236
Views
0
CrossRef citations to date
0
Altmetric
Review

The effect of diet on the intestinal epigenome

&
Pages 239-251 | Published online: 09 May 2014

References

  • Bird A . Perceptions of epigenetics . Nature   447 , 396 – 398 ( 2007 ).
  • Horvath S . DNA methylation age of human tissues and cell types . Genome Biol.   14 , R115 ( 2013 ).
  • Kaelin   WG   Jr , McKnightSL . Influence of metabolism on epigenetics and disease . Cell   153 , 56 – 69 ( 2013 ).
  • Gut P , VerdinE . Thenexus of chromatin regulation and intermediary metabolism . Nature   502 , 489 – 498 ( 2013 ).
  • Kirchner H , OslerME , KrookA , ZierathJR . Epigenetic flexibility in metabolic regulation: disease cause and prevention?   Trends Cell Biol.   23 , 203 – 209 ( 2013 ).
  • Lao VV , GradyWM . Epigenetics and colorectal cancer . Nat. Rev. Gastroenterol. Hepatol.   8 , 686 – 700 ( 2011 ).
  • Waterland RA . Epigenetic mechanisms and gastrointestinal development . J. Pediatr.   149 , S137 – S142 ( 2006 ).
  • Sato T , van EsJH , SnippertHJet al. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts . Nature   469 , 415 – 418 ( 2011 ).
  • McDuffie LA , BucherBT , ErwinCRet al. Intestinal adaptation after small bowel resection in human infants . J. Pediatr. Surg.   46 , 1045 – 1051 ( 2011 ).
  • Drozdowski L , ThomsonAB . Intestinal mucosal adaptation . World J. Gastroenterol.   12 , 4614 – 4627 ( 2006 ).
  • Inoue S , MochizukiK , GodaT . Jejunal induction of SI and SGLT1 genes in rats by high-starch/low-fat diet is associated with histone acetylation and binding of GCN5 on the genes . J. Nutr. Sci. Vitaminol. (Tokyo)   57 , 162 – 169 ( 2011 ).
  • Suzuki T , DouardV , MochizukiK , GodaT , FerrarisRP . Diet-induced epigenetic regulation in vivo of the intestinal fructose transporter Glut5 during development of rat small intestine . Biochem J.   435 , 43 – 53 ( 2011 ).
  • Honma K , MochizukiK , GodaT . Induction by fructose force-feeding of histone H3 and H4 acetylation at their lysine residues around the Slc2a5 gene and its expression in mice . Biosci. Biotechnol. Biochem.   77 , 2188 – 2191 ( 2013 ).
  • Brenner H , KloorM , PoxCP . Colorectal cancer . Lancet doi:10.1016/S0140-6736(13)61649-9 ( 2013 ) ( Epub ahead of print ).
  • Lynch JP , HoopsTC . The genetic pathogenesis of colorectal cancer . Hematol. Oncol. Clin. North Am.   16 , 775 – 810 ( 2002 ).
  • Feinberg AP , VogelsteinB . Hypomethylation distinguishes genes of some human cancers from their normal counterparts . Nature   301 , 89 – 92 ( 1983 ).
  • Kane MF , LodaM , GaidaGMet al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines . Cancer Res.   57 , 808 – 811 . ( 1997 ).
  • Gonzalez-Zulueta M , BenderCM , YangASet al. Methylation of the 5’ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing . Cancer Res.   55 , 4531 – 4535 . ( 1995 ).
  • Hinoue T , WeisenbergerDJ , LangeCPet al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer . Genome Res.   22 , 271 – 282 ( 2012 ).
  • Irizarry RA , Ladd-AcostaC , WenBet al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores . Nat. Genet.   41 , 178 – 186 ( 2009 ).
  • Rawson JB , MannoM , MrkonjicMet al. Promoter methylation of Wnt antagonists DKK1 and SFRP1 is associated with opposing tumor subtypes in two large populations of colorectal cancer patients . Carcinogenesis   32 , 741 – 747 ( 2011 ).
  • Bardhan K , LiuK . Epigenetics and colorectal cancer pathogenesis . Cancers (Basel)   5 , 676 – 713 ( 2013 ).
  • Eckhardt F , LewinJ , CorteseRet al. DNA methylation profiling of human chromosomes 6, 20 and 22 . Nat. Genet.   38 , 1378 – 1385 ( 2006 ).
  • Maegawa S , HinkalG , KimHSet al. Widespread and tissue specific age-related DNA methylation changes in mice . Genome Res.   20 , 332 – 340 ( 2010 ).
  • Kondo Y , IssaJP . Epigenetic changes in colorectal cancer . Cancer Metastasis Rev.   23 , 29 – 39 ( 2004 ).
  • Issa JP , OttavianoYL , CelanoPet al. Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon . Nat. Genet.   7 , 536 – 540 ( 1994 ).
  • Campbell-Thompson M , LynchIJ , BhardwajB . Expression of estrogen receptor (ER) subtypes and ERbeta isoforms in colon cancer . Cancer Res.   61 , 632 – 640 ( 2001 ).
  • Shen L , KondoY , RosnerGLet al. MGMT promoter methylation and field defect in sporadic colorectal cancer . J. Natl Cancer Inst.   97 , 1330 – 1338 ( 2005 ).
  • Belshaw NJ , ElliottGO , FoxallRJet al. Profiling CpG island field methylation in both morphologically normal and neoplastic human colonic mucosa . Br. J. Cancer   99 , 136 – 142 ( 2008 ).
  • Silviera ML , SmithBP , PowellJ , SapienzaC . Epigenetic differences in normal colon mucosa of cancer patients suggest altered dietary metabolic pathways . Cancer Prev. Res.   5 , 374 – 384 ( 2012 ).
  • Kaz AM ,  WongCJ ,  DzieciatkowskiSet al. Patterns of DNA methylation in the normal colon vary by anatomical location, gender, and age .  Epigenetics   doi:10.4161/epi.27650  ( 2014 ) ( Epub ahead of print ).
  • Belshaw NJ , PalN , TappHSet al. Patterns of DNA methylation in individual colonic crypts reveal aging and cancer-related field defects in the morphologically normal mucosa . Carcinogenesis   31 , 1158 – 1163 ( 2010 ).
  • Silva AJ , WardK , WhiteR . Mosaic methylation in clonal tissue . Dev. Biol.   156 , 391 – 398 ( 1993 ).
  • Laird CD , PleasantND , ClarkADet al. Hairpin-bisulfite PCR: Assessing epigenetic methylation patterns on complementary strands of individual DNA molecules . Proc. Natl Acad. Sci. USA   101 , 204 – 209 ( 2004 ).
  • De Cabo SF , SantosJ , Fernandez-PiquerasJ . Molecular and cytological evidence of S-adenosyl-L-homocysteine as an innocuous undermethylating agent in vivo . Cytogenet. Cell Genet.   71 , 187 – 192 ( 1995 ).
  • Hoffman DR , CornatzerWE , DuerreJA . Relationship between tissue levels of S-adenosylmethionine, S-adenylhomocysteine, and transmethylation reactions . Can. J. Biochem.   57 , 56 – 65 ( 1979 ).
  • Williams KT , SchalinskeKL . New insights into the regulation of methyl group and homocysteine metabolism . J. Nutr.   137 , 311 – 314 ( 2007 ).
  • Duthie SJ , NarayananS , BrandGM , GrantG . DNA stability and genomic methylation status in colonocytes isolated from methyl-donor-deficient rats . Eur. J. Nutr.   39 , 106 – 111 ( 2000 ).
  • Stempak JM , SohnKJ , ChiangEP , ShaneB , KimYI . Cell and stage of transformation-specific effects of folate deficiency on methionine cycle intermediates and DNA methylation in an in vitro model . Carcinogenesis   26 , 981 – 990 ( 2005 ).
  • Charles MA , JohnsonIT , BelshawNJ . Supra-physiological folic acid concentrations induce aberrant DNA methylation in normal human cells in vitro . Epigenetics   7 , 689 – 694 ( 2012 ).
  • Sie KKY , LiJ , LyAet al. Effect of maternal and postweaning folic acid supplementation on global and gene-specific DNA methylation in the liver of the rat offspring . Mol. Nutr. Food Res.   57 , 677 – 685 ( 2013 ).
  • Michaud EJ , van VugtMJ , BultmanSJet al. Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage . Genes Dev.   8 , 1463 – 1472 ( 1994 ).
  • Yen TT , GillAM , FrigeriLG , BarshGS , WolffGL . Obesity, diabetes, and neoplasia in yellow A(vy)/- mice: ectopic expression of the agouti gene . FASEB J.   8 , 479 – 488 ( 1994 ).
  • Wolff GL , KodellRL , MooreSR , CooneyCA . Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice . FASEB J.   12 , 949 – 957 ( 1998 ).
  • Cooney CA , DaveAA , WolffGL . Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring . J. Nutr.   132 , 2393S – 2400S ( 2002 ).
  • Waterland RA , JirtleRL . Transposable elements: targets for early nutritional effects on epigenetic gene regulation . Mol. Cell Biol.   23 , 5293 – 5300 ( 2003 ).
  • Sie KKY , MedlineA , van WeelJet al. Effect of maternal and postweaning folic acid supplementation on colorectal cancer risk in the offspring . Gut   60 , 1687 – 1694 ( 2011 ).
  • Bailey SW , AylingJE . The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake . Proc. Natl Acad. Sci. USA   106 , 15424 – 15429 ( 2009 ).
  • Troen AM , MitchellB , SorensenBet al. Unmetabolized folic acid in plasma is associated with reduced natural killer cell cytotoxicity among postmenopausal women . J. Nutr.   136 , 189 – 194 ( 2006 ).
  • Cravo ML , PintoAG , ChavesPet al. Effect of folate supplementation on DNA methylation of rectal mucosa in patients with colonic adenomas: correlation with nutrient intake . Clin. Nutr.   17 , 45 – 49 ( 1998 ).
  • Kim YI , BaikHW , FawazKet al. Effects of folate supplementation on two provisional molecular markers of colon cancer: a prospective, randomized trial . Am. J. Gastroenterol.   96 , 184 – 195 ( 2001 ).
  • Pufulete M , Al-GhnaniemR , KhushalAet al. Effect of folic acid supplementation on genomic DNA methylation in patients with colorectal adenoma . Gut   54 , 648 – 653 ( 2005 ).
  • Figueiredo JC , GrauMV , WallaceKet al. Global DNA Hypomethyation (LINE-1) in the normal colon and lifestyle characteristics and dietary and genetic factors . Cancer Epidemiol. Biomarkers Prev.   18 , 1041 – 1049 ( 2009 ).
  • van den Donk M , PellisL , CrottJWet al. Folic acid and vitamin B-12 supplementation does not favorably influence uracil incorporation and promoter methylation in rectal mucosa DNA of subjects with previous colorectal adenomas. J. Nutr.   137 ( 9 ), 2114 – 2120 ( 2007 ).
  • Wallace K , GrauMV , LevineAJet al. Association between folate levels and CpG Island hypermethylation in normal colorectal mucosa . Cancer Prev. Res. (Phila.)   3 , 1552 – 1564 ( 2010 ).
  • Abbadi RA , EmeryP , PufuleteM . Short-term folate supplementation in physiological doses has no effect on ESR1 and MLH1 methylation in colonic mucosa of individuals with adenoma . J. Nutrigenet. Nutrigenomics   5 , 327 – 338 ( 2012 ).
  • Al-Ghnaniem R , PetersJ , ForestiR , HeatonN , PufuleteM . Methylation of estrogen receptor alpha and mutL homolog 1 in normal colonic mucosa: association with folate and vitamin B-12 status in subjects with and without colorectal neoplasia . Am. J. Clin. Nutr.   86 , 1064 – 1072 ( 2007 ).
  • Hanks J , AyedI , KukrejaNet al. The association between MTHFR 677C>T genotype and folate status and genomic and gene-specific DNA methylation in the colon of individuals without colorectal neoplasia . Am. J. Clin. Nutr.   98 , 1564 – 1574 ( 2013 ).
  • Tapp HS , CommaneDM , BradburnDMet al. Nutritional factors and gender influence age-related DNA methylation in the human rectal mucosa . Aging Cell   12 , 148 – 155 ( 2013 ).
  • Perng W , Mora-PlazasM , MarinCet al. A prospective study of LINE-1DNA methylation and development of adiposity in school-age children . PLoS ONE   8 ( 4 ), e62587 ( 2013 ).
  • Lee JE , LiHJ , ChanATet al. Circulating levels of Vitamin D and colon and rectal cancer: The Physicians’ Health Study and a meta-analysis of prospective studies . Cancer Prev. Res. (Phila.)4 , 735 – 743 ( 2011 ).
  • Ashktorab H , NguzaB , FatemiMet al. Case– Control study of vitamin D, dickkopf homolog 1 (DKK1) gene methylation, VDR gene polymorphism and the risk of colon adenoma in african americans . PLoS ONE   6 ( 10 ), e25314 ( 2011 ).
  • Rawson JB , SunZY , DicksEet al. Vitamin D intake is negatively associated with promoter methylation of the Wnt antagonist gene DKK1 in a large group of colorectal cancer patients . Nutr. Cancer   64 , 919 – 928 ( 2012 ).
  • Stefanska B , KarlicH , VargaF , Fabianowska-MajewskaK , HaslbergerAG . Epigenetic mechanisms in anti-cancer actions of bioactive food components – the implications in cancer prevention . Br. J. Pharmacol.   167 , 279 – 297 ( 2012 ).
  • Davis CD , UthusEO , FinleyJW . Dietary selenium and arsenic affect DNA methylation in vitro in Caco-2 cells and in vivo in rat liver and colon . J. Nutr.   130 , 2903 – 2909 ( 2000 ).
  • Davis CD , UthusEO . Dietary folate and selenium affect dimethylhydrazine-induced aberrant crypt formation, global DNA methylation and one-carbon metabolism in rats . J. Nutr.   133 , 2907 – 2914 ( 2003 ).
  • Uthus EO , RossSA , DavisCD . Differential effects of dietary selenium (Se) and folate on methyl metabolism in liver and colon of rats . Biol. Trace Elem. Res.   109 , 201 – 214 ( 2006 ).
  • Zeng HW , YanL , ChengWH , UthusEO . Dietary selenomethionine increases exon-specific DNA methylation of the p53 gene in rat liver and colon mucosa . J. Nutr.   141 , 1464 – 1468 ( 2011 ).
  • Fairweather-Tait SJ , BaoYP , BroadleyMRet al. Selenium in human health and disease . Antioxid. Redox Signal.   14 , 1337 – 1383 ( 2011 ).
  • Fiala ES , StaretzME , PandyaGA , El-BayoumyK , HamiltonSR . Inhibition of DNA cytosine methyltransferase by chemopreventive selenium compounds, determined by an improved assay for DNA cytosine methyltransferase and DNA cytosine methylation . Carcinogenesis   19 , 597 – 604 ( 1998 ).
  • Cummings JH , MannJI , NishidaC , VorsterHH . Dietary fibre: an agreed definition . Lancet   373 , 365 – 366 ( 2009 ).
  • Hamer HM , JonkersD , VenemaKet al. Review article: the role of butyrate on colonic function . Aliment. Pharmacol. Ther.   27 , 104 – 119 ( 2008 ).
  • Benjamin D , JostJP . Reversal of methylation-mediated repression with short-chain fatty acids: evidence for an additional mechanism to histone deacetylation . Nucleic Acids Res.   29 , 3603 – 3610 ( 2001 ).
  • Mariadason JM . HDACs and HDAC inhibitors in colon cancer . Epigenetics   3 , 28 – 37 ( 2008 ).
  • Worthley DL , LeLeu RK , WhitehallVLet al. A human, double-blind, placebo-controlled, crossover trial of prebiotic, probiotic, and synbiotic supplementation: effects on luminal, inflammatory, epigenetic, and epithelial biomarkers of colorectal cancer . Am. J. Clin. Nutr.   90 , 578 – 586 ( 2009 ).
  • Johnson IT . Phytochemicals and cancer . Proc. Nutr. Soc.   66 , 207 – 215 ( 2007 ).
  • Dashwood RH , HoE . Dietary histone deacetylase inhibitors: from cells to mice to man . Semin. Cancer Biol.   17 , 363 – 369 ( 2007 ).
  • Johnson IT , BelshawNJ . Environment, diet and CpG island methylation: Epigenetic signals in gastrointestinal neoplasia . Food Chem. Toxicol.   46 , 1346 – 1359 ( 2008 ).
  • Fini L , PiazziG , DaoudYet al. Chemoprevention of intestinal polyps in Apc(Min/+) mice fed with western or balanced diets by drinking annurca apple polyphenol extract . Cancer Prev. Res.   4 , 907 – 915 ( 2011 ).
  • Issa JP . DNA methylation as a therapeutic target in cancer . Clin. Cancer Res.   13 , 1634 – 1637 ( 2007 ).
  • Karahoca M , MomparlerRL . Pharmacokinetic and pharmacodynamic analysis of 5-aza-2’-deoxycytidine (decitabine) in the design of its dose-schedule for cancer therapy . Clin. Epigenetics   5 , 3 ( 2013 ).
  • Fang MZ , WangY , AiNet al. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines . Cancer Res.   63 , 7563 – 7570 ( 2003 ).
  • Wang LS , ArnoldM , HuangYWet al. Modulation of genetic and epigenetic biomarkers of colorectal cancer in humans by black raspberries: a Phase I pilot study . Clin. Cancer Res.   17 , 598 – 610 ( 2011 ).
  • Wang LS , KuoCT , HuangTHet al. Black raspberries protectively regulate methylation of wnt pathway genes in precancerous colon tissue . Cancer Prev. Res. (Phila.)   6 ( 12 ), 1317 – 1327 ( 2013 ).
  • Wang LS , KuoCT , StonerKet al. Dietary black raspberries modulate DNA methylation in dextran sodium sulfate (DSS)-induced ulcerative colitis . Carcinogenesis   34 ( 12 ), 2842 – 2850 ( 2013 ).
  • Wang LS , KuoCT , ChoSJet al. Black raspberry-derived anthocyanins demethylate tumor suppressor genes through the inhibition of DNMT1 and DNMT3B in colon cancer cells . Nutr. Cancerl   65 , 118 – 125 ( 2013 ).
  • de Vogel S , SchneedeJ , UelandPMet al. Biomarkers related to one-carbon metabolism as potential risk factors for distal colorectal adenomas . Cancer Epidemiol. Biomarkers Prev.   20 , 1726 – 1735 ( 2011 ).
  • Zhou ZY , WanXY , CaoJW . Dietary methionine intake and risk of incident colorectal cancer: a meta-analysis of 8 prospective studies involving 431,029 participants . PLoS ONE   8 , e83588 ( 2013 ).
  • Lee JE , GiovannucciE , FuchsCSet al. Choline and betaine intake and the risk of colorectal cancer in men . Cancer Epidemiol. Biomarkers. Prev.   19 , 884 – 887 ( 2010 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.