548
Views
0
CrossRef citations to date
0
Altmetric
Review

Acinar Cell Reprogramming: A Clinically Important Target in Pancreatic Disease

, &
Pages 267-281 | Published online: 05 May 2015

References

  • Percival AC , SlackJM . Analysis of pancreatic development using a cell lineage label . Exp. Cell Res.247 ( 1 ), 123 – 132 ( 1999 ).
  • Pan FC , BankaitisED , BoyerDet al. Spatiotemporal patterns of multipotentiality in Ptf1a-expressing cells during pancreas organogenesis and injury-induced facultative restoration . Development140 ( 4 ), 751 – 764 ( 2013 ).
  • Li W , NakanishiM , ZumstegAet al. In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes . Elife3 , e01846 ( 2014 ).
  • Kopp JL , Von FiguraG , MayesEet al. Identification of Sox9-dependent acinar-to-ductal reprogramming as the principal mechanism for initiation of pancreatic ductal adenocarcinoma . Cancer Cell22 ( 6 ), 737 – 750 ( 2012 ).
  • Wallace K , MarekCJ , CurrieRA , WrightMC . Exocrine pancreas trans-differentiation to hepatocytes‐‐a physiological response to elevated glucocorticoid in vivo . J. Steroid Biochem. Mol. Biol.116 ( 1–2 ), 76 – 85 ( 2009 ).
  • Bonal C , ThorelF , Ait-LounisA , ReithW , TrumppA , HerreraPL . Pancreatic inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice . Gastroenterology136 ( 1 ), 309 – 319 e309 ( 2009 ).
  • Jensen JN , CameronE , GarayMV , StarkeyTW , GiananiR , JensenJ . Recapitulation of elements of embryonic development in adult mouse pancreatic regeneration . Gastroenterology128 ( 3 ), 728 – 741 ( 2005 ).
  • Greer RL , StaleyBK , LiouA , HebrokM . Numb regulates acinar cell dedifferentiation and survival during pancreatic damage and acinar-to-ductal metaplasia . Gastroenterology145 ( 5 ), 1088 – 1097 e1088 ( 2013 ).
  • Zhou Q , BrownJ , KanarekA , RajagopalJ , MeltonDA . In vivo reprogramming of adult pancreatic exocrine cells to beta-cells . Nature455 ( 7213 ), 627 – 632 ( 2008 ).
  • De La OJ , EmersonLL , GoodmanJLet al. Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia . Proc. Natl Acad. Sci. USA105 ( 48 ), 18907 – 18912 ( 2008 ).
  • Gurdon JB . The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles . J. Embryol. Exp. Morphol.10 , 622 – 640 ( 1962 ).
  • Wu SY , HsiehCC , WuRRet al. Differentiation of pancreatic acinar cells to hepatocytes requires an intermediate cell type . Gastroenterology138 ( 7 ), 2519 – 2530 ( 2010 ).
  • Mehmood R , VargaG , MohantySQet al. Epigenetic reprogramming in mist1(-/-) mice predicts the molecular response to cerulein-induced pancreatitis . PLoS ONE9 ( 1 ), e84182 ( 2014 ).
  • Alahari S , MehmoodR , JohnsonCL , PinCL . The absence of MIST1 leads to increased ethanol sensitivity and decreased activity of the unfolded protein response in mouse pancreatic acinar cells . PLoS ONE6 ( 12 ), e28863 ( 2011 ).
  • King H , AubertRE , HermanWH . Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections . Diabetes Care21 ( 9 ), 1414 – 1431 ( 1998 ).
  • Mccall M , ShapiroAM . Islet cell transplantation . Semin. Pediatr. Surg.23 ( 2 ), 83 – 90 ( 2014 ).
  • Baeyens L , BonneS , BosTet al. Notch signaling as gatekeeper of rat acinar-to-beta-cell conversion in vitro . Gastroenterology136 ( 5 ), 1750 – 1760 e1713 ( 2009 ).
  • Pagliuca FW , MeltonDA . How to make a functional beta-cell . Development140 ( 12 ), 2472 – 2483 ( 2013 ).
  • Habbe N , ShiG , MeguidRAet al. Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice . Proc. Natl Acad. Sci. USA105 ( 48 ), 18913 – 18918 ( 2008 ).
  • Siegel R , NaishadhamD , JemalA . Cancer statistics, 2013 . CA. Cancer J. Clin.63 ( 1 ), 11 – 30 ( 2013 ).
  • Arda HE , BenitezCM , KimSK . Gene regulatory networks governing pancreas development . Dev. Cell25 ( 1 ), 5 – 13 ( 2013 ).
  • Gu G , DubauskaiteJ , MeltonDA . Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors . Development129 ( 10 ), 2447 – 2457 ( 2002 ).
  • Zhou Q , LawAC , RajagopalJ , AndersonWJ , GrayPA , MeltonDA . A multipotent progenitor domain guides pancreatic organogenesis . Dev. Cell13 ( 1 ), 103 – 114 ( 2007 ).
  • Esni F , GhoshB , BiankinAVet al. Notch inhibits Ptf1 function and acinar cell differentiation in developing mouse and zebrafish pancreas . Development131 ( 17 ), 4213 – 4224 ( 2004 ).
  • Cleveland MH , SawyerJM , AfelikS , JensenJ , LeachSD . Exocrine ontogenies: on the development of pancreatic acinar, ductal and centroacinar cells . Semin. Cell Dev. Biol.23 ( 6 ), 711 – 719 ( 2012 ).
  • Ahlgren U , JonssonJ , EdlundH . The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice . Development122 ( 5 ), 1409 – 1416 ( 1996 ).
  • Offield MF , JettonTL , LaboskyPAet al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum . Development122 ( 3 ), 983 – 995 ( 1996 ).
  • Krapp A , KnoflerM , LedermannBet al. The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas . Genes Dev.12 ( 23 ), 3752 – 3763 ( 1998 ).
  • Kawaguchi Y , CooperB , GannonM , RayM , MacdonaldRJ , WrightCV . The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors . Nat. Genet.32 ( 1 ), 128 – 134 ( 2002 ).
  • Burlison JS , LongQ , FujitaniY , WrightCV , MagnusonMA . Pdx-1 and Ptf1a concurrently determine fate specification of pancreatic multipotent progenitor cells . Dev. Biol.316 ( 1 ), 74 – 86 ( 2008 ).
  • Seymour PA , FreudeKK , TranMNet al. SOX9 is required for maintenance of the pancreatic progenitor cell pool . Proc. Natl Acad. Sci. USA104 ( 6 ), 1865 – 1870 ( 2007 ).
  • Kim SK , MeltonDA . Pancreas development is promoted by cyclopamine, a hedgehog signaling inhibitor . Proc. Natl Acad. Sci. USA95 ( 22 ), 13036 – 13041 ( 1998 ).
  • Dichmann DS , MillerCP , JensenJ , Scott HellerR , SerupP . Expression and misexpression of members of the FGF and TGFbeta families of growth factors in the developing mouse pancreas . Dev. Dyn.226 ( 4 ), 663 – 674 ( 2003 ).
  • Hebrok M , KimSK , MeltonDA . Notochord repression of endodermal Sonic hedgehog permits pancreas development . Genes Dev.12 ( 11 ), 1705 – 1713 ( 1998 ).
  • Shen CN , MarguerieA , ChienCY , DicksonC , SlackJM , ToshD . All-trans retinoic acid suppresses exocrine differentiation and branching morphogenesis in the embryonic pancreas . Differentiation75 ( 1 ), 62 – 74 ( 2007 ).
  • Afelik S , JensenJ . Notch signaling in the pancreas: patterning and cell fate specification . Wiley Interdiscip. Rev. Dev. Biol.2 ( 4 ), 531 – 544 ( 2013 ).
  • Axelrod JD . Delivering the lateral inhibition punchline: it’s all about the timing . Sci. Signal.3 ( 145 ), pe38 ( 2010 ).
  • Jensen J , HellerRS , Funder-NielsenTet al. Independent development of pancreatic alpha- and beta-cells from neurogenin3-expressing precursors: a role for the notch pathway in repression of premature differentiation . Diabetes49 ( 2 ), 163 – 176 ( 2000 ).
  • Jensen J , PedersenEE , GalantePet al. Control of endodermal endocrine development by Hes-1 . Nat. Genet.24 ( 1 ), 36 – 44 ( 2000 ).
  • Apelqvist A , LiH , SommerLet al. Notch signalling controls pancreatic cell differentiation . Nature400 ( 6747 ), 877 – 881 ( 1999 ).
  • Hald J , HjorthJP , GermanMS , MadsenOD , SerupP , JensenJ . Activated Notch1 prevents differentiation of pancreatic acinar cells and attenuate endocrine development . Dev. Biol.260 ( 2 ), 426 – 437 ( 2003 ).
  • Afelik S , QuX , HasrouniEet al. Notch-mediated patterning and cell fate allocation of pancreatic progenitor cells . Development139 ( 10 ), 1744 – 1753 ( 2012 ).
  • Ahnfelt-Ronne J , JorgensenMC , KlinckRet al. Ptf1a-mediated control of Dll1 reveals an alternative to the lateral inhibition mechanism . Development139 ( 1 ), 33 – 45 ( 2012 ).
  • Horn S , KobberupS , JorgensenMCet al. Mind bomb 1 is required for pancreatic beta-cell formation . Proc. Natl Acad. Sci. USA109 ( 19 ), 7356 – 7361 ( 2012 ).
  • Shih HP , KoppJL , SandhuMet al. A Notch-dependent molecular circuitry initiates pancreatic endocrine and ductal cell differentiation . Development139 ( 14 ), 2488 – 2499 ( 2012 ).
  • Kopinke D , BrailsfordM , PanFC , MagnusonMA , WrightCV , MurtaughLC . Ongoing Notch signaling maintains phenotypic fidelity in the adult exocrine pancreas . Dev. Biol.362 ( 1 ), 57 – 64 ( 2012 ).
  • Masui T , LongQ , BeresTM , MagnusonMA , MacdonaldRJ . Early pancreatic development requires the vertebrate Suppressor of Hairless (RBPJ) in the PTF1 bHLH complex . Genes Dev.21 ( 20 ), 2629 – 2643 ( 2007 ).
  • Fujikura J , HosodaK , KawaguchiYet al. Rbp-j regulates expansion of pancreatic epithelial cells and their differentiation into exocrine cells during mouse development . Dev. Dyn.236 ( 10 ), 2779 – 2791 ( 2007 ).
  • Von Figura G , MorrisJPT , WrightCV , HebrokM . Nr5a2 maintains acinar cell differentiation and constrains oncogenic Kras-mediated pancreatic neoplastic initiation . Gut63 ( 4 ), 656 – 664 ( 2014 ).
  • Hale MA , SwiftGH , HoangCQet al. The nuclear hormone receptor family member NR5A2 controls aspects of multipotent progenitor cell formation and acinar differentiation during pancreatic organogenesis . Development141 ( 16 ), 3123 – 3133 ( 2014 ).
  • Martinelli P , CanameroM , Del PozoN , MadrilesF , ZapataA , RealFX . Gata6 is required for complete acinar differentiation and maintenance of the exocrine pancreas in adult mice . Gut62 ( 10 ), 1481 – 1488 ( 2013 ).
  • Ziv O , GlaserB , DorY . The plastic pancreas . Dev. Cell26 ( 1 ), 3 – 7 ( 2013 ).
  • Solar M , CardaldaC , HoubrackenIet al. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth . Dev. Cell17 ( 6 ), 849 – 860 ( 2009 ).
  • Desai BM , Oliver-KrasinskiJ , De LeonDDet al. Preexisting pancreatic acinar cells contribute to acinar cell, but not islet beta cell, regeneration . J. Clin. Invest.117 ( 4 ), 971 – 977 ( 2007 ).
  • Dor Y , BrownJ , MartinezOI , MeltonDA . Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation . Nature429 ( 6987 ), 41 – 46 ( 2004 ).
  • Wallace K , FairhallEA , CharltonKA , WrightMC . AR42J-B-13 cell: an expandable progenitor to generate an unlimited supply of functional hepatocytes . Toxicology278 ( 3 ), 277 – 287 ( 2010 ).
  • Al-Adsani A , BurkeZD , EberhardDet al. Dexamethasone treatment induces the reprogramming of pancreatic acinar cells to hepatocytes and ductal cells . PLoS ONE5 ( 10 ), e13650 ( 2010 ).
  • Zhou J , WangX , PineyroMA , EganJM . Glucagon-like peptide 1 and exendin-4 convert pancreatic AR42J cells into glucagon- and insulin-producing cells . Diabetes48 ( 12 ), 2358 – 2366 ( 1999 ).
  • Yew KH , PrasadanKL , PreuettBLet al. Interplay of glucagon-like peptide-1 and transforming growth factor-beta signaling in insulin-positive differentiation of AR42J cells . Diabetes53 ( 11 ), 2824 – 2835 ( 2004 ).
  • Yew KH , HembreeM , PrasadanKet al. Cross-talk between bone morphogenetic protein and transforming growth factor-beta signaling is essential for exendin-4-induced insulin-positive differentiation of AR42J cells . J. Biol. Chem.280 ( 37 ), 32209 – 32217 ( 2005 ).
  • Minami K , OkunoM , MiyawakiKet al. Lineage tracing and characterization of insulin-secreting cells generated from adult pancreatic acinar cells . Proc. Natl Acad. Sci. USA102 ( 42 ), 15116 – 15121 ( 2005 ).
  • Baeyens L , LemperM , LeuckxGet al. Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice . Nat. Biotechnol.32 ( 1 ), 76 – 83 ( 2014 ).
  • Hesselson D , AndersonRM , StainierDY . Suppression of Ptf1a activity induces acinar-to-endocrine conversion . Curr. Biol.21 ( 8 ), 712 – 717 ( 2011 ).
  • Houbracken I , De WaeleE , LardonJet al. Lineage tracing evidence for transdifferentiation of acinar to duct cells and plasticity of human pancreas . Gastroenterology141 ( 2 ), 731 – 741 , 741 e731–734 ( 2011 ).
  • Herrera PL , NepoteV , DelacourA . Pancreatic cell lineage analyses in mice . Endocrine19 ( 3 ), 267 – 278 ( 2002 ).
  • Perez-Mancera PA , GuerraC , BarbacidM , TuvesonDA . What we have learned about pancreatic cancer from mouse models . Gastroenterology142 ( 5 ), 1079 – 1092 ( 2012 ).
  • Rooman I , RealFX . Pancreatic ductal adenocarcinoma and acinar cells: a matter of differentiation and development?Gut61 ( 3 ), 449 – 458 ( 2012 ).
  • Ji B , TsouL , WangHet al. Ras activity levels control the development of pancreatic diseases . Gastroenterology137 ( 3 ), 1072 – 1082 , 1082 e1071–1076 ( 2009 ).
  • Hingorani SR , PetricoinEF , MaitraAet al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse . Cancer Cell4 ( 6 ), 437 – 450 ( 2003 ).
  • Aguirre AJ , BardeesyN , SinhaMet al. Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma . Genes Dev.17 ( 24 ), 3112 – 3126 ( 2003 ).
  • Kojima K , VickersSM , AdsayNVet al. Inactivation of Smad4 accelerates Kras(G12D)-mediated pancreatic neoplasia . Cancer Res.67 ( 17 ), 8121 – 8130 ( 2007 ).
  • Guerra C , SchuhmacherAJ , CanameroMet al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice . Cancer Cell11 ( 3 ), 291 – 302 ( 2007 ).
  • Carriere C , YoungAL , GunnJR , LongneckerDS , KorcM . Acute pancreatitis markedly accelerates pancreatic cancer progression in mice expressing oncogenic Kras . Biochem. Biophys. Res. Commun.382 ( 3 ), 561 – 565 ( 2009 ).
  • Raimondi S , LowenfelsAB , Morselli-LabateAM , MaisonneuveP , PezzilliR . Pancreatic cancer in chronic pancreatitis; aetiology, incidence, and early detection . Best Pract. Res. Clin. Gastroenterol.24 ( 3 ), 349 – 358 ( 2010 ).
  • Lerch MM , GorelickFS . Models of acute and chronic pancreatitis . Gastroenterology144 ( 6 ), 1180 – 1193 ( 2013 ).
  • Zhou X , LiuZ , JangF , XiangC , LiY , HeY . Autocrine Sonic hedgehog attenuates inflammation in cerulein-induced acute pancreatitis in mice via upregulation of IL-10 . PLoS ONE7 ( 8 ), e44121 ( 2012 ).
  • Slater SD , WilliamsonRC , FosterCS . Expression of transforming growth factor-beta 1 in chronic pancreatitis . Digestion56 ( 3 ), 237 – 241 ( 1995 ).
  • Pinho AV , RoomanI , ReichertMet al. Adult pancreatic acinar cells dedifferentiate to an embryonic progenitor phenotype with concomitant activation of a senescence programme that is present in chronic pancreatitis . Gut60 ( 7 ), 958 – 966 ( 2011 ).
  • Johnson CL , PeatJM , VolanteSN , WangR , McleanCA , PinCL . Activation of protein kinase Cdelta leads to increased pancreatic acinar cell dedifferentiation in the absence of MIST1 . J. Pathol.228 ( 3 ), 351 – 365 ( 2012 ).
  • Kubisch CH , LogsdonCD . Secretagogues differentially activate endoplasmic reticulum stress responses in pancreatic acinar cells . Am. J. Physiol. Gastrointest. Liver Physiol.292 ( 6 ), G1804 – 1812 ( 2007 ).
  • Kowalik AS , JohnsonCL , ChadiSA , WestonJY , FazioEN , PinCL . Mice lacking the transcription factor Mist1 exhibit an altered stress response and increased sensitivity to caerulein-induced pancreatitis . Am. J. Physiol. Gastrointest. Liver Physiol.292 ( 4 ), G1123 – 1132 ( 2007 ).
  • Lugea A , WaldronRT , FrenchSW , PandolSJ . Drinking and driving pancreatitis: links between endoplasmic reticulum stress and autophagy . Autophagy7 ( 7 ), 783 – 785 ( 2011 ).
  • Iovanna JL . Redifferentiation and apoptosis of pancreatic cells during acute pancreatitis . Int. J. Pancreatol.20 ( 2 ), 77 – 84 ( 1996 ).
  • Berger SL , KouzaridesT , ShiekhattarR , ShilatifardA . An operational definition of epigenetics . Genes Dev.23 ( 7 ), 781 – 783 ( 2009 ).
  • Heard E , MartienssenRA . Transgenerational epigenetic inheritance: myths and mechanisms . Cell157 ( 1 ), 95 – 109 ( 2014 ).
  • Kouzarides T . Chromatin modifications and their function . Cell128 ( 4 ), 693 – 705 ( 2007 ).
  • Sangiorgi E , CapecchiMR . Bmi1 lineage tracing identifies a self-renewing pancreatic acinar cell subpopulation capable of maintaining pancreatic organ homeostasis . Proc. Natl Acad. Sci. USA106 ( 17 ), 7101 – 7106 ( 2009 ).
  • Van Arensbergen J , Garcia-HurtadoJ , MoranIet al. Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program . Genome Res.20 ( 6 ), 722 – 732 ( 2010 ).
  • Xu CR , ColePA , MeyersDJ , KormishJ , DentS , ZaretKS . Chromatin “prepattern” and histone modifiers in a fate choice for liver and pancreas . Science332 ( 6032 ), 963 – 966 ( 2011 ).
  • Won KJ , XuZ , ZhangXet al. Global identification of transcriptional regulators of pluripotency and differentiation in embryonic stem cells . Nucleic Acids Res.40 ( 17 ), 8199 – 8209 ( 2012 ).
  • Bernstein BE , MikkelsenTS , XieXet al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells . Cell125 ( 2 ), 315 – 326 ( 2006 ).
  • Hattori N , NiwaT , KimuraK , HelinK , UshijimaT . Visualization of multivalent histone modification in a single cell reveals highly concerted epigenetic changes on differentiation of embryonic stem cells . Nucleic Acids Res.41 ( 15 ), 7231 – 7239 ( 2013 ).
  • Denissov S , HofemeisterH , MarksHet al. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant . Development141 ( 3 ), 526 – 537 ( 2014 ).
  • Pekowska A , BenoukrafT , Zacarias-CabezaJet al. H3K4 tri-methylation provides an epigenetic signature of active enhancers . EMBO J.30 ( 20 ), 4198 – 4210 ( 2011 ).
  • Aday AW , ZhuLJ , LakshmananA , WangJ , LawsonND . Identification of cis regulatory features in the embryonic zebrafish genome through large-scale profiling of H3K4me1 and H3K4me3 binding sites . Dev. Biol.357 ( 2 ), 450 – 462 ( 2011 ).
  • Cao R , WangL , WangHet al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing . Science298 ( 5595 ), 1039 – 1043 ( 2002 ).
  • Cao R , ZhangY . The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3 . Curr. Opin. Genet. Dev.14 ( 2 ), 155 – 164 ( 2004 ).
  • Kuzmichev A , NishiokaK , Erdjument-BromageH , TempstP , ReinbergD . Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein . Genes Dev.16 ( 22 ), 2893 – 2905 ( 2002 ).
  • Margueron R , LiG , SarmaKet al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms . Mol. Cell32 ( 4 ), 503 – 518 ( 2008 ).
  • Chen H , GuX , SuIHet al. Polycomb protein Ezh2 regulates pancreatic beta-cell Ink4a/Arf expression and regeneration in diabetes mellitus . Genes Dev.23 ( 8 ), 975 – 985 ( 2009 ).
  • Xu CR , LiLC , DonahueGet al. Dynamics of genomic H3K27me3 domains and role of EZH2 during pancreatic endocrine specification . EMBO J.33 ( 19 ), 2157 – 2170 ( 2014 ).
  • Chen S , Rasmuson-LestanderA . Regulation of the Drosophila engrailed gene by Polycomb repressor complex 2 . Mech. Dev.126 ( 5–6 ), 443 – 448 ( 2009 ).
  • Mallen-St Clair J , Soydaner-AzelogluR , LeeKEet al. EZH2 couples pancreatic regeneration to neoplastic progression . Genes Dev.26 ( 5 ), 439 – 444 ( 2012 ).
  • Anderson RM , BoschJA , GollMGet al. Loss of Dnmt1 catalytic activity reveals multiple roles for DNA methylation during pancreas development and regeneration . Dev. Biol.334 ( 1 ), 213 – 223 ( 2009 ).
  • Rai K , NadauldLD , ChidesterSet al. Zebra fish Dnmt1 and Suv39h1 regulate organ-specific terminal differentiation during development . Mol. Cell. Biol.26 ( 19 ), 7077 – 7085 ( 2006 ).
  • Noel ES , Casal-SueiroA , Busch-NentwichEet al. Organ-specific requirements for Hdac1 in liver and pancreas formation . Dev. Biol.322 ( 2 ), 237 – 250 ( 2008 ).
  • Farooq M , SulochanaKN , PanXet al. Histone deacetylase 3 (hdac3) is specifically required for liver development in zebrafish . Dev. Biol.317 ( 1 ), 336 – 353 ( 2008 ).
  • Zhou W , LiangIC , YeeNS . Histone deacetylase 1 is required for exocrine pancreatic epithelial proliferation in development and cancer . Cancer Biol. Ther.11 ( 7 ), 659 – 670 ( 2011 ).
  • Phillips JM , BurgoonLD , GoodmanJI . The constitutive active/androstane receptor facilitates unique phenobarbital-induced expression changes of genes involved in key pathways in precancerous liver and liver tumors . Toxicol. Sci.110 ( 2 ), 319 – 333 ( 2009 ).
  • Aithal MG , RajeswariN . Role of Notch signalling pathway in cancer and its association with DNA methylation . J. Genet.92 ( 3 ), 667 – 675 ( 2013 ).
  • Roy A , BasakNP , BanerjeeS . Notch1 intracellular domain increases cytoplasmic EZH2 levels during early megakaryopoiesis . Cell Death Dis.3 , e380 ( 2012 ).
  • Grady T , LiangP , ErnstSA , LogsdonCD . Chemokine gene expression in rat pancreatic acinar cells is an early event associated with acute pancreatitis . Gastroenterology113 ( 6 ), 1966 – 1975 ( 1997 ).
  • Chen X , JiB , HanB , ErnstSA , SimeoneD , LogsdonCD . NF-kappaB activation in pancreas induces pancreatic and systemic inflammatory response . Gastroenterology122 ( 2 ), 448 – 457 ( 2002 ).
  • Johnson CL , WestonJY , ChadiSAet al. Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice . Gastroenterology137 ( 5 ), 1795 – 1804 ( 2009 ).
  • Iovanna JL , Lechene De La PorteP , DagornJC . Expression of genes associated with dedifferentiation and cell proliferation during pancreatic regeneration following acute pancreatitis . Pancreas7 ( 6 ), 712 – 718 ( 1992 ).
  • Kubisch CH , GukovskyI , LugeaAet al. Long-term ethanol consumption alters pancreatic gene expression in rats: a possible connection to pancreatic injury . Pancreas33 ( 1 ), 68 – 76 ( 2006 ).
  • Zeng Y , WangX , ZhangW , WuK , MaJ . Hypertriglyceridemia aggravates ER stress and pathogenesis of acute pancreatitis . Hepatogastroenterology59 ( 119 ), 2318 – 2326 ( 2012 ).
  • Lewis EB . A gene complex controlling segmentation in Drosophila . Nature276 ( 5688 ), 565 – 570 ( 1978 ).
  • Di Croce L , HelinK . Transcriptional regulation by Polycomb group proteins . Nat Struct. Mol. Biol.20 ( 10 ), 1147 – 1155 ( 2013 ).
  • Fukuda A , MorrisJPT , HebrokM . Bmi1 is required for regeneration of the exocrine pancreas in mice . Gastroenterology143 ( 3 ), 821 – 831 e821–822 ( 2012 ).
  • Martinez-Romero C , RoomanI , SkoudyAet al. The epigenetic regulators Bmi1 and Ring1B are differentially regulated in pancreatitis and pancreatic ductal adenocarcinoma . J. Pathol.219 ( 2 ), 205 – 213 ( 2009 ).
  • Toll AD , DasguptaA , PotoczekMet al. Implications of enhancer of zeste homologue 2 expression in pancreatic ductal adenocarcinoma . Hum. Pathol.41 ( 9 ), 1205 – 1209 ( 2010 ).
  • Lee ST , LiZ , WuZet al. Context-specific regulation of NF-kappaB target gene expression by EZH2 in breast cancers . Mol. Cell43 ( 5 ), 798 – 810 ( 2011 ).
  • Xu K , WuZJ , GronerACet al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent . Science338 ( 6113 ), 1465 – 1469 ( 2012 ).
  • Ginjala V , NacerddineK , KulkarniAet al. BMI1 is recruited to DNA breaks and contributes to DNA damage-induced H2A ubiquitination and repair . Mol. Cell. Biol.31 ( 10 ), 1972 – 1982 ( 2011 ).
  • Factor DC , CorradinO , ZentnerGEet al. Epigenomic comparison reveals activation of “seed” enhancers during transition from naive to primed pluripotency . Cell Stem Cell14 ( 6 ), 854 – 863 ( 2014 ).
  • Johnson CL , MehmoodR , LaingSW , StepniakCV , KharitonenkovA , PinCL . Silencing of the Fibroblast Growth Factor 21 gene is an underlying cause of acinar cell injury in mice lacking MIST1 . Am. J. Physiol. Endocrinol. Metab.306 ( 8 ), E916 – E928 ( 2014 ).
  • Pin CL , RukstalisJM , JohnsonC , KoniecznySF . The bHLH transcription factor Mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity . J. Cell Biol.155 ( 4 ), 519 – 530 ( 2001 ).
  • Tan W , LiY , LimSG , TanTM . miR-106b-25/miR-17–92 clusters: polycistrons with oncogenic roles in hepatocellular carcinoma . World J. Gastroenterol.20 ( 20 ), 5962 – 5972 ( 2014 ).
  • Jin Y , TymenSD , ChenDet al. MicroRNA-99 family targets AKT/mTOR signaling pathway in dermal wound healing . PLoS ONE8 ( 5 ), e64434 ( 2013 ).
  • Aguda BD . Modeling microRNA-transcription factor networks in cancer . Adv. Exp. Med. Biol.774 , 149 – 167 ( 2013 ).
  • Rebours V , AlbuquerqueM , SauvanetAet al. Hypoxia pathways and cellular stress activate pancreatic stellate cells: development of an organotypic culture model of thick slices of normal human pancreas . PLoS ONE8 ( 9 ), e76229 ( 2013 ).
  • De Waele E , WautersE , LingZ , BouwensL . Conversion of Human Pancreatic Acinar Cells Toward a Ductal-Mesenchymal Phenotype and the Role of Transforming Growth Factor beta and Activin Signaling . Pancreas43 ( 7 ), 1083 – 1092 ( 2014 ).
  • Blauer M , SandJ , NordbackI , LaukkarinenJ . A novel 2-step culture model for long-term in vitro maintenance of human pancreatic acinar cells . Pancreas43 ( 5 ), 762 – 767 ( 2014 ).
  • Cosen-Binker LI , LamPP , BinkerMG , ReeveJ , PandolS , GaisanoHY . Alcohol/cholecystokinin-evoked pancreatic acinar basolateral exocytosis is mediated by protein kinase C alpha phosphorylation of Munc18c . J. Biol. Chem.282 ( 17 ), 13047 – 13058 ( 2007 ).
  • Gukovskaya AS , HosseiniS , SatohAet al. Ethanol differentially regulates NF-kappaB activation in pancreatic acinar cells through calcium and protein kinase C pathways . Am. J. Physiol. Gastrointest. Liver Physiol.286 ( 2 ), G204 – G213 ( 2004 ).
  • Ding YX , YangK , ChinWC . Ethanol augments elevated-[Ca2+]C induced trypsin activation in pancreatic acinar zymogen granules . Biochem. Biophys. Res. Commun.350 ( 3 ), 593 – 597 ( 2006 ).
  • Matsubayashi H , CantoM , SatoNet al. DNA methylation alterations in the pancreatic juice of patients with suspected pancreatic disease . Cancer Res.66 ( 2 ), 1208 – 1217 ( 2006 ).
  • Zhao G , QinQ , ZhangJet al. Hypermethylation of HIC1 promoter and aberrant expression of HIC1/SIRT1 might contribute to the carcinogenesis of pancreatic cancer . Ann. Surg. Oncol.20 ( Suppl. 3 ), S301 – S311 ( 2013 ).
  • Sato N , UekiT , FukushimaNet al. Aberrant methylation of CpG islands in intraductal papillary mucinous neoplasms of the pancreas . Gastroenterology123 ( 1 ), 365 – 372 ( 2002 ).
  • Hong SM , KellyD , GriffithMet al. Multiple genes are hypermethylated in intraductal papillary mucinous neoplasms of the pancreas . Mod. Pathol.21 ( 12 ), 1499 – 1507 ( 2008 ).
  • He S , WangF , YangLet al. Expression of DNMT1 and DNMT3a are regulated by GLI1 in human pancreatic cancer . PLoS ONE6 ( 11 ), e27684 ( 2011 ).
  • Simo-Riudalbas L , MeloSA , EstellerM . DNMT3B gene amplification predicts resistance to DNA demethylating drugs . Genes Chromosomes Cancer50 ( 7 ), 527 – 534 ( 2011 ).
  • Zhang JJ , ZhuY , ZhuYet al. Association of increased DNA methyltransferase expression with carcinogenesis and poor prognosis in pancreatic ductal adenocarcinoma . Clin. Transl. Oncol.14 ( 2 ), 116 – 124 ( 2012 ).
  • Li L , LiZ , KongXet al. Down-regulation of MicroRNA-494 via Loss of SMAD4 Increases FOXM1 and beta-Catenin Signaling in Pancreatic Ductal Adenocarcinoma Cells . Gastroenterology147 ( 2 ), 485 – 497 e418 ( 2014 ).
  • Ma C , NongK , WuBet al. miR-212 promotes pancreatic cancer cell growth and invasion by targeting the hedgehog signaling pathway receptor patched-1 . J. Exp. Clin. Cancer Res.33 , 54 ( 2014 ).
  • Dang Z , XuWH , LuPet al. MicroRNA-135a inhibits cell proliferation by targeting Bmi1 in pancreatic ductal adenocarcinoma . Int. J. Biol. Sci.10 ( 7 ), 733 – 745 ( 2014 ).
  • Maftouh M , AvanA , FunelNet al. miR-211 modulates gemcitabine activity through downregulation of ribonucleotide reductase and inhibits the invasive behavior of pancreatic cancer cells . Nucleosides Nucleotides Nucleic Acids33 ( 4–6 ), 384 – 393 ( 2014 ).
  • Steele CW , OienKA , MckayCJ , JamiesonNB . Clinical potential of microRNAs in pancreatic ductal adenocarcinoma . Pancreas40 ( 8 ), 1165 – 1171 ( 2011 ).
  • Li A , OmuraN , HongSMet al. Pancreatic cancers epigenetically silence SIP1 and hypomethylate and overexpress miR-200a/200b in association with elevated circulating miR-200a and miR-200b levels . Cancer Res.70 ( 13 ), 5226 – 5237 ( 2010 ).
  • Varambally S , CaoQ , ManiRSet al. Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer . Science322 ( 5908 ), 1695 – 1699 ( 2008 ).
  • Nakahara O , TakamoriH , IwatsukiMet al. Carcinogenesis of intraductal papillary mucinous neoplasm of the pancreas: loss of microRNA-101 promotes overexpression of histone methyltransferase EZH2 . Ann. Surg. Oncol.19 ( Suppl. 3 ), S565 – S571 ( 2012 ).
  • Grochola LF , GreitherT , TaubertHWet al. Prognostic relevance of hTERT mRNA expression in ductal adenocarcinoma of the pancreas . Neoplasia10 ( 9 ), 973 – 976 ( 2008 ).
  • Lucas AL , FradoLE , HwangCet al. BRCA1 and BRCA2 germline mutations are frequently demonstrated in both high-risk pancreatic cancer screening and pancreatic cancer cohorts . Cancer120 ( 13 ), 1960 – 1967 ( 2014 ).
  • Hamidi T , AlgulH , CanoCEet al. Nuclear protein 1 promotes pancreatic cancer development and protects cells from stress by inhibiting apoptosis . J. Clin. Invest.122 ( 6 ), 2092 – 2103 ( 2012 ).
  • Von Figura G , FukudaA , RoyNet al. The chromatin regulator Brg1 suppresses formation of intraductal papillary mucinous neoplasm and pancreatic ductal adenocarcinoma . Nat. Cell Biol.16 ( 3 ), 255 – 267 ( 2014 ).
  • Chen S , BorowiakM , FoxJLet al. A small molecule that directs differentiation of human ESCs into the pancreatic lineage . Nat. Chem Biol.5 ( 4 ), 258 – 265 ( 2009 ).
  • Annes JP , RyuJH , LamKet al. Adenosine kinase inhibition selectively promotes rodent and porcine islet beta-cell replication . Proc. Natl Acad. Sci. USA109 ( 10 ), 3915 – 3920 ( 2012 ).
  • Zhang L , FarrellJJ , ZhouHet al. Salivary transcriptomic biomarkers for detection of resectable pancreatic cancer . Gastroenterology138 ( 3 ), 949 – 957 e941–947 ( 2010 ).
  • Frampton AE , GiovannettiE , JamiesonNBet al. A microRNA meta-signature for pancreatic ductal adenocarcinoma . Expert Rev. Mol. Diagn.14 ( 3 ), 267 – 271 ( 2014 ).
  • Seo YJ , MuenchL , ReidAet al. Radionuclide labeling and evaluation of candidate radioligands for PET imaging of histone deacetylase in the brain . Bioorg. Med. Chem. Lett.23 ( 24 ), 6700 – 6705 ( 2013 ).
  • Tang W , KuruvillaSA , GalitovskiyV , PanML , GrandoSA , MukherjeeJ . Targeting histone deacetylase in lung cancer for early diagnosis: (18)F-FAHA PET/CT imaging of NNK-treated A/J mice model . Am. J. Nucl. Med. Mol. Imaging4 ( 4 ), 324 – 332 ( 2014 ).
  • Nalls D , TangSN , RodovaM , SrivastavaRK , ShankarS . Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells . PLoS ONE6 ( 8 ), e24099 ( 2011 ).
  • Zhang X , ZhaoX , FiskusWet al. Coordinated silencing of MYC-mediated miR-29 by HDAC3 and EZH2 as a therapeutic target of histone modification in aggressive B-Cell lymphomas . Cancer Cell22 ( 4 ), 506 – 523 ( 2012 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.