559
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterization of the Nasopharyngeal Carcinoma Methylome Identifies Aberrant Disruption of Key Signaling Pathways and Methylated Tumor Suppressor Genes

, , , , , , , , , , , , & show all
Pages 155-173 | Published online: 05 Dec 2014

References

  • Lo KW , ToKF , HuangDP . Focus on nasopharyngeal carcinoma . Cancer Cell5 ( 5 ), 423 – 428 ( 2004 ).
  • Tao Q , ChanAT . Nasopharyngeal carcinoma: molecular pathogenesis and therapeutic developments . Expert Rev. Mol. Med.9 ( 12 ), 1 – 24 ( 2007 ).
  • Raab-Traub N . Epstein–Barr virus in the pathogenesis of NPC . Semin. Cancer Biol.12 ( 6 ), 431 – 441 ( 2002 ).
  • Young LS , RickinsonAB . Epstein–Barr virus: 40 years on . Nat. Rev. Cancer4 ( 10 ), 757 – 768 ( 2004 ).
  • Tao Q , YoungLS , WoodmanCB , MurrayPG . Epstein–Barr virus (EBV) and its associated human cancers – genetics, epigenetics, pathobiology and novel therapeutics . Front. Biosci.11 , 2672 – 2713 ( 2006 ).
  • Kieff E , RickinsonAB . Epstein–Barr virus and its replication . In:Fields Virology (5th Edition).KnipeDM , HowleyPM (Eds) . Walters Kluwer/Lippincott, Williams & Wilkins , PA, USA , 2603 – 2654 ( 2007 ).
  • Lo KW , ChungGT , ToKF . Deciphering the molecular genetic basis of NPC through molecular, cytogenetic, and epigenetic approaches . Semin. Cancer Biol.22 ( 2 ), 79 – 86 ( 2012 ).
  • Bei JX , JiaWH , ZengYX . Familial and large-scale case–control studies identify genes associated with nasopharyngeal carcinoma . Semin. Cancer Biol.22 ( 2 ), 96 – 106 ( 2012 ).
  • Sung NS , ZengY , Raab-TraubN . Alterations on chromosome 3 in endemic and nonendemic nasopharyngeal carcinoma . Int. J. Cancer86 ( 2 ), 244 – 250 ( 2000 ).
  • Bei JX , LiY , JiaWHet al. A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci . Nat. Genet.42 ( 7 ), 599 – 603 ( 2010 ).
  • Feng BJ , HuangW , ShugartYYet al. Genome-wide scan for familial nasopharyngeal carcinoma reveals evidence of linkage to chromosome 4 . Nat. Genet.31 ( 4 ), 395 – 399 ( 2002 ).
  • Tse KP , SuWH , ChangKPet al. Genome-wide association study reveals multiple nasopharyngeal carcinoma-associated loci within the HLA region at chromosome 6p21.3 . Am. J. Hum. Genet.85 ( 2 ), 194 – 203 ( 2009 ).
  • Lin DC , MengX , HazawaMet al. The genomic landscape of nasopharyngeal carcinoma . Nat. Genet.46 ( 8 ), 866 – 871 ( 2014 ).
  • Wolffe AP , MatzkeMA . Epigenetics: regulation through repression . Science286 ( 5439 ), 481 – 486 ( 1999 ).
  • Jones PA , BaylinSB . The fundamental role of epigenetic events in cancer . Nat. Rev. Genet.3 ( 6 ), 415 – 428 ( 2002 ).
  • Baylin SB , OhmJE . Epigenetic gene silencing in cancer – a mechanism for early oncogenic pathway addiction?Nat. Rev. Cancer6 ( 2 ), 107 – 116 ( 2006 ).
  • Jones PA , BaylinSB . The epigenomics of cancer . Cell128 ( 4 ), 683 – 692 ( 2007 ).
  • Hanahan D , WeinbergRA . Hallmarks of cancer: the next generation . Cell144 ( 5 ), 646 – 674 ( 2011 ).
  • Yu DH , WaterlandRA , ZhangPet al. Targeted p16Ink4a epimutation causes tumorigenesis and reduces survival in mice . J. Clin. Invest.124 ( 9 ), 3708 – 3712 ( 2014 ).
  • Li LL , ShuXS , WangZH , CaoY , TaoQ . Epigenetic disruption of cell signaling in nasopharyngeal carcinoma . Chin. J. Cancer30 ( 4 ), 231 – 239 ( 2011 ).
  • Lo KW , CheungST , LeungSFet al. Hypermethylation of the p16 gene in nasopharyngeal carcinoma . Cancer Res.56 ( 12 ), 2721 – 2725 ( 1996 ).
  • Lo KW , KwongJ , HuiABet al. High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma . Cancer Res.61 ( 10 ), 3877 – 3881 ( 2001 ).
  • Jin H , WangX , YingJet al. Epigenetic silencing of a Ca2+-regulated Ras GTPase-activating protein RASAL defines a new mechanism of Ras activation in human cancers . Proc. Natl Acad. Sci. USA104 ( 30 ), 12353 – 12358 ( 2007 ).  
  • Cheung HW , ChingYP , NichollsJMet al. Epigenetic inactivation of CHFR in nasopharyngeal carcinoma through promoter methylation . Mol. Carcinog.43 ( 4 ), 237 – 245 ( 2005 ).
  • Hui AB , LoKW , KwongJet al. Epigenetic inactivation of TSLC1 gene in nasopharyngeal carcinoma . Mol. Carcinog.38 ( 4 ), 170 – 178 ( 2003 ).
  • Lung HL , ChengY , KumaranMKet al. Fine mapping of the 11q22–23 tumor suppressive region and involvement of TSLC1 in nasopharyngeal carcinoma . Int. J. Cancer112 ( 4 ), 628 – 635 ( 2004 ).
  • Ying J , LiH , SengTJet al. Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation . Oncogene25 ( 7 ), 1070 – 1080 ( 2006 ).
  • Cheng Y , GengH , ChengSHet al. KRAB zinc finger protein ZNF382 is a proapoptotic tumor suppressor that represses multiple oncogenes and is commonly silenced in multiple carcinomas . Cancer Res.70 ( 16 ), 6516 – 6526 ( 2010 ).
  • Hutajulu SH , IndrasariSR , IndrawatiLPet al. Epigenetic markers for early detection of nasopharyngeal carcinoma in a high risk population . Mol. Cancer10 , 48 ( 2011 ).
  • Yang X , DaiW , KwongDLet al. Epigenetic markers for non-invasive early detection of nasopharyngeal carcinoma by methylation-sensitive high resolution melting . Int. J. Cancerdoi:10.1002/ijc.29192 ( 2014 ) ( Epub ahead of print ).
  • Tsao SW , WangX , LiuYet al. Establishment of two immortalized nasopharyngeal epithelial cell lines using SV40 large T and HPV16E6/E7 viral oncogenes . Biochim. Biophys. Acta1590 ( 1–3 ), 150 – 158 ( 2002 ).
  • Li HM , ManC , JinYet al. Molecular and cytogenetic changes involved in the immortalization of nasopharyngeal epithelial cells by telomerase . Int. J. Cancer119 ( 7 ), 1567 – 1576 ( 2006 ).
  • Cheung ST , HuangDP , HuiABet al. Nasopharyngeal carcinoma cell line (C666-1) consistently harbouring Epstein–Barr virus . Int. J. Cancer83 ( 1 ), 121 – 126 ( 1999 ).
  • Qiu GH , TanLK , LohKSet al. The candidate tumor suppressor gene BLU, located at the commonly deleted region 3p21.3, is an E2F-regulated, stress-responsive gene and inactivated by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma . Oncogene23 ( 27 ), 4793 – 4806 ( 2004 ).
  • Li L , SuX , ChoiGC , CaoY , AmbinderRF , TaoQ . Methylation profiling of Epstein–Barr virus immediate–early gene promoters, BZLF1 and BRLF1 in tumors of epithelial, NK- and B-cell origins . BMC Cancer12 , 125 ( 2012 ).
  • Shu XS , LiL , JiMet al. FEZF2, a novel 3p14 tumor suppressor gene, represses oncogene EZH2 and MDM2 expression and is frequently methylated in nasopharyngeal carcinoma . Carcinogenesis34 ( 9 ), 1984 – 1993 ( 2013 ).
  • Busson P , GanemG , FloresPet al. Establishment and characterization of three transplantable EBV-containing nasopharyngeal carcinomas . Int. J. Cancer42 ( 4 ), 599 – 606 ( 1988 ).
  • Huang da W , ShermanBT , LempickiRA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources . Nat. Protoc.4 ( 1 ), 44 – 57 ( 2009 ).
  • Dennis G Jr , ShermanBT , HosackDAet al. DAVID: Database for Annotation, Visualization, and Integrated Discovery . Genome Biol.4 ( 5 ), P3 ( 2003 ).
  • Kyoto Encyclopedia of Genes and Genomes (KEGG) database . www.genome.jp/kegg/kegg1.html
  • Li L , YingJ , LiHet al. The human cadherin 11 is a pro-apoptotic tumor suppressor modulating cell stemness through Wnt/beta-catenin signaling and silenced in common carcinomas . Oncogene31 ( 34 ), 3901 – 3912 ( 2012 ).
  • Li L , YingJ , TongXet al. Epigenetic identification of receptor tyrosine kinase-like orphan receptor 2 as a functional tumor suppressor inhibiting beta-catenin and AKT signaling but frequently methylated in common carcinomas . Cell Mol. Life Sci.71 ( 11 ), 2179 – 2192 ( 2014 ).
  • Choi GC , LiJ , WangYet al. The metalloprotease ADAMTS8 displays antitumor properties through antagonizing EGFR–MEK–ERK signaling and is silenced in carcinomas by CpG methylation . Mol. Cancer Res.12 ( 2 ), 228 – 238 ( 2014 ).
  • Du W , WangS , ZhouQet al. ADAMTS9 is a functional tumor suppressor through inhibiting AKT/mTOR pathway and associated with poor survival in gastric cancer . Oncogene32 ( 28 ), 3319 – 3328 ( 2013 ).
  • Wang Y , LiJ , CuiYet al. CMTM3, located at the critical tumor suppressor locus 16q22.1, is silenced by CpG methylation in carcinomas and inhibits tumor cell growth through inducing apoptosis . Cancer Res.69 ( 12 ), 5194 – 5201 ( 2009 ).
  • Lee KY , GengH , NgKMet al. Epigenetic disruption of interferon-gamma response through silencing the tumor suppressor interferon regulatory factor 8 in nasopharyngeal, esophageal and multiple other carcinomas . Oncogene27 ( 39 ), 5267 – 5276 ( 2008 ).
  • He D , ZengQ , RenGet al. Protocadherin 8 is a functional tumor suppressor frequently inactivated by promoter methylation in nasopharyngeal carcinoma . Eur. J. Cancer Prev.21 ( 6 ), 569 – 575 ( 2012 ).
  • Yin X , XiangT , LiLet al. DACT1, an antagonist to Wnt/beta-catenin signaling, suppresses tumor cell growth and is frequently silenced in breast cancer . Breast Cancer Res.15 ( 2 ), R23 ( 2013 ).
  • Cheng YY , YuJ , WongYPet al. Frequent epigenetic inactivation of secreted frizzled-related protein 2 (SFRP2) by promoter methylation in human gastric cancer . Br. J. Cancer97 ( 7 ), 895 – 901 ( 2007 ).
  • Xiang T , LiL , YinXet al. Epigenetic silencing of the WNT antagonist Dickkopf 3 disrupts normal Wnt/beta-catenin signalling and apoptosis regulation in breast cancer cells . J. Cell Mol. Med.17 ( 10 ), 1236 – 1246 ( 2013 ).
  • Tao Q , HuangH , GeimanTMet al. Defective de novo methylation of viral and cellular DNA sequences in ICF syndrome cells . Hum. Mol. Genet.11 ( 18 ), 2091 – 2102 ( 2002 ).
  • Tao Q , SwinnenLJ , YangJ , SrivastavaG , RobertsonKD , AmbinderRF . Methylation status of the Epstein–Barr virus major latent promoter C in iatrogenic B cell lymphoproliferative disease. Application of PCR-based analysis . Am. J. Pathol.155 ( 2 ), 619 – 625 ( 1999 ).
  • Tao Q . Cancer research in an era when epigenetics is no longer ‘epi’ – challenges and opportunities . Chin. J. Cancer32 ( 1 ), 1 – 2 ( 2013 ).
  • Li H , LiJ , SuYet al. A novel 3p22.3 gene CMTM7 represses oncogenic EGFR signaling and inhibits cancer cell growth . Oncogene33 ( 24 ), 3109 – 3118 ( 2014 ).
  • Lung HL , LoPH , XieDet al. Characterization of a novel epigenetically-silenced, growth-suppressive gene, ADAMTS9, and its association with lymph node metastases in nasopharyngeal carcinoma . Int. J. Cancer123 ( 2 ), 401 – 408 ( 2008 ).
  • Jin H , WangX , YingJet al. Epigenetic identification of ADAMTS18 as a novel 16q23.1 tumor suppressor frequently silenced in esophageal, nasopharyngeal and multiple other carcinomas . Oncogene26 ( 53 ), 7490 – 7498 ( 2007 ).
  • Wong AM , KongKL , ChenLet al. Characterization of CACNA2D3 as a putative tumor suppressor gene in the development and progression of nasopharyngeal carcinoma . Int. J. Cancer133 ( 10 ), 2284 – 2295 ( 2013 ).
  • Yanatatsaneejit P , ChalermchaiT , KerekhanjanarongVet al. Promoter hypermethylation of CCNA1, RARRES1, and HRASLS3 in nasopharyngeal carcinoma . Oral Oncol.44 ( 4 ), 400 – 406 ( 2008 ).
  • Du C , HuangT , SunDet al. CDH4 as a novel putative tumor suppressor gene epigenetically silenced by promoter hypermethylation in nasopharyngeal carcinoma . Cancer Lett.309 ( 1 ), 54 – 61 ( 2011 ).
  • Seng TJ , LowJS , LiHet al. The major 8p22 tumor suppressor DLC1 is frequently silenced by methylation in both endemic and sporadic nasopharyngeal, esophageal, and cervical carcinomas, and inhibits tumor cell colony formation . Oncogene26 ( 6 ), 934 – 944 ( 2007 ).
  • Low JS , TaoQ , NgKMet al. A novel isoform of the 8p22 tumor suppressor gene DLC1 suppresses tumor growth and is frequently silenced in multiple common tumors . Oncogene30 ( 16 ), 1923 – 1935 ( 2011 ).
  • Wong VC , ChenH , KoJMet al. Tumor suppressor dual-specificity phosphatase 6 (DUSP6) impairs cell invasion and epithelial-mesenchymal transition (EMT)-associated phenotype . Int. J. Cancer130 ( 1 ), 83 – 95 ( 2012 ).
  • Loyo M , BraitM , KimMSet al. A survey of methylated candidate tumor suppressor genes in nasopharyngeal carcinoma . Int. J. Cancer128 ( 6 ), 1393 – 1403 ( 2011 ).
  • Kwong J , LoKW , ToKF , TeoPM , JohnsonPJ , HuangDP . Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma . Clin. Cancer Res.8 ( 1 ), 131 – 137 ( 2002 ).
  • Challouf S , ZiadiS , ZaghdoudiR , KsiaaF , Ben GacemR , TrimecheM . Patterns of aberrant DNA hypermethylation in nasopharyngeal carcinoma in Tunisian patients . Clin. Chim. Acta.413 ( 7–8 ), 795 – 802 ( 2012 ).
  • Li J , GongP , LyuX , YaoK , LiX , PengH . Aberrant CpG island methylation of PTEN is an early event in nasopharyngeal carcinoma and a potential diagnostic biomarker . Oncol. Rep.31 ( 5 ), 2206 – 2212 ( 2014 ).
  • Cheung AK , LungHL , HungSCet al. Functional analysis of a cell cycle-associated, tumor-suppressive gene, protein tyrosine phosphatase receptor type G, in nasopharyngeal carcinoma . Cancer Res.68 ( 19 ), 8137 – 8145 ( 2008 ).
  • Wong TS , TangKC , KwongDLet al. Differential gene methylation in undifferentiated nasopharyngeal carcinoma . Int. J. Oncol.22 ( 4 ), 869 – 874 ( 2003 ).
  • Zhou L , JiangW , RenCet al. Frequent hypermethylation of RASSF1A and TSLC1, and high viral load of Epstein-Barr Virus DNA in nasopharyngeal carcinoma and matched tumor-adjacent tissues . Neoplasia7 ( 9 ), 809 – 815 ( 2005 ).
  • Mo Y , MidorikawaK , ZhangZet al. Promoter hypermethylation of Ras-related GTPase gene RRAD inactivates a tumor suppressor function in nasopharyngeal carcinoma . Cancer Lett.323 ( 2 ), 147 – 154 ( 2012 ).
  • Wong TS , KwongDL , ShamJSet al. Promoter hypermethylation of high-in-normal 1 gene in primary nasopharyngeal carcinoma . Clin. Cancer Res.9 ( 8 ), 3042 – 3046 ( 2003 ).
  • Zhang S , LiS , GaoJL . Promoter methylation status of the tumor suppressor gene SOX11 is associated with cell growth and invasion in nasopharyngeal carcinoma . Cancer Cell Int.13 ( 1 ), 109 ( 2013 ).
  • Li L , TaoQ , JinHet al. The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma . Clin. Cancer Res.16 ( 11 ), 2949 – 2958 ( 2010 ).
  • CpG island searcher . http://ccnt.hsc.usc.edu/cpgislands2
  • Jiang X , TanJ , LiJet al. DACT3 is an epigenetic regulator of Wnt/beta-catenin signaling in colorectal cancer and is a therapeutic target of histone modifications . Cancer Cell13 ( 6 ), 529 – 541 ( 2008 ).
  • Kang GH , LeeS , KimWHet al. Epstein–Barr virus-positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma . Am. J. Pathol.160 ( 3 ), 787 – 794 ( 2002 ).
  • Matsusaka K , KanedaA , NagaeGet al. Classification of Epstein–Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes . Cancer Res.71 ( 23 ), 7187 – 7197 ( 2011 ).
  • Chang MS , UozakiH , ChongJMet al. CpG island methylation status in gastric carcinoma with and without infection of Epstein–Barr virus . Clin. Cancer Res.12 ( 10 ), 2995 – 3002 ( 2006 ).
  • Feinberg AP . Epigenomics reveals a functional genome anatomy and a new approach to common disease . Nat. Biotechnol.28 ( 10 ), 1049 – 1052 ( 2010 ).
  • Gupta R , NagarajanA , WajapeyeeN . Advances in genome-wide DNA methylation analysis . Biotechniques49 ( 4 ), iii – xi ( 2010 ).
  • Wang J , XiaY , LiLet al. Double restriction-enzyme digestion improves the coverage and accuracy of genome-wide CpG methylation profiling by reduced representation bisulfite sequencing . BMC Genomics14 , 11 ( 2013 ).
  • Dedeurwaerder S , DefranceM , BizetM , CalonneE , BontempiG , FuksF . A comprehensive overview of Infinium HumanMethylation450 data processing . Brief. Bioinform.15 ( 6 ), 929 – 951 ( 2014 ).
  • Chen YA , LemireM , ChoufaniSet al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray . Epigenetics8 ( 2 ), 203 – 209 ( 2013 ).
  • Harper KN , PetersBA , GambleMV . Batch effects and pathway analysis: two potential perils in cancer studies involving DNA methylation array analysis . Cancer Epidemiol. Biomarkers Prev.22 ( 6 ), 1052 – 1060 ( 2013 ).
  • Down TA , RakyanVK , TurnerDJet al. A Bayesian deconvolution strategy for immunoprecipitation-based DNA methylome analysis . Nat. Biotechnol.26 ( 7 ), 779 – 785 ( 2008 ).
  • Weber M , DaviesJJ , WittigDet al. Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells . Nat. Genet.37 ( 8 ), 853 – 862 ( 2005 ).
  • Matsumura S , ImotoI , KozakiKet al. Integrative array-based approach identifies MZB1 as a frequently methylated putative tumor suppressor in hepatocellular carcinoma . Clin. Cancer Res.18 ( 13 ), 3541 – 3551 ( 2012 ).
  • Heller G , BabinskyVN , ZieglerBet al. Genome-wide CpG island methylation analyses in non-small cell lung cancer patients . Carcinogenesis34 ( 3 ), 513 – 521 ( 2013 ).
  • Morris MR , RickettsCJ , GentleDet al. Genome-wide methylation analysis identifies epigenetically inactivated candidate tumour suppressor genes in renal cell carcinoma . Oncogene30 ( 12 ), 1390 – 1401 ( 2011 ).
  • Brebi P , MaldonadoL , NoordhuisMGet al. Genome-wide methylation profiling reveals zinc finger protein 516 (ZNF516) and FK-506-binding protein 6 (FKBP6) promoters frequently methylated in cervical neoplasia, associated with HPV status and ethnicity in a Chilean population . Epigenetics9 ( 2 ), 308 – 317 ( 2014 ).
  • Cheung HH , LeeTL , DavisAJ , TaftDH , RennertOM , ChanWY . Genome-wide DNA methylation profiling reveals novel epigenetically regulated genes and non-coding RNAs in human testicular cancer . Br. J. Cancer102 ( 2 ), 419 – 427 ( 2010 ).
  • Chan SL , CuiY , Van HasseltAet al. The tumor suppressor Wnt inhibitory factor 1 is frequently methylated in nasopharyngeal and esophageal carcinomas . Lab. Invest.87 ( 7 ), 644 – 650 ( 2007 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.