiglioniLet al. Role of genes and environments for explaining Alzheimer disease . Arch. Gen. Psychiatry63 ( 2 ), 168 – 174 ( 2006 ).
  • Lunnon K , MillJ . Epigenetic studies in Alzheimer’s disease: current findings, caveats, and considerations for future studies . Am. J. Med. Genet. B Neuropsychiatr. Genet.162B ( 8 ), 789 – 799 ( 2013 ).
  • Mastroeni D , McKeeA , GroverA , RogersJ , ColemanPD . Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease . PLoS ONE4 ( 8 ), e6617 ( 2009 ).
  • Mastroeni D , GroverA , DelvauxE , WhitesideC , ColemanPD , RogersJ . Epigenetic changes in Alzheimer’s disease: decrements in DNA methylation . Neurobiol. Aging31 ( 12 ), 2025 – 2037 ( 2010 ).
  • Chouliaras L , MastroeniD , DelvauxEet al. Consistent decrease in global DNA methylation and hydroxymethylation in the hippocampus of Alzheimer’s disease patients . Neurobiol. Aging34 ( 9 ), 2091 – 2099 ( 2013 ).
  • Condliffe D , WongA , TroakesCet al. Cross-region reduction in 5-hydroxymethylcytosine in Alzheimer’s disease brain . Neurobiol. Aging35 ( 8 ), 1850 – 1854 ( 2014 ).
  • Bakulski KM , DolinoyDC , SartorMAet al. Genome-wide DNA methylation differences between late-onset Alzheimer’s disease and cognitively normal controls in human frontal cortex . J. Alzheimers Dis.29 ( 3 ), 571 – 588 ( 2012 ).
  • Lunnon K , SmithR , HannonEJet al. Cross-tissue methylomic profiling in Alzheimer’s disease implicates a role for cortex-specific deregulation of ANK1 in neuropathology . Nat. Neurosci.17 ( 9 ), 1164 – 1170 ( 2014 ).
  • DeJager PL , SrivastavaG , Lunnonet al. Alzheimer’sdisease pathology is associated with early alterations in brain DNA methylationat ANK1, BIN1 and other loci . Nat. Neurosci.17 ( 9 ), 1156 – 1163 ( 2014 ).
  • Nass MM . Differential methylation of mitochondrial and nuclear DNA in cultured mouse, hamster and virus-transformed hamster cells. In vivo and in vitro methylation . J. Mol. Biol.80 ( 1 ), 155 – 175 ( 1973 ).
  • Dawid IB . 5-methylcytidylic acid: absence from mitochondrial DNA of frogs and HeLa cells . Science184 ( 4132 ), 80 – 81 ( 1974 ).
  • Cummings DJ , TaitA , GoddardJM . Methylated bases in DNA from Paramecium aurelia . Biochim. Biophys. Acta374 ( 1 ), 1 – 11 ( 1974 ).
  • Groot GS Kroon AM . Mitochondrial DNA from various organisms does not contain internally methylated cytosine in -CCGG- sequences . Biochim. Biophys. Acta564 ( 2 ), 355 – 357 ( 1979 ).
  • Shock LS , ThakkarPV , PetersonEJ , MoranRG , TaylorSM . DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria . Proc. Natl Acad. Sci. USA108 ( 9 ), 3630 – 3635 ( 2011 ).
  • Alan L , ZelenkaJ , JezekJ , DlaskovaA , JezekP . Fluorescent in situ hybridization of mitochondrial DNA and RNA . Acta Biochim. Pol.57 ( 4 ), 403 – 408 ( 2010 ).
  • Tauber J , DlaskovaA , SantorovaJet al. Distribution of mitochondrial nucleoids upon mitochondrial network fragmentation and network reintegration in HEPG2 cells . Int. J. Biochem. Cell Biol.45 ( 3 ), 593 – 603 ( 2013 ).
  • Kaufman BA , DurisicN , MativetskyJMet al. The mitochondrial transcription factor TFAM coordinates the assembly of multiple DNA molecules into nucleoid-like structures . Mol. Biol. Cell18 ( 9 ), 3225 – 3236 ( 2007 ).
  • Manev H , DzitoyevaS , ChenH . Mitochondrial DNA: a blind spot in neuroepigenetics . Biomol. Concepts3 ( 2 ), 107 – 115 ( 2012 ).
  • Rebelo AP , WilliamsSL , MoraesCT . In vivo methylation of mtDNA reveals the dynamics of protein-mtDNA interactions . Nucleic Acids Res.37 ( 20 ), 6701 – 6715 ( 2009 ).
  • Chestnut BA , ChangQ , PriceA , LesuisseC , WongM , MartinLJ . Epigenetic regulation of motor neuron cell death through DNA methylation . J. Neurosci.31 ( 46 ), 16619 – 16636 ( 2011 ).
  • Bellizzi D , D’AquilaP , ScafoneTet al. The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern . DNA Res.20 ( 6 ), 537 – 547 ( 2013 ).
  • Ooi SK , BestorTH . The colorful history of active DNA demethylation . Cell133 ( 7 ), 1145 – 1148 ( 2008 ).
  • Ito S , D’AlessioAC , TaranovaOV , HongK , SowersLC , ZhangY . Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification . Nature466 ( 7310 ), 1129 – 1133 ( 2010 ).
  • Sun Z , TerragniJ , BorgaroJGet al. High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells . Cell Rep.3 ( 2 ), 567 – 576 ( 2013 ).
  • Feng S , XiongL , JiZ , ChengW , YangH . Correlation between increased ND2 expression and demethylated displacement loop of mtDNA in colorectal cancer . Mol. Med. Rep.6 ( 1 ), 125 – 130 ( 2012 ).
  • Phillips AC , SleighA , McAllisterCJet al. Defective mitochondrial function in vivo in skeletal muscle in adults with Down’s syndrome: a 31P-MRS study . PLoS ONE8 ( 12 ), e84031 ( 2013 ).
  • Coyle JT , Oster-GraniteML , GearhartJD . The neurobiologic consequences of Down syndrome . Brain Res. Bull.16 ( 6 ), 773 – 787 ( 1986 ).
  • Wisniewski KE , WisniewskiHM , WenGY . Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome . Ann. Neurol.17 ( 3 ), 278 – 282 ( 1985 ).
  • Byun HM , PanniT , MottaVet al. Effects of airborne pollutants on mitochondrial DNA methylation . Part. Fibre Toxicol.10 , 18 ( 2013 ).
  • Pirola CJ , GianottiTF , BurguenoALet al. Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease . Gut62 ( 9 ), 1356 – 1363 ( 2013 ).
  • Infantino V , CastegnaA , IacobazziFet al. Impairment of methyl cycle affects mitochondrial methyl availability and glutathione level in Down’s syndrome . Mol. Genet. Metab.102 ( 3 ), 378 – 382 ( 2011 ).
  • Wong M , GertzB , ChestnutBA , MartinLJ . Mitochondrial DNMT3A and DNA methylation in skeletal muscle and CNS of transgenic mouse models of ALS . Front. Cell. Neurosci.7 , 279 ( 2013 ).
  • Wen SL , ZhangF , FengS . Decreased copy number of mitochondrial DNA: a potential diagnostic criterion for gastric cancer . Oncol. Lett.6 ( 4 ), 1098 – 1102 ( 2013 ).
  • Bradley-Whitman MA , LovellMA . Epigenetic changes in the progression of Alzheimer’s disease . Mech. Ageing Dev.134 ( 10 ), 486 – 495 ( 2013 ).
  • Dzitoyeva S , ChenH , ManevH . Effect of aging on 5-hydroxymethylcytosine in brain mitochondria . Neurobiol. Aging33 ( 12 ), 2881 – 2891 ( 2012 ).
  • Smiraglia DJ , KulawiecM , BistulfiGL , GuptaSG , SinghKK . A novel role for mitochondria in regulating epigenetic modification in the nucleus . Cancer Biol. Ther.7 ( 8 ), 1182 – 1190 ( 2008 ).
  • Bellizzi D , D’AquilaP , GiordanoM , MontesantoA , PassarinoG . Global DNA methylation levels are modulated by mitochondrial DNA variants . Epigenomics4 ( 1 ), 17 – 27 ( 2012 ).
  • Takasugi M , YagiS , HirabayashiK , ShiotaK . DNA methylation status of nuclear-encoded mitochondrial genes underlies the tissue-dependent mitochondrial functions . BMC Genomics11 , 481 ( 2010 ).
  • Song H , BuhayJE , WhitingMF , CrandallKA . Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified . Proc. Natl Acad. Sci. USA105 ( 36 ), 13486 – 13491 ( 2008 ).
  • Booth MJ , OstTW , BeraldiDet al. Oxidative bisulfite sequencing of 5-methylcytosine and 5-hydroxymethylcytosine . Nat. Protoc.8 ( 10 ), 1841 – 1851 ( 2013 ).
  • Lang BF , GrayMW , BurgerG . Mitochondrial genome evolution and the origin of eukaryotes . Annu. Rev. Genet.33 , 351 – 397 ( 1999 ).
  • Antunes A , PontiusJ , RamosMJ , O’BrienSJ , JohnsonWE . Mitochondrial introgressions into the nuclear genome of the domestic cat . J. Hered.98 ( 5 ), 414 – 420 ( 2007 ).
  • Calabrese FM , SimoneD , AttimonelliM . Primates and mouse NumtS in the UCSC Genome Browser . BMC Bioinform.13 ( Suppl. 4 ), S15 ( 2012 ).
  • Ovchinnikov IV . Hominin evolution and gene flow in the Pleistocene Africa . Anthropol. Anz.70 ( 2 ), 221 – 227 ( 2013 ).
  • Ricchetti M , TekaiaF , DujonB . Continued colonization of the human genome by mitochondrial DNA . PLoS Biol.2 ( 9 ), E273 ( 2004 ).
  • Triant DA , DeWoodyJA . Molecular analyses of mitochondrial pseudogenes within the nuclear genome of arvicoline rodents . Genetica132 ( 1 ), 21 – 33 ( 2008 ).
  • Mourier T , HansenAJ , WillerslevE , ArctanderP . The Human Genome Project reveals a continuous transfer of large mitochondrial fragments to the nucleus . Mol. Biol. Evol.18 ( 9 ), 1833 – 1837 ( 2001 ).
  • Ho SY , GilbertMT . Ancient mitogenomics . Mitochondrion10 ( 1 ), 1 – 11 ( 2010 ).
  • Thangaraj K , JoshiMB , ReddyAG , RasalkarAA , SinghL . Sperm mitochondrial mutations as a cause of low sperm motility . J. Androl.24 ( 3 ), 388 – 392 ( 2003 ).
  • Yao YG , KongQP , SalasA , BandeltHJ . Pseudomitochondrial genome haunts disease studies . J. Med. Genet.45 ( 12 ), 769 – 772 ( 2008 ).
  • Hirano M , ShtilbansA , MayeuxRet al. Apparent mtDNA heteroplasmy in Alzheimer’s disease patients and in normals due to PCR amplification of nucleus-embedded mtDNA pseudogenes . Proc. Natl Acad. Sci. USA94 ( 26 ), 14894 – 14899 ( 1997 ).
  • Davis RE , MillerS , HerrnstadtCet al. Mutations in mitochondrial cytochrome c oxidase genes segregate with late-onset Alzheimer disease . Proc. Natl Acad. Sci. USA94 ( 9 ), 4526 – 4531 ( 1997 ).
  • Iacobazzi V , CastegnaA , InfantinoV , AndriaG . Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool . Mol. Genet. Metab.110 ( 1–2 ), 25 – 34 ( 2013 ).
  • Zhou J , LiuL , ChenJ . Method to purify mitochondrial DNA directly from yeast total DNA . Plasmid64 ( 3 ), 196 – 199 ( 2010 ).
  • Wallace DC , ChalkiaD . Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease . Cold Spring Harb. Perspect. Biol.5 ( 11 ), a021220 ( 2013 ).
  • Hua S , LuC , SongYet al. High levels of mitochondrial heteroplasmy modify the development of ovine-bovine interspecies nuclear transferred embryos . Reprod. Fertil. Dev.24 ( 3 ), 501 – 509 ( 2012 ).
  • Carrieri G , BonafeM , De LucaMet al. Mitochondrial DNA haplogroups and APOE4 allele are non-independent variables in sporadic Alzheimer’s disease . Hum. Genet.108 ( 3 ), 194 – 198 ( 2001 ).
  • Maruszak A , CanterJA , StyczynskaM , ZekanowskiC , BarcikowskaM . Mitochondrial haplogroup H and Alzheimer’s disease: is there a connection?Neurobiol. Aging30 ( 11 ), 1749 – 1755 ( 2009 ).
  • Davies MN , VoltaM , PidsleyRet al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood . Genome Biol.13 ( 6 ), R43 ( 2012 ).
  • Sanchez-Mut JV , AsoE , PanayotisNet al. DNA methylation map of mouse and human brain identifies target genes in Alzheimer’s disease . Brain136 ( Pt 10 ), 3018 – 3027 ( 2013 ).
  • Banati RB , EgenspergerR , MaassenA , HagerG , KreutzbergGW , GraeberMB . Mitochondria in activated microglia in vitro . J. Neurocytol.33 ( 5 ), 535 – 541 ( 2004 ).
  • Park J , ChoiH , MinJSet al. Mitochondrial dynamics modulate the expression of pro-inflammatory mediators in microglial cells . J. Neurochem.127 ( 2 ), 221 – 232 ( 2013 ).
  • Nestor C , RuzovA , MeehanR , DunicanD . Enzymatic approaches and bisulfite sequencing cannot distinguish between 5-methylcytosine and 5-hydroxymethylcytosine in DNA . Biotechniques48 ( 4 ), 317 – 319 ( 2010 ).
  • Clark C , PaltaP , JoyceCJet al. A comparison of the whole genome approach of MeDIP-seq to the targeted approach of the Infinium HumanMethylation 450 Bead Chip ((R)) for methylome profiling . PLoS ONE7 ( 11 ), e50233 ( 2012 ).
  • How Kit A , NielsenHM , TostJ . DNA methylation based biomarkers: practical considerations and applications . Biochimie94 ( 11 ), 2314 – 2337 ( 2012 ).
  • Liu C , LiuL , ChenXet al. Decrease of 5-hydroxymethylcytosine is associated with progression of hepatocellular carcinoma through downregulation of TET1 . PLoS ONE8 ( 5 ), e62828 ( 2013 ).
  • Sandoval J , Mendez-GonzalezJ , NadalEet al. A prognostic DNA methylation signature for stage I non-small-cell lung cancer . J. Clin. Oncol.31 ( 32 ), 4140 – 4147 ( 2013 ).
  • Anderson CM , RalphJL , WrightML , LinggiB , OhmJE . DNA methylation as a biomarker for preeclampsia . Biol. Res. Nurs.16 ( 4 ), 409 – 420 ( 2013 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.