154
Views
0
CrossRef citations to date
0
Altmetric
Review

From Prader–Willi Syndrome to Psychosis: Translating Parent-of-Origin Effects into Schizophrenia Research

, , &
Pages 677-688 | Published online: 22 Dec 2014

References

  • Cassidy SB , DykensE , WilliamsCA . Prader–Willi and Angelman syndromes: sister imprinted disorders . Am. J. Med. Genet.97 ( 2 ), 136 – 146 ( 2000 ).
  • Whittington JE , HollandAJ , WebbT , ButlerJ , ClarkeD , BoerH . Population prevalence and estimated birth incidence and mortality rate for people with Prader–Willi syndrome in one UK Health Region . J. Med. Genet.38 ( 11 ), 792 – 798 ( 2001 ).
  • Cassidy SB , DriscollDJ . Prader–Willi syndrome . Eur. J. Hum. Genet.17 ( 1 ), 3 – 13 ( 2009 ).
  • Curfs LM , FrynsJP . Prader–Willi syndrome: a review with special attention to the cognitive and behavioral profile . Birth Defects Orig. Artic. Ser.28 ( 1 ), 99 – 104 ( 1992 ).
  • Curfs LM , WiegersAM , SommersJR , BorghgraefM , FrynsJP . Strengths and weaknesses in the cognitive profile of youngsters with Prader–Willi syndrome . Clin. Genet.40 ( 6 ), 430 – 434 ( 1991 ).
  • Descheemaeker MJ , VogelsA , GoversVet al. Prader–Willi syndrome: new insights in the behavioural and psychiatric spectrum . J. Intellect. Disabil. Res.46 ( Pt 1 ), 41 – 50 ( 2002 ).
  • Myers SE , WhitmanBY , CarrelAL , MoerchenV , BekxMT , AllenDB . Two years of growth hormone therapy in young children with Prader–Willi syndrome: physical and neurodevelopmental benefits . Am. J. Med. Genet.143 ( 5 ), 443 – 448 ( 2007 ).
  • Bird LM . Angelman syndrome: review of clinical and molecular aspects . Appl. Clin. Genet.7 , 93 – 104 ( 2014 ).
  • Boer H , HollandA , WhittingtonJ , ButlerJ , WebbT , ClarkeD . Psychotic illness in people with Prader Willi syndrome due to chromosome 15 maternal uniparental disomy . Lancet359 ( 9301 ), 135 – 136 ( 2002 ).
  • Soni S , WhittingtonJ , HollandAJet al. The phenomenology and diagnosis of psychiatric illness in people with Prader–Willi syndrome . Psychol. Med.38 ( 10 ), 1505 – 1514 ( 2008 ).
  • Sinnema M , BoerH , CollinPet al. Psychiatric illness in a cohort of adults with Prader–Willi syndrome . Res. Dev. Disabil.32 ( 5 ), 1729 – 1735 ( 2011 ).
  • Verhoeven WM , TuinierS , CurfsLM . Prader–Willi syndrome: the psychopathological phenotype in uniparental disomy . J. Med. Genet.40 ( 10 ), e112 ( 2003 ).
  • Kelsey G , BartolomeiMS . Imprinted genes… and the number is?PLoS Genet.8 ( 3 ), e1002601 ( 2012 ).
  • Gregg C , ZhangJ , WeissbourdBet al. High-resolution analysis of parent-of-origin allelic expression in the mouse brain . Science329 ( 5992 ), 643 – 648 ( 2010 ).
  • Mcnamara GI , IslesAR . Dosage-sensitivity of imprinted genes expressed in the brain: 15q11-q13 and neuropsychiatric illness . Biochem. Soc. Trans.41 ( 3 ), 721 – 726 ( 2013 ).
  • Bartolomei MS , Ferguson-SmithAC . Mammalian genomic imprinting . Cold Spring Harb. Perspect. Biol.3 ( 7 ), a002592 ( 2011 ).
  • Horsthemke B . In brief: genomic imprinting and imprinting diseases . J. Pathol.232 ( 5 ), 485 – 487 ( 2014 ).
  • Kopsida E , MikaelssonMA , DaviesW . The role of imprinted genes in mediating susceptibility to neuropsychiatric disorders . Horm. Behav.59 ( 3 ), 375 – 382 ( 2011 ).
  • Girardot M , FeilR , LleresD . Epigenetic deregulation of genomic imprinting in humans: causal mechanisms and clinical implications . Epigenomics5 ( 6 ), 715 – 728 ( 2013 ).
  • Procter M , ChouLS , TangW , JamaM , MaoR . Molecular diagnosis of Prader–Willi and Angelman syndromes by methylation-specific melting analysis and methylation-specific multiplex ligation-dependent probe amplification . Clin. Chem.52 ( 7 ), 1276 – 1283 ( 2006 ).
  • Izumi K , SantaniAB , DeardorffMAet al. Mosaic maternal uniparental disomy of chromosome 15 in Prader–Willi syndrome: utility of genome-wide SNP array . Am. J. Med. Genet.161A ( 1 ), 166 – 171 ( 2013 ).
  • Roberts E , StevensonK , ColeT , RedfordDH , DavisonEV . Prospective prenatal diagnosis of Prader–Willi syndrome due to maternal disomy for chromosome 15 following trisomic zygote rescue . Prenat. Diagn.17 ( 8 ), 780 – 783 ( 1997 ).
  • Ohta T , GrayTA , RoganPKet al. Imprinting-mutation mechanisms in Prader–Willi syndrome . Am. J. Hum. Genet.64 ( 2 ), 397 – 413 ( 1999 ).
  • Milner KM , CraigEE , ThompsonRJet al. Prader–Willi syndrome: intellectual abilities and behavioural features by genetic subtype . J. Child Psychol. Psychiatry46 ( 10 ), 1089 – 1096 ( 2005 ).
  • Borelina D , EngelN , EsperanteSet al. Combined cytogenetic and molecular analyses for the diagnosis of Prader–Willi/Angelman syndromes . J. Biochem. Mol. Biol.37 ( 5 ), 522 – 526 ( 2004 ).
  • Sinnema M , EinfeldSL , Schrander-StumpelCT , MaaskantMA , BoerH , CurfsLM . Behavioral phenotype in adults with Prader–Willi syndrome . Res. Dev. Disabil.32 ( 2 ), 604 – 612 ( 2011 ).
  • Steinhausen HC , Von GontardA , SpohrHLet al. Behavioral phenotypes in four mental retardation syndromes: fetal alcohol syndrome, Prader–Willi syndrome, fragile X syndrome, and tuberosis sclerosis . Am. J. Med. Genet.111 ( 4 ), 381 – 387 ( 2002 ).
  • Skokauskas N , SweenyE , MeehanJ , GallagherL . Mental health problems in children with Prader–Willi syndrome . J. Can. Acad. of Child Adolesc. Psychiatry21 ( 3 ), 194 – 203 ( 2012 ).
  • Ho AY , DimitropoulosA . Clinical management of behavioral characteristics of Prader–Willi syndrome . Neuropsychiatr. Dis. Treat.6 , 107 – 118 ( 2010 ).
  • Wigren M , HansenS . ADHD symptoms and insistence on sameness in Prader–Willi syndrome . J. Intellect. Disabil. Res.49 ( Pt 6 ), 449 – 456 ( 2005 ).
  • Hartley SL , MacleanWEJr , ButlerMG , ZarconeJ , ThompsonT . Maladaptive behaviors and risk factors among the genetic subtypes of Prader–Willi syndrome . Am. J. Med. Genet.136 ( 2 ), 140 – 145 ( 2005 ).
  • Butler MG , BittelDC , KibiryevaN , TalebizadehZ , ThompsonT . Behavioral differences among subjects with Prader–Willi syndrome and type I or type II deletion and maternal disomy . Pediatrics113 ( 3 Pt 1 ), 565 – 573 ( 2004 ).
  • Varela MC , KokF , SetianN , KimCA , KoiffmannCP . Impact of molecular mechanisms, including deletion size, on Prader–Willi syndrome phenotype: study of 75 patients . Clin. Genet.67 ( 1 ), 47 – 52 ( 2005 ).
  • Dykens EM , RoofE . Behavior in Prader–Willi syndrome: relationship to genetic subtypes and age . J. Child Psychol. Psychiatry49 ( 9 ), 1001 – 1008 ( 2008 ).
  • Beardsmore A , DormanT , CooperSA , WebbT . Affective psychosis and Prader–Willi syndrome . J. Intellect. Disabil. Res.42 ( Pt 6 ), 463 – 471 ( 1998 ).
  • Ingason A , KirovG , GieglingIet al. Maternally derived microduplications at 15q11-q13: implication of imprinted genes in psychotic illness . Am. J. Psychiatry168 ( 4 ), 408 – 417 ( 2011 ).
  • Larson FV , WhittingtonJ , WebbT , HollandAJ . A longitudinal follow-up study of people with Prader–Willi syndrome with psychosis and those at increased risk of developing psychosis due to genetic subtype . Psychol. Med.1 – 5 ( 2013 ) ( Epub ahead of print ).
  • Yang L , ZhanGD , DingJJet al. Psychiatric illness and intellectual disability in the Prader–Willi syndrome with different molecular defects–a meta analysis . PLoS ONE8 ( 8 ), e72640 ( 2013 ).
  • Crespi B . Genomic imprinting in the development and evolution of psychotic spectrum conditions . Biol. Rev. Camb. Philos. Soc.83 ( 4 ), 441 – 493 ( 2008 ).
  • Meguro M , MitsuyaK , SuiHet al. Evidence for uniparental, paternal expression of the human GABAA receptor subunit genes, using microcell-mediated chromosome transfer . Hum. Mol. Genet.6 ( 12 ), 2127 – 2133 ( 1997 ).
  • Sharp AJ , MigliavaccaE , DupreYet al. Methylation profiling in individuals with uniparental disomy identifies novel differentially methylated regions on chromosome 15 . Genome Res.20 ( 9 ), 1271 – 1278 ( 2010 ).
  • Costa E , ChenY , DavisJet al. REELIN and schizophrenia: A disease at the interface of the genome and the epigenome . Mol. Interv.2 ( 1 ), 47 – 57 ( 2002 ).
  • Lintas C , PersicoAM . Neocortical RELN promoter methylation increases significantly after puberty . Neuroreport21 ( 2 ), 114 – 118 ( 2010 ).
  • Miller JL , CouchJA , SchmalfussI , HeG , LiuY , DriscollDJ . Intracranial abnormalities detected by three-dimensional magnetic resonance imaging in Prader–Willi syndrome . Am. J. Med. Genet.143 ( 5 ), 476 – 483 ( 2007 ).
  • Miller JL , CouchJA , LeonardCMet al. Sylvian fissure morphology in Prader–Willi syndrome and early-onset morbid obesity . Genet. Med.9 ( 8 ), 536 – 543 ( 2007 ).
  • Leonard CM , WilliamsCA , NichollsRDet al. Angelman and Prader–Willi syndrome: a magnetic resonance imaging study of differences in cerebral structure . Am. J. Med. Genet.46 ( 1 ), 26 – 33 ( 1993 ).
  • Crow TJ , ChanceSA , PriddleTH , RaduaJ , JamesAC . Laterality interacts with sex across the schizophrenia/bipolarity continuum: an interpretation of meta-analyses of structural MRI . Psychiatry Res.210 ( 3 ), 1232 – 1244 ( 2013 ).
  • Van Der Meer L , SwartM , Van Der VeldeJet al. Neural correlates of emotion regulation in patients with schizophrenia and non-affected siblings . PLoS ONE9 ( 6 ), e99667 ( 2014 ).
  • Wylie KP , TregellasJR . The role of the insula in schizophrenia . Schizophr. Res.123 ( 2–3 ), 93 – 104 ( 2010 ).
  • Kempton MJ , StahlD , WilliamsSC , DelisiLE . Progressive lateral ventricular enlargement in schizophrenia: a meta-analysis of longitudinal MRI studies . Schizophr. Res.120 ( 1–3 ), 54 – 62 ( 2010 ).
  • Steen RG , MullC , McclureR , HamerRM , LiebermanJA . Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies . Br. J. Psychiatry510 – 518 ( 2006 ).
  • Lukoshe A , WhiteT , SchmidtMN , Van Der LugtA , Hokken-KoelegaAC . Divergent structural brain abnormalities between different genetic subtypes of children with Prader–Willi syndrome . J. Neurodev. Disord.5 ( 1 ), 31 ( 2013 ).
  • Honea RA , HolsenLM , LeppingRJet al. The neuroanatomy of genetic subtype differences in Prader–Willi syndrome . Am. J. Med. Genet.159B ( 2 ), 243 – 253 ( 2012 ).
  • Bora E , FornitoA , YucelM , PantelisC . The effects of gender on grey matter abnormalities in major psychoses: a comparative voxelwise meta-analysis of schizophrenia and bipolar disorder . Psychol. Med.42 ( 2 ), 295 – 307 ( 2012 ).
  • Bora E , FornitoA , RaduaJet al. Neuroanatomical abnormalities in schizophrenia: a multimodal voxelwise meta-analysis and meta-regression analysis . Schizophr. Res.127 ( 1–3 ), 46 – 57 ( 2011 ).
  • Mantoulan C , PayouxP , DieneGet al. PET scan perfusion imaging in the Prader–Willi syndrome: new insights into the psychiatric and social disturbances . J. Cereb. Blood Flow Metab.31 ( 1 ), 275 – 282 ( 2011 ).
  • Kringlen E . Twin studies in schizophrenia with special emphasis on concordance figures . Am. J. Med. Genet.97 ( 1 ), 4 – 11 ( 2000 ).
  • Misiak B , FrydeckaD , PiotrowskiP , KiejnaA . The multidimensional nature of metabolic syndrome in schizophrenia: lessons from studies of one-carbon metabolism and DNA methylation . Epigenomics5 ( 3 ), 317 – 329 ( 2013 ).
  • Kirkbride JB , SusserE , KundakovicM , KresovichJK , Davey SmithG , ReltonCL . Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects?Epigenomics4 ( 3 ), 303 – 315 ( 2012 ).
  • Nishioka M , BundoM , KasaiK , IwamotoK . DNA methylation in schizophrenia: progress and challenges of epigenetic studies . Genome Med.4 ( 12 ), 96 ( 2012 ).
  • Dempster E , VianaJ , PidsleyR , MillJ . Epigenetic studies of schizophrenia: progress, predicaments, and promises for the future . Schizophr. Bull.39 ( 1 ), 11 – 16 ( 2013 ).
  • Delisi LE , RaziK , StewartJet al. No evidence for a parent-of-origin effect detected in the pattern of inheritance of schizophrenia . Biol. Psychiatry48 ( 7 ), 706 – 709 ( 2000 ).
  • Crow TJ , DelisiLE , JohnstoneEC . Concordance by sex in sibling pairs with schizophrenia is paternally inherited. Evidence for a pseudoautosomal locus . Br. J. Psychiatry155 , 92 – 97 ( 1989 ).
  • Husted J , ScuttLE , BassettAS . Paternal transmission and anticipation in schizophrenia . Am. J. Med. Genet.81 ( 2 ), 156 – 162 ( 1998 ).
  • Abel KM , DrakeR , GoldsteinJM . Sex differences in schizophrenia . Int. Rev. Psychiatry22 ( 5 ), 417 – 428 ( 2010 ).
  • Stefansson H , RujescuD , CichonSet al. Large recurrent microdeletions associated with schizophrenia . Nature455 ( 7210 ), 232 – 236 ( 2008 ).
  • Kirov G , GrozevaD , NortonNet al. Support for the involvement of large copy number variants in the pathogenesis of schizophrenia . Hum. Mol. Genet.18 ( 8 ), 1497 – 1503 ( 2009 ).
  • Ingason A , KirovG , GieglingIet al. Maternally derived microduplications at 15q11-q13: implication of imprinted genes in psychotic illness . Am. J. Psychiatry168 ( 4 ), 408 – 417 ( 2011 ).
  • Relkovic D , IslesAR . Behavioural and cognitive profiles of mouse models for Prader–Willi syndrome . Brain Res. Bull.92 , 41 – 48 ( 2013 ).
  • Kuwajima T , NishimuraI , YoshikawaK . Necdin promotes GABAergic neuron differentiation in cooperation with Dlx homeodomain proteins . J. Neurosci.26 ( 20 ), 5383 – 5392 ( 2006 ).
  • Kuwako K , HosokawaA , NishimuraIet al. Disruption of the paternal necdin gene diminishes TrkA signaling for sensory neuron survival . J. Neurosci.25 ( 30 ), 7090 – 7099 ( 2005 ).
  • Kuwajima T , HasegawaK , YoshikawaK . Necdin promotes tangential migration of neocortical interneurons from basal forebrain . J. Neurosci.30 ( 10 ), 3709 – 3714 ( 2010 ).
  • Ma X , FeiE , FuC , RenH , WangG . Dysbindin-1, a schizophrenia-related protein, facilitates neurite outgrowth by promoting the transcriptional activity of p53 . Mol. Psychiatry16 ( 11 ), 1105 – 1116 ( 2011 ).
  • Ghiani CA , Dell’angelicaEC . Dysbindin-containing complexes and their proposed functions in brain: from zero to (too) many in a decade . ASN Neuro3 ( 2 ), ( 2011 ).
  • Takaki H , KikutaR , ShibataH , NinomiyaH , TashiroN , FukumakiY . Positive associations of polymorphisms in the metabotropic glutamate receptor type 8 gene (GRM8) with schizophrenia . Am. J. Med. Genet.128B ( 1 ), 6 – 14 ( 2004 ).
  • Watanabe Y , NunokawaA , ShibuyaM , KanekoN , NawaH , SomeyaT . Association study of interleukin 2 (IL2) and IL4 with schizophrenia in a Japanese population . Eur. Arch. Psychiatry Clin. Neurosci.258 ( 7 ), 422 – 427 ( 2008 ).
  • Frydecka D , MisiakB , BeszlejJAet al. Genetic variants in transforming growth factor-beta gene (TGFB1) affect susceptibility to schizophrenia . Mol. Biol. Rep.40 ( 10 ), 5607 – 5610 ( 2013 ).
  • Mexal S , BergerR , PearceLet al. Regulation of a novel alphaN-catenin splice variant in schizophrenic smokers . Am. J. Med. Genet.147B ( 6 ), 759 – 768 ( 2008 ).
  • Francks C , MaegawaS , LaurenJet al. LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia . Mol. Psychiatry12 ( 12 ), 1129 – 1139 , 1057 ( 2007 ).
  • Chen SF , ChenCH , ChenJYet al. Support for association of the A277C single nucleotide polymorphism in human vesicular monoamine transporter 1 gene with schizophrenia . Schizophr. Res.90 ( 1–3 ), 363 – 365 ( 2007 ).
  • Leach EL , PrefontaineG , HurdPL , CrespiBJ . The imprinted gene LRRTM1 mediates schizotypy and handedness in a nonclinical population . J. Hum. Genet.59 ( 6 ), 332 – 336 ( 2014 ).
  • Kishore S , StammS . The snoRNA HBII-52 regulates alternative splicing of the serotonin receptor 2C . Science311 ( 5758 ), 230 – 232 ( 2006 ).
  • Pooley EC , FairburnCG , CooperZ , SodhiMS , CowenPJ , HarrisonPJ . A 5-HT2C receptor promoter polymorphism (HTR2C - 759C/T) is associated with obesity in women, and with resistance to weight loss in heterozygotes . Am. J. Med. Genet.126B ( 1 ), 124 – 127 ( 2004 ).
  • Castensson A , AbergK , MccarthyS , SaetreP , AnderssonB , JazinE . Serotonin receptor 2C (HTR2C) and schizophrenia: examination of possible medication and genetic influences on expression levels . Am. J. Med. Genet.134B ( 1 ), 84 – 89 ( 2005 ).
  • Sicard MN , ZaiCC , TiwariAKet al. Polymorphisms of the HTR2C gene and antipsychotic-induced weight gain: an update and meta-analysis . Pharmacogenomics11 ( 11 ), 1561 – 1571 ( 2010 ).
  • Wilkinson LS , DaviesW , IslesAR . Genomic imprinting effects on brain development and function . Nat. Rev. Neurosci.8 ( 11 ), 832 – 843 ( 2007 ).
  • Breuer R , HamshereML , StrohmaierJet al. Independent evidence for the selective influence of GABA(A) receptors on one component of the bipolar disorder phenotype . Mol. Psychiatry16 ( 6 ), 587 – 589 ( 2011 ).
  • Craddock N , JonesL , JonesIRet al. Strong genetic evidence for a selective influence of GABAA receptors on a component of the bipolar disorder phenotype . Mol. Psychiatry15 ( 2 ), 146 – 153 ( 2010 ).
  • Greer PL , HanayamaR , BloodgoodBLet al. The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc . Cell140 ( 5 ), 704 – 716 ( 2010 ).
  • Yashiro K , RidayTT , CondonKHet al. Ube3a is required for experience-dependent maturation of the neocortex . Nat. Neurosci.12 ( 6 ), 777 – 783 ( 2009 ).
  • Cooper EM , HudsonAW , AmosJ , WagstaffJ , HowleyPM . Biochemical analysis of Angelman syndrome-associated mutations in the E3 ubiquitin ligase E6-associated protein . J. Biol. Chem.279 ( 39 ), 41208 – 41217 ( 2004 ).
  • Sporn AL , AddingtonAM , GornickMet al. ATP10C and UBE3A genes in childhood onset schizophrenia . Biol. Psychiatry55 ( 8 ), 171 ( 2004 ).
  • Bakken TE , BlossCS , RoddeyJCet al. Association of genetic variants on 15q12 with cortical thickness and cognition in schizophrenia . Arch. Gen. Psychiatry68 ( 8 ), 781 – 790 ( 2011 ).
  • Hogart A , WuD , LasalleJM , SchanenNC . The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13 . Neurobiol. Dis.38 ( 2 ), 181 – 191 ( 2010 ).
  • Stan AD , LewisDA . Altered cortical GABA neurotransmission in schizophrenia: insights into novel therapeutic strategies . Curr. Pharm. Biotechnol.13 ( 8 ), 1557 – 1562 ( 2012 ).
  • Huang CC , ChengMC , TsaiHM , LaiCH , ChenCH . Genetic analysis of GABRB3 at 15q12 as a candidate gene of schizophrenia . Psychiatr. Genet.24 ( 4 ), 151 – 157 ( 2014 ).
  • Beneyto M , AbbottA , HashimotoT , LewisDA . Lamina-specific alterations in cortical GABA(A) receptor subunit expression in schizophrenia . Cereb. Cortex21 ( 5 ), 999 – 1011 ( 2011 ).
  • Sun J , JayathilakeK , ZhaoZ , MeltzerHY . Investigating association of four gene regions (GABRB3, MAOB, PAH, and SLC6A4) with five symptoms in schizophrenia . Psychiatry Res.198 ( 2 ), 202 – 206 ( 2012 ).
  • Bergen SE , FanousAH , WalshD , O’neillFA , KendlerKS . Polymorphisms in SLC6A4, PAH, GABRB3, and MAOB and modification of psychotic disorder features . Schizophr. Res.109 ( 1–3 ), 94 – 97 ( 2009 ).
  • Inada T , KogaM , IshiguroHet al. Pathway-based association analysis of genome-wide screening data suggest that genes associated with the gamma-aminobutyric acid receptor signaling pathway are involved in neuroleptic-induced, treatment-resistant tardive dyskinesia . Pharmacogenet. Genomics18 ( 4 ), 317 – 323 ( 2008 ).
  • Pun FW , ZhaoC , LoWSet al. Imprinting in the schizophrenia candidate gene GABRB2 encoding GABA(A) receptor beta(2) subunit . Mol. Psychiatry16 ( 5 ), 557 – 568 ( 2011 ).
  • Iossifov I , ZhengT , BaronM , GilliamTC , RzhetskyA . Genetic-linkage mapping of complex hereditary disorders to a whole-genome molecular-interaction network . Genome Res.18 ( 7 ), 1150 – 1162 ( 2008 ).
  • Zhao Q , LiT , ZhaoXet al. Rare CNVs and tag SNPs at 15q11.2 are associated with schizophrenia in the Han Chinese population . Schizophr. Bull.39 ( 3 ), 712 – 719 ( 2013 ).
  • Liao HM , ChaoYL , HuangALet al. Identification and characterization of three inherited genomic copy number variations associated with familial schizophrenia . Schizophr. Res.139 ( 1–3 ), 229 – 236 ( 2012 ).
  • Stefansson H , Meyer-LindenbergA , SteinbergSet al. CNVs conferring risk of autism or schizophrenia affect cognition in controls . Nature505 ( 7483 ), 361 – 366 ( 2014 ).
  • Bischof JM , StewartCL , WevrickR . Inactivation of the mouse Magel2 gene results in growth abnormalities similar to Prader–Willi syndrome . Hum. Mol. Genet.16 ( 22 ), 2713 – 2719 ( 2007 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.