1,443
Views
0
CrossRef citations to date
0
Altmetric
Review

Genetic Alterations of DNA Methylation Machinery in Human Diseases

, &
Pages 247-265 | Published online: 05 May 2015

References

  • Smith ZD , MeissnerA . DNA methylation: roles in mammalian development . Nat. Rev. Genet.14 ( 3 ), 204 – 220 ( 2013 ).
  • Chen T , LiE . Establishment and maintenance of DNA methylation patterns in mammals . Curr. Top. Microbiol. Immunol.301 , 179 – 201 ( 2006 ).
  • Heyn H , EstellerM . DNA methylation profiling in the clinic: applications and challenges . Nat. Rev. Genet.13 ( 10 ), 679 – 692 ( 2012 ).
  • Subramaniam D , ThombreR , DharA , AnantS . DNA methyltransferases: a novel target for prevention and therapy . Front. Oncol.4 , 80 ( 2014 ).
  • Easwaran H , TsaiHC , BaylinSB . Cancer epigenetics: tumor heterogeneity, plasticity of stem-like states, and drug resistance . Mol. Cell54 ( 5 ), 716 – 727 ( 2014 ).
  • Bourc’his D , XuGL , LinCS , BollmanB , BestorTH . Dnmt3L and the establishment of maternal genomic imprints . Science294 ( 5551 ), 2536 – 2539 ( 2001 ).
  • Hata K , OkanoM , LeiH , LiE . Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice . Development129 ( 8 ), 1983 – 1993 ( 2002 ).
  • Neri F , KrepelovaA , IncarnatoDet al. Dnmt3L antagonizes DNA methylation at bivalent promoters and favors DNA methylation at gene bodies in ESCs . Cell155 ( 1 ), 121 – 134 ( 2013 ).
  • Chen T , TsujimotoN , LiE . The PWWP domain of Dnmt3a and Dnmt3b is required for directing DNA methylation to the major satellite repeats at pericentric heterochromatin . Mol. Cell. Biol.24 ( 20 ), 9048 – 9058 ( 2004 ).
  • Otani J , NankumoT , AritaK , InamotoS , AriyoshiM , ShirakawaM . Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain . EMBO Rep.10 ( 11 ), 1235 – 1241 ( 2009 ).
  • Ooi SK , QiuC , BernsteinEet al. DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA . Nature448 ( 7154 ), 714 – 717 ( 2007 ).
  • Tahiliani M , KohKP , ShenYet al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 . Science324 ( 5929 ), 930 – 935 ( 2009 ).
  • Pastor WA , AravindL , RaoA . TETonic shift: biological roles of TET proteins in DNA demethylation and transcription . Nat. Rev. Mol. Cell Biol.14 ( 6 ), 341 – 356 ( 2013 ).
  • Wu H , ZhangY . Reversing DNA methylation: mechanisms, genomics, and biological functions . Cell156 ( 1–2 ), 45 – 68 ( 2014 ).
  • Zhao H , ChenT . Tet family of 5-methylcytosine dioxygenases in mammalian development . J. Hum. Genet.58 ( 7 ), 421 – 427 ( 2013 ).
  • Klose RJ , BirdAP . Genomic DNA methylation: the mark and its mediators . Trends Biochem. Sci.31 ( 2 ), 89 – 97 ( 2006 ).
  • Filion GJ , ZheniloS , SalozhinS , YamadaD , ProkhortchoukE , DefossezPA . A family of human zinc finger proteins that bind methylated DNA and repress transcription . Mol. Cell Biol.26 ( 1 ), 169 – 181 ( 2006 ).
  • Blattler A , YaoL , WangY , YeZ , JinVX , FarnhamPJ . ZBTB33 binds unmethylated regions of the genome associated with actively expressed genes . Epigenetics Chromatin6 ( 1 ), 13 ( 2013 ).
  • Quenneville S , VerdeG , CorsinottiAet al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions . Mol. Cell44 ( 3 ), 361 – 372 ( 2011 ).
  • Bostick M , KimJK , EstevePO , ClarkA , PradhanS , JacobsenSE . UHRF1 plays a role in maintaining DNA methylation in mammalian cells . Science317 ( 5845 ), 1760 – 1764 ( 2007 ).
  • Sharif J , MutoM , TakebayashiSet al. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA . Nature450 ( 7171 ), 908 – 912 ( 2007 ).
  • Yildirim O , LiR , HungJHet al. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells . Cell147 ( 7 ), 1498 – 1510 ( 2011 ).
  • Mellen M , AyataP , DewellS , KriaucionisS , HeintzN . MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system . Cell151 ( 7 ), 1417 – 1430 ( 2012 ).
  • Spruijt CG , GnerlichF , SmitsAHet al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives . Cell152 ( 5 ), 1146 – 1159 ( 2013 ).
  • Klein CJ , BotuyanMV , WuYet al. Mutations in DNMT1 cause hereditary sensory neuropathy with dementia and hearing loss . Nat. Genet.43 ( 6 ), 595 – 600 ( 2011 ).
  • Winkelmann J , LinL , SchormairBet al. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy . Hum. Mol. Genet.21 ( 10 ), 2205 – 2210 ( 2012 ).
  • Moghadam KK , PizzaF , La MorgiaCet al. Narcolepsy is a common phenotype in HSAN IE and ADCA-DN . Brain137 ( Pt 6 ), 1643 – 1655 ( 2014 ).
  • Klein CJ , BirdT , Ertekin-TanerNet al. DNMT1 mutation hot spot causes varied phenotypes of HSAN1 with dementia and hearing loss . Neurology80 ( 9 ), 824 – 828 ( 2013 ).
  • Yuan J , HiguchiY , NagadoTet al. Novel mutation in the replication focus targeting sequence domain of DNMT1 causes hereditary sensory and autonomic neuropathy IE . J. Peripher. Nerv. Syst.18 ( 1 ), 89 – 93 ( 2013 ).
  • Pedroso JL , Povoas BarsottiniOG , LinL , MelbergA , OliveiraAS , MignotE . A novel de novo exon 21 DNMT1 mutation causes cerebellar ataxia, deafness, and narcolepsy in a Brazilian patient . Sleep36 ( 8 ), 1257 – 1259 , 1259A ( 2013 ).
  • Takeshita K , SuetakeI , YamashitaEet al. Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1) . Proc. Natl Acad. Sci. USA108 ( 22 ), 9055 – 9059 ( 2011 ).
  • Mastroeni D , ChouliarasL , GroverAet al. Reduced RAN expression and disrupted transport between cytoplasm and nucleus; a key event in Alzheimer’s disease pathophysiology . PLoS ONE8 ( 1 ), e53349 ( 2013 ).
  • Hutnick LK , GolshaniP , NamihiraMet al. DNA hypomethylation restricted to the murine forebrain induces cortical degeneration and impairs postnatal neuronal maturation . Hum. Mol. Genet.18 ( 15 ), 2875 – 2888 ( 2009 ).
  • Ley TJ , DingL , WalterMJet al. DNMT3A mutations in acute myeloid leukemia . N. Engl. J. Med.363 ( 25 ), 2424 – 2433 ( 2010 ).
  • Yamashita Y , YuanJ , SuetakeIet al. Array-based genomic resequencing of human leukemia . Oncogene29 ( 25 ), 3723 – 3731 ( 2010 ).
  • Yan XJ , XuJ , GuZHet al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia . Nat. Genet.43 ( 4 ), 309 – 315 ( 2011 ).
  • Im AP , SehgalAR , CarrollMPet al. DNMT3A and IDH mutations in acute myeloid leukemia and other myeloid malignancies: associations with prognosis and potential treatment strategies . Leukemia28 ( 9 ), 1774 – 1783 ( 2014 ).
  • Shlush LI , ZandiS , MitchellAet al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia . Nature506 ( 7488 ), 328 – 333 ( 2014 ).
  • Kim SJ , ZhaoH , HardikarS , SinghAK , GoodellMA , ChenT . A DNMT3A mutation common in AML exhibits dominant-negative effects in murine ES cells . Blood122 ( 25 ), 4086 – 4089 ( 2013 ).
  • Russler-Germain DA , SpencerDH , YoungMAet al. The R882H DNMT3A mutation associated with AML dominantly inhibits wild-type DNMT3A by blocking its ability to form active tetramers . Cancer Cell25 ( 4 ), 442 – 454 ( 2014 ).
  • Xu J , WangYY , DaiYJet al. DNMT3A Arg882 mutation drives chronic myelomonocytic leukemia through disturbing gene expression/DNA methylation in hematopoietic cells . Proc. Natl Acad. Sci. USA111 ( 7 ), 2620 – 2625 ( 2014 ).
  • Figueroa ME , LugthartS , LiYet al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia . Cancer Cell17 ( 1 ), 13 – 27 ( 2010 ).
  • Challen GA , SunD , JeongMet al. Dnmt3a is essential for hematopoietic stem cell differentiation . Nat. Genet.44 ( 1 ), 23 – 31 ( 2012 ).
  • Tatton-Brown K , SealS , RuarkEet al. Mutations in the DNA methyltransferase gene DNMT3A cause an overgrowth syndrome with intellectual disability . Nat. Genet.46 ( 4 ), 385 – 388 ( 2014 ).
  • Okano M , BellDW , HaberDA , LiE . DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development . Cell99 ( 3 ), 247 – 257 ( 1999 ).
  • Ehrlich M , SanchezC , ShaoCet al. ICF, an immunodeficiency syndrome: DNA methyltransferase 3B involvement, chromosome anomalies, and gene dysregulation . Autoimmunity41 ( 4 ), 253 – 271 ( 2008 ).
  • Hagleitner MM , LankesterA , MaraschioPet al. Clinical spectrum of immunodeficiency, centromeric instability and facial dysmorphism (ICF syndrome) . J. Med. Genet.45 ( 2 ), 93 – 99 ( 2008 ).
  • Xu GL , BestorTH , Bourc’hisDet al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene . Nature402 ( 6758 ), 187 – 191 ( 1999 ).
  • Hansen RS , WijmengaC , LuoPet al. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome . Proc. Natl Acad. Sci. USA96 ( 25 ), 14412 – 14417 ( 1999 ).
  • Gowher H , JeltschA . Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases . J. Biol. Chem.277 ( 23 ), 20409 – 20414 ( 2002 ).
  • Moarefi AH , ChedinF . ICF syndrome mutations cause a broad spectrum of biochemical defects in DNMT3B-mediated de novo DNA methylation . J. Mol. Biol.409 ( 5 ), 758 – 772 ( 2011 ).
  • Shirohzu H , KubotaT , KumazawaAet al. Three novel DNMT3B mutations in Japanese patients with ICF syndrome . Am. J. Med. Genet.112 ( 1 ), 31 – 37 ( 2002 ).
  • Qiu C , SawadaK , ZhangX , ChengX . The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds . Nat. Struct. Biol.9 ( 3 ), 217 – 224 ( 2002 ).
  • De Greef JC , WangJ , BalogJet al. Mutations in ZBTB24 are associated with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2 . Am. J. Hum. Genet.88 ( 6 ), 796 – 804 ( 2011 ).
  • Chouery E , Abou-GhochJ , CorbaniSet al. A novel deletion in ZBTB24 in a Lebanese family with immunodeficiency, centromeric instability, and facial anomalies syndrome type 2 . Clin. Genet.82 ( 5 ), 489 – 493 ( 2012 ).
  • Cerbone M , WangJ , Van Der MaarelSMet al. Immunodeficiency, centromeric instability, facial anomalies (ICF) syndrome, due to ZBTB24 mutations, presenting with large cerebral cyst . Am. J. Med. Genet.158A ( 8 ), 2043 – 2046 ( 2012 ).
  • Nitta H , UnokiM , IchiyanagiKet al. Three novel ZBTB24 mutations identified in Japanese and Cape Verdean type 2 ICF syndrome patients . J. Hum. Genet.58 ( 7 ), 455 – 460 ( 2013 ).
  • Weemaes CM , Van TolMJ , WangJet al. Heterogeneous clinical presentation in ICF syndrome: correlation with underlying gene defects . Eur. J. Hum. Genet.21 ( 11 ), 1219 – 1225 ( 2013 ).
  • Jiang YL , RigoletM , Bourc’hisDet al. DNMT3B mutations and DNA methylation defect define two types of ICF syndrome . Hum. Mut.25 ( 1 ), 56 – 63 ( 2005 ).
  • Lee SU , MaedaT . POK/ZBTB proteins: an emerging family of proteins that regulate lymphoid development and function . Immunol. Rev.247 ( 1 ), 107 – 119 ( 2012 ).
  • Blanco-Betancourt CE , MonclaA , MililiMet al. Defective B-cell-negative selection and terminal differentiation in the ICF syndrome . Blood103 ( 7 ), 2683 – 2690 ( 2004 ).
  • Ueda Y , OkanoM , WilliamsC , ChenT , GeorgopoulosK , LiE . Roles for Dnmt3b in mammalian development: a mouse model for the ICF syndrome . Development133 ( 6 ), 1183 – 1192 ( 2006 ).
  • Heyn H , VidalE , SayolsSet al. Whole-genome bisulfite DNA sequencing of a DNMT3B mutant patient . Epigenetics7 ( 6 ), 542 – 550 ( 2012 ).
  • Matarazzo MR , BoyleS , D’espositoM , BickmoreWA . Chromosome territory reorganization in a human disease with altered DNA methylation . Proc. Natl Acad. Sci. USA104 ( 42 ), 16546 – 16551 ( 2007 ).
  • Ono R , TakiT , TaketaniT , TaniwakiM , KobayashiH , HayashiY . LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23) . Cancer Res.62 ( 14 ), 4075 – 4080 ( 2002 ).
  • Lorsbach RB , MooreJ , MathewS , RaimondiSC , MukatiraST , DowningJR . TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23) . Leukemia17 ( 3 ), 637 – 641 ( 2003 ).
  • Thirman MJ , GillHJ , BurnettRCet al. Rearrangement of the MLL gene in acute lymphoblastic and acute myeloid leukemias with 11q23 chromosomal translocations . N. Engl. J. Med.329 ( 13 ), 909 – 914 ( 1993 ).
  • Harrison CJ , CuneoA , ClarkRet al. Ten novel 11q23 chromosomal partner sites. European 11q23 Workshop participants . Leukemia12 ( 5 ), 811 – 822 ( 1998 ).
  • Aventin A , La StarzaR , MartinezCet al. Involvement of MLL gene in a t(10;11)(q22;q23) and a t(8;11)(q24;q23) identified by fluorescence in situ hybridization . Cancer Genet. Cytogenet.108 ( 1 ), 48 – 52 ( 1999 ).
  • Kim HJ , ChoHI , KimECet al. A study on 289 consecutive Korean patients with acute leukaemias revealed fluorescence in situ hybridization detects the MLL translocation without cytogenetic evidence both initially and during follow-up . Br. J. Haematol.119 ( 4 ), 930 – 939 ( 2002 ).
  • Shih LY , LiangDC , FuJFet al. Characterization of fusion partner genes in 114 patients with de novo acute myeloid leukemia and MLL rearrangement . Leukemia20 ( 2 ), 218 – 223 ( 2006 ).
  • Burmeister T , MeyerC , SchwartzSet al. The MLL recombinome of adult CD10-negative B-cell precursor acute lymphoblastic leukemia: results from the GMALL study group . Blood113 ( 17 ), 4011 – 4015 ( 2009 ).
  • Meyer C , KowarzE , HofmannJet al. New insights to the MLL recombinome of acute leukemias . Leukemia23 ( 8 ), 1490 – 1499 ( 2009 ).
  • Lee SG , ChoSY , KimMJet al. Genomic breakpoints and clinical features of MLL-TET1 rearrangement in acute leukemias . Haematologica98 ( 4 ), e55 – 57 ( 2013 ).
  • Ittel A , JeandidierE , HeliasCet al. First description of the t(10;11)(q22;q23)/MLL-TET1 translocation in a T-cell lymphoblastic lymphoma, with subsequent lineage switch to acute myelomonocytic myeloid leukemia . Haematologica98 ( 12 ), e166 – 168 ( 2013 ).
  • Jin SG , JiangY , QiuRet al. 5-Hydroxymethylcytosine is strongly depleted in human cancers but its levels do not correlate with IDH1 mutations . Cancer Res.71 ( 24 ), 7360 – 7365 ( 2011 ).
  • Muller T , GessiM , WahaAet al. Nuclear exclusion of TET1 is associated with loss of 5-hydroxymethylcytosine in IDH1 wild-type gliomas . Am. J. Pathol.181 ( 2 ), 675 – 683 ( 2012 ).
  • Yang H , LiuY , BaiFet al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation . Oncogene32 ( 5 ), 663 – 669 ( 2013 ).
  • Huang H , JiangX , LiZet al. TET1 plays an essential oncogenic role in MLL-rearranged leukemia . Proc. Natl Acad. Sci. USA110 ( 29 ), 11994 – 11999 ( 2013 ).
  • Shih AH , Abdel-WahabO , PatelJP , LevineRL . The role of mutations in epigenetic regulators in myeloid malignancies . Nat. Rev. Cancer12 ( 9 ), 599 – 612 ( 2012 ).
  • Quivoron C , CouronneL , Della ValleVet al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis . Cancer Cell20 ( 1 ), 25 – 38 ( 2011 ).
  • Couronne L , BastardC , BernardOA . TET2 and DNMT3A mutations in human T-cell lymphoma . N. Engl. J. Med.366 ( 1 ), 95 – 96 ( 2012 ).
  • Mariani CJ , MadzoJ , MoenEL , YesilkanalA , GodleyLA . Alterations of 5-hydroxymethylcytosine in human cancers . Cancers5 ( 3 ), 786 – 814 ( 2013 ).
  • Ko M , HuangY , JankowskaAMet al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2 . Nature468 ( 7325 ), 839 – 843 ( 2010 ).
  • Prensner JR , ChinnaiyanAM . Metabolism unhinged: IDH mutations in cancer . Nat. Med.17 ( 3 ), 291 – 293 ( 2011 ).
  • Yamazaki J , TabyR , VasanthakumarAet al. Effects of TET2 mutations on DNA methylation in chronic myelomonocytic leukemia . Epigenetics7 ( 2 ), 201 – 207 ( 2012 ).
  • Ge L , ZhangRP , WanFet al. TET2 plays an essential role in erythropoiesis by regulating lineage-specific genes via DNA oxidative demethylation in a zebrafish model . Mol. Cell Biol.34 ( 6 ), 989 – 1002 ( 2014 ).
  • Langemeijer SM , KuiperRP , BerendsMet al. Acquired mutations in TET2 are common in myelodysplastic syndromes . Nat. Genet.41 ( 7 ), 838 – 842 ( 2009 ).
  • Seshagiri S , StawiskiEW , DurinckSet al. Recurrent R-spondin fusions in colon cancer . Nature488 ( 7413 ), 660 – 664 ( 2012 ).
  • Amir RE , Van Den VeyverIB , WanM , TranCQ , FranckeU , ZoghbiHY . Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 . Nat. Genet.23 ( 2 ), 185 – 188 ( 1999 ).
  • RettBASE . http://mecp2.chw.edu.au .
  • Evans JC , ArcherHL , ColleyJPet al. Early onset seizures and Rett-like features associated with mutations in CDKL5 . Eur. J. Hum. Genet.13 ( 10 ), 1113 – 1120 ( 2005 ).
  • Philippe C , AmsallemD , FrancannetCet al. Phenotypic variability in Rett syndrome associated with FOXG1 mutations in females . J. Med. Genet.47 ( 1 ), 59 – 65 ( 2010 ).
  • Weaving LS , WilliamsonSL , BennettsBet al. Effects of MECP2 mutation type, location and X-inactivation in modulating Rett syndrome phenotype . Am. J. Med. Genet.118A ( 2 ), 103 – 114 ( 2003 ).
  • Skene PJ , IllingworthRS , WebbSet al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state . Mol. Cell37 ( 4 ), 457 – 468 ( 2010 ).
  • Calfa G , PercyAK , Pozzo-MillerL . Experimental models of Rett syndrome based on Mecp2 dysfunction . Exp. Biol. Med.236 ( 1 ), 3 – 19 ( 2011 ).
  • Guy J , HendrichB , HolmesM , MartinJE , BirdA . A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome . Nat. Genet.27 ( 3 ), 322 – 326 ( 2001 ).
  • Chen RZ , AkbarianS , TudorM , JaenischR . Deficiency of methyl-CpG binding protein-2 in CNS neurons results in a Rett-like phenotype in mice . Nat. Genet.27 ( 3 ), 327 – 331 ( 2001 ).
  • Shahbazian M , YoungJ , Yuva-PaylorLet al. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3 . Neuron35 ( 2 ), 243 – 254 ( 2002 ).
  • Pelka GJ , WatsonCM , RadziewicTet al. Mecp2 deficiency is associated with learning and cognitive deficits and altered gene activity in the hippocampal region of mice . Brain129 ( Pt 4 ), 887 – 898 ( 2006 ).
  • Jentarra GM , OlfersSL , RiceSGet al. Abnormalities of cell packing density and dendritic complexity in the MeCP2 A140V mouse model of Rett syndrome/X-linked mental retardation . BMC Neurosci.11 , 19 ( 2010 ).
  • Goffin D , AllenM , ZhangLet al. Rett syndrome mutation MeCP2 T158A disrupts DNA binding, protein stability and ERP responses . Nat. Neurosci.15 ( 2 ), 274 – 283 ( 2012 ).
  • Collins AL , LevensonJM , VilaythongAPet al. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice . Hum. Mol. Genet.13 ( 21 ), 2679 – 2689 ( 2004 ).
  • Guy J , GanJ , SelfridgeJ , CobbS , BirdA . Reversal of neurological defects in a mouse model of Rett syndrome . Science315 ( 5815 ), 1143 – 1147 ( 2007 ).
  • Giacometti E , LuikenhuisS , BeardC , JaenischR . Partial rescue of MeCP2 deficiency by postnatal activation of MeCP2 . Proc. Natl Acad. Sci. USA104 ( 6 ), 1931 – 1936 ( 2007 ).
  • Luikenhuis S , GiacomettiE , BeardCF , JaenischR . Expression of MeCP2 in postmitotic neurons rescues Rett syndrome in mice . Proc. Natl Acad. Sci. USA101 ( 16 ), 6033 – 6038 ( 2004 ).
  • Jugloff DG , VandammeK , LoganR , VisanjiNP , BrotchieJM , EubanksJH . Targeted delivery of an Mecp2 transgene to forebrain neurons improves the behavior of female Mecp2-deficient mice . Hum. Mol. Genet.17 ( 10 ), 1386 – 1396 ( 2008 ).
  • Kishi N , MacklisJD . MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions . Mol. Cell Neurosci.27 ( 3 ), 306 – 321 ( 2004 ).
  • Tsujimura K , AbematsuM , KohyamaJ , NamihiraM , NakashimaK . Neuronal differentiation of neural precursor cells is promoted by the methyl-CpG-binding protein MeCP2 . Exp. Neurol.219 ( 1 ), 104 – 111 ( 2009 ).
  • Samaco RC , Mandel-BrehmC , ChaoHTet al. Loss of MeCP2 in aminergic neurons causes cell-autonomous defects in neurotransmitter synthesis and specific behavioral abnormalities . Proc. Natl Acad. Sci. USA106 ( 51 ), 21966 – 21971 ( 2009 ).
  • Hutchinson AN , DengJV , AryalDK , WetselWC , WestAE . Differential regulation of MeCP2 phosphorylation in the CNS by dopamine and serotonin . Neuropsychopharmacology37 ( 2 ), 321 – 337 ( 2012 ).
  • Georgel PT , Horowitz-SchererRA , AdkinsN , WoodcockCL , WadePA , HansenJC . Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation . J. Biol. Chem.278 ( 34 ), 32181 – 32188 ( 2003 ).
  • Young JI , HongEP , CastleJCet al. Regulation of RNA splicing by the methylation-dependent transcriptional repressor methyl-CpG binding protein 2 . Proc. Natl Acad. Sci. USA102 ( 49 ), 17551 – 17558 ( 2005 ).
  • Agarwal N , BeckerA , JostKLet al. MeCP2 Rett mutations affect large scale chromatin organization . Hum. Mol. Genet.20 ( 21 ), 4187 – 4195 ( 2011 ).
  • Chen WG , ChangQ , LinYet al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2 . Science302 ( 5646 ), 885 – 889 ( 2003 ).
  • Martinowich K , HattoriD , WuHet al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation . Science302 ( 5646 ), 890 – 893 ( 2003 ).
  • Zhou Z , HongEJ , CohenSet al. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation . Neuron52 ( 2 ), 255 – 269 ( 2006 ).
  • Huang EJ , ReichardtLF . Neurotrophins: roles in neuronal development and function . Annu. Rev. Neurosci.24 , 677 – 736 ( 2001 ).
  • El-Maarri O , KaretaMS , MikeskaTet al. A systematic search for DNA methyltransferase polymorphisms reveals a rare DNMT3L variant associated with subtelomeric hypomethylation . Hum. Mol. Genet.18 ( 10 ), 1755 – 1768 ( 2009 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.