1,017
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Modifiers in Normal and Malignant Hematopoiesis

, , &
Pages 301-320 | Published online: 05 May 2015

References

  • Ley TJ , DingL , WalterMJet al. DNMT3A mutations in acute myeloid leukemia . N. Engl. J. Med.363 ( 25 ), 2424 – 2433 ( 2010 ).
  • Zhang J , DingL , HolmfeldtLet al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia . Nature481 ( 7380 ), 157 – 163 ( 2012 ).
  • Morin RD , JohnsonNA , SeversonTMet al. Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin . Nat. Genet.42 ( 2 ), 181 – 185 ( 2010 ).
  • Delhommeau F , DupontS , Della ValleVet al. Mutation in TET2 in myeloid cancers . N. Engl. J. Med.360 ( 22 ), 2289 – 2301 ( 2009 ).
  • Jankowska AM , SzpurkaH , TiuRVet al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms . Blood113 ( 25 ), 6403 – 6410 ( 2009 ).
  • Bergsagel PL , KuehlWM . Chromosome translocations in multiple myeloma . Oncogene20 ( 40 ), 5611 – 5622 ( 2001 ).
  • Kandoth C , McLellanMD , VandinFet al. Mutational landscape and significance across 12 major cancer types . Nature502 ( 7471 ), 333 – 339 ( 2013 ).
  • Okano M , XieS , LiE . Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases . Nat. Genet.19 ( 3 ), 219 – 220 ( 1998 ).
  • Okano M , BellDW , HaberDA , LiE . DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development . Cell99 ( 3 ), 247 – 257 ( 1999 ).
  • Bird A , TaggartM , FrommerM , MillerOJ , MacleodD . A fraction of the mouse genome that is derived from islands of nonmethylated, CpG-rich DNA . Cell40 ( 1 ), 91 – 99 ( 1985 ).
  • Lister R , PelizzolaM , DowenRHet al. Human DNA methylomes at base resolution show widespread epigenomic differences . Nature462 ( 7271 ), 315 – 322 ( 2009 ).
  • Jeong M , SunD , LuoMet al. Large conserved domains of low DNA methylation maintained by Dnmt3a . Nat. Genet.46 ( 1 ), 17 – 23 ( 2014 ).
  • Wu H , CoskunV , TaoJet al. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes . Science329 ( 5990 ), 444 – 448 ( 2010 ).
  • Tadokoro Y , EmaH , OkanoM , LiE , NakauchiH . De novo DNA methyltransferase is essential for self-renewal, but not for differentiation, in hematopoietic stem cells . J. Exp. Med.204 ( 4 ), 715 – 722 ( 2007 ).
  • Challen GA , SunD , JeongMet al. Dnmt3a is essential for hematopoietic stem cell differentiation . Nat. Genet.44 ( 1 ), 23 – 31 ( 2012 ).
  • Klco JM , SpencerDH , MillerCAet al. Functional heterogeneity of genetically defined subclones in acute myeloid leukemia . Cancer Cell25 ( 3 ), 379 – 392 ( 2014 ).
  • Yan X-J , XuJ , GuZ-Het al. Exome sequencing identifies somatic mutations of DNA methyltransferase gene DNMT3A in acute monocytic leukemia . Nat. Genet.43 ( 4 ), 309 – 315 ( 2011 ).
  • Walter MJ , DingL , ShenDet al. Recurrent DNMT3A mutations in patients with myelodysplastic syndromes . Leukemia25 ( 7 ), 1153 – 1158 ( 2011 ).
  • Hou H-A , KuoY-Y , LiuC-Yet al. DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications . Blood119 ( 2 ), 559 – 568 ( 2012 ).
  • Kim SJ , ZhaoH , HardikarS , SinghAK , GoodellMA , ChenT . A DNMT3A mutation common in AML exhibits dominant-negative effects in murine ES cells . Blood122 ( 25 ), 4086 – 4089 ( 2013 ).
  • Renneville A , BoisselN , NibourelOet al. Prognostic significance of DNA methyltransferase 3A mutations in cytogenetically normal acute myeloid leukemia: a study by the Acute Leukemia French Association . Leukemia26 ( 6 ), 1247 – 1254 ( 2012 ).
  • Shlush LI , ZandiS , MitchellAet al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia . Nature506 ( 7488 ), 328 – 333 ( 2014 ).
  • Challen GA , SunD , MayleAet al. Dnmt3a and Dnmt3b have overlapping and distinct functions in hematopoietic stem cells . Cell Stem Cell15 ( 3 ), 350 – 364 ( 2014 ).
  • Tahiliani M , KohKP , ShenYet al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 . Science324 ( 5929 ), 930 – 935 ( 2009 ).
  • Ito S , ShenL , DaiQet al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine . Science333 ( 6047 ), 1300 – 1303 ( 2011 ).
  • He Y-F , LiB-Z , LiZet al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA . Science333 ( 6047 ), 1303 – 1307 ( 2011 ).
  • Cortellino S , XuJ , SannaiMet al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair . Cell146 ( 1 ), 67 – 79 ( 2011 ).
  • Ono R , TakiT , TaketaniT , TaniwakiM , KobayashiH , HayashiY . LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23) . Cancer Res.62 ( 14 ), 4075 – 4080 ( 2002 ).
  • Lorsbach RB , MooreJ , MathewS , RaimondiSC , MukatiraST , DowningJR . TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23) . Leukemia17 ( 3 ), 637 – 641 ( 2003 ).
  • Huang H , JiangX , LiZet al. TET1 plays an essential oncogenic role in MLL-rearranged leukemia . Proc. Natl Acad. Sci. USA110 ( 29 ), 11994 – 11999 ( 2013 ).
  • Tefferi A , LevineRL , LimK-Het al. Frequent TET2 mutations in systemic mastocytosis: clinical, KITD816V and FIP1L1-PDGFRA correlates . Leukemia23 ( 5 ), 900 – 904 ( 2009 ).
  • Kosmider O , Gelsi-BoyerV , CiudadMet al. TET2 gene mutation is a frequent and adverse event in chronic myelomonocytic leukemia . Haematologica94 ( 12 ), 1676 – 1681 ( 2009 ).
  • Lemonnier F , CouronnéL , ParrensMet al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters . Blood120 ( 7 ), 1466 – 1469 ( 2012 ).
  • Couronné L , BastardC , BernardOA . TET2 and DNMT3A mutations in human T-cell lymphoma . N. Engl. J. Med.366 ( 1 ), 95 – 96 ( 2012 ).
  • Moran-Crusio K , ReavieL , ShihAet al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation . Cancer Cell20 ( 1 ), 11 – 24 ( 2011 ).
  • Quivoron C , CouronnéL , Della ValleVet al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis . Cancer Cell20 ( 1 ), 25 – 38 ( 2011 ).
  • Ko M , BandukwalaHS , AnJet al. Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice . Proc. Natl Acad. Sci. USA108 ( 35 ), 14566 – 14571 ( 2011 ).
  • Shide K , KamedaT , ShimodaHet al. TET2 is essential for survival and hematopoietic stem cell homeostasis . Leukemia26 ( 10 ), 2216 – 2223 ( 2012 ).
  • Li Z , CaiX , CaiC-Let al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies . Blood118 ( 17 ), 4509 – 4518 ( 2011 ).
  • Spruijt CG , GnerlichF , SmitsAHet al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives . Cell152 ( 5 ), 1146 – 1159 ( 2013 ).
  • Chen Q , ChenY , BianC , FujikiR , YuX . TET2 promotes histone O-GlcNAcylation during gene transcription . Nature493 ( 7433 ), 561 – 564 ( 2013 ).
  • Williams K , ChristensenJ , PedersenMTet al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity . Nature473 ( 7347 ), 343 – 348 ( 2011 ).
  • Ko M , AnJ , BandukwalaHSet al. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX . Nature497 ( 7447 ), 122 – 126 ( 2013 ).
  • Yin R , MaoS-Q , ZhaoBet al. Ascorbic acid enhances Tet-mediated 5-methylcytosine oxidation and promotes DNA demethylation in mammals . J. Am. Chem. Soc.135 ( 28 ), 10396 – 10403 ( 2013 ).
  • Song SJ , ItoK , AlaUet al. The oncogenic microRNA miR-22 targets the TET2 tumor suppressor to promote hematopoietic stem cell self-renewal and transformation . Cell Stem Cell13 ( 1 ), 87 – 101 ( 2013 ).
  • Figueroa ME , Abdel-WahabO , LuCet al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation . Cancer Cell18 ( 6 ), 553 – 567 ( 2010 ).
  • Dang L , WhiteDW , GrossSet al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate . Nature462 ( 7274 ), 739 – 744 ( 2009 ).
  • Sasaki M , KnobbeCB , MungerJCet al. IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics . Nature488 ( 7413 ), 656 – 659 ( 2012 ).
  • Langemeijer SMC , KuiperRP , BerendsMet al. Acquired mutations in TET2 are common in myelodysplastic syndromes . Nat. Genet.41 ( 7 ), 838 – 842 ( 2009 ).
  • Kranendijk M , StruysEA , SalomonsGS , Van der KnaapMS , JakobsC . Progress in understanding 2-hydroxyglutaric acidurias . J. Inherit. Metab. Dis.35 ( 4 ), 571 – 587 ( 2012 ).
  • Itzykson R , KosmiderO , RennevilleAet al. Prognostic score including gene mutations in chronic myelomonocytic leukemia . J. Clin. Oncol.31 ( 19 ), 2428 – 2436 ( 2013 ).
  • Patel JP , GönenM , FigueroaMEet al. Prognostic relevance of integrated genetic profiling in acute myeloid leukemia . N. Engl. J. Med.366 ( 12 ), 1079 – 1089 ( 2012 ).
  • McKenney AS , LevineRL . Isocitrate dehydrogenase mutations in leukemia . J. Clin. Invest.123 ( 9 ), 3672 – 3677 ( 2013 ).
  • Jan M , SnyderTM , Corces-ZimmermanMRet al. Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia . Sci. Transl. Med.4 ( 149 ), 149ra118 ( 2012 ).
  • Itzykson R , KosmiderO , CluzeauTet al. Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias . Leukemia25 ( 7 ), 1147 – 1152 ( 2011 ).
  • Koivunen P , LeeS , DuncanCGet al. Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation . Nature483 ( 7390 ), 484 – 488 ( 2012 ).
  • Losman J-A , LooperRE , KoivunenPet al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible . Science339 ( 6127 ), 1621 – 1625 ( 2013 ).
  • Stein E . Clinical safety and activity in a phase I trial of AG-221, a first in class, potent inhibitor of the IDH2-mutant protein, in patients with IDH2 mutant positive advanced hematologic malignancies . Proc. Ann. Meet. AACR.74 , Abstract CT103 ( 2014 ).
  • Kantarjian H , IssaJ-PJ , RosenfeldCSet al. Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study . Cancer106 ( 8 ), 1794 – 1803 ( 2006 ).
  • Kaminskas E , FarrellA , AbrahamSet al. Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes . Clin. Cancer Res.11 ( 10 ), 3604 – 3608 ( 2005 ).
  • Fenaux P , MuftiGJ , Hellstrom-LindbergEet al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study . Lancet Oncol.10 ( 3 ), 223 – 232 ( 2009 ).
  • Olsen EA , KimYH , KuzelTMet al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma . J. Clin. Oncol.25 ( 21 ), 3109 – 3115 ( 2007 ).
  • Mann BS , JohnsonJR , HeKet al. Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma . Clin. Cancer Res.13 ( 8 ), 2318 – 2322 ( 2007 ).
  • Marks PA . Discovery and development of SAHA as an anticancer agent . Oncogene26 ( 9 ), 1351 – 1356 ( 2007 ).
  • Campas-Moya C . Romidepsin for the treatment of cutaneous T-cell lymphoma . Drugs Today (Barc.)45 ( 11 ), 787 – 795 ( 2009 ).
  • Piekarz RL , FryeR , TurnerMet al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma . J. Clin. Oncol.27 ( 32 ), 5410 – 5417 ( 2009 ).
  • Mutant IDH2 Inhibitor Looks Promising in AML . Cancer Discov.4 ( 6 ), OF9 – OF9 ( 2014 ).
  • AG-221, an Oral, Selective, First-in-Class, Potent Inhibitor of the IDH2 Mutant Metabolic Enzyme, Induces Durable Remissions in a Phase I Study in Patients with IDH2 Mutation Positive Advanced Hematologic Malignancies . https://ash.confex.com/ash/2014/webprogram/Paper70721.html .
  • Basavapathruni A , OlhavaEJ , DaigleSRet al. Nonclinical pharmacokinetics and metabolism of EPZ-5676, a novel DOT1L histone methyltransferase inhibitor . Biopharm. Drug Dispos.35 ( 4 ), 237 – 252 ( 2014 ).
  • A Phase I Study of EPZ-5676 in Patients with Relapsed/Refractory Leukemia and Other Advanced Hematologic Cancers. Memorial Sloan Kettering Cancer Center . www.mskcc.org/cancer-care/trial/12–181 .
  • The DOT1L Inhibitor EPZ-5676: Safety and Activity in Relapsed/Refractory Patients with MLL-Rearranged Leukemia . https://ash.confex.com/ash/2014/webprogram/Paper70025.html .
  • Knutson SK , KawanoS , MinoshimaYet al. Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma . Mol. Cancer Ther.13 ( 4 ), 842 – 854 ( 2014 ).
  • McCabe MT , OttHM , GanjiGet al. EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations . Nature492 ( 7427 ), 108 – 112 ( 2012 ).
  • Coude marie M , BerrouJ , BertrandSet al. Preclinical study of the bromodomain inhibitor OTX015 in acute myeloid (AML) and lymphoid (ALL) leukemias . Blood122 ( 21 ), 4218 ( 2013 ).
  • A Phase I Study of CPI-0610 in Patients with Progressive Lymphoma. Memorial Sloan Kettering Cancer Center . www.mskcc.org/cancer-care/trial/13–259 .
  • Milne TA , BriggsSD , BrockHWet al. MLL targets SET domain methyltransferase activity to Hox gene promoters . Mol. Cell.10 ( 5 ), 1107 – 1117 ( 2002 ).
  • Nakamura T , MoriT , TadaSet al. ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation . Mol. Cell.10 ( 5 ), 1119 – 1128 ( 2002 ).
  • Bernstein BE , KamalM , Lindblad-TohKet al. Genomic maps and comparative analysis of histone modifications in human and mouse . Cell120 ( 2 ), 169 – 181 ( 2005 ).
  • Steward MM , LeeJ-S , O’DonovanA , WyattM , BernsteinBE , ShilatifardA . Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes . Nat. Struct. Mol. Biol.13 ( 9 ), 852 – 854 ( 2006 ).
  • Yu BD , HessJL , HorningSE , BrownGA , KorsmeyerSJ . Altered Hox expression and segmental identity in Mll-mutant mice . Nature378 ( 6556 ), 505 – 508 ( 1995 ).
  • Argiropoulos B , HumphriesRK . Hox genes in hematopoiesis and leukemogenesis . Oncogene26 ( 47 ), 6766 – 6776 ( 2007 ).
  • Jude CD , ClimerL , XuD , ArtingerE , FisherJK , ErnstP . Unique and independent roles for MLL in adult hematopoietic stem cells and progenitors . Cell Stem Cell1 ( 3 ), 324 – 337 ( 2007 ).
  • McMahon KA , HiewSY-L , HadjurSet al. Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal . Cell Stem Cell1 ( 3 ), 338 – 345 ( 2007 ).
  • Artinger EL , MishraBP , ZaffutoKMet al. An MLL-dependent network sustains hematopoiesis . Proc. Natl Acad. Sci. USA110 ( 29 ), 12000 – 12005 ( 2013 ).
  • Kroon E , KroslJ , ThorsteinsdottirU , BabanS , BuchbergAM , SauvageauG . Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b . EMBO J.17 ( 13 ), 3714 – 3725 ( 1998 ).
  • Golub TR , SlonimDK , TamayoPet al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring . Science286 ( 5439 ), 531 – 537 ( 1999 ).
  • Milne TA , KimJ , WangGGet al. Multiple interactions recruit MLL1 and MLL1 fusion proteins to the HOXA9 locus in leukemogenesis . Mol. Cell.38 ( 6 ), 853 – 863 ( 2010 ).
  • Thiel AT , BlessingtonP , ZouTet al. MLL-AF9-induced leukemogenesis requires coexpression of the wild-type Mll allele . Cancer Cell17 ( 2 ), 148 – 159 ( 2010 ).
  • Patel A , VoughtVE , SwatkoskiSet al. Automethylation activities within the mixed lineage leukemia-1 (MLL1) core complex reveal evidence supporting a “two-active site” model for multiple histone H3 lysine 4 methylation . J. Biol. Chem.289 ( 2 ), 868 – 884 ( 2014 ).
  • Mishra BP , ZaffutoKM , ArtingerELet al. The histone methyltransferase activity of MLL1 is dispensable for hematopoiesis and leukemogenesis . Cell Rep.7 ( 4 ), 1239 – 1247 ( 2014 ).
  • Terranova R , AgherbiH , BonedA , MeresseS , DjabaliM . Histone and DNA methylation defects at Hox genes in mice expressing a SET domain-truncated form of Mll . Proc. Natl Acad. Sci. USA103 ( 17 ), 6629 – 6634 ( 2006 ).
  • Wang Q-F , WuG , MiSet al. MLL fusion proteins preferentially regulate a subset of wild-type MLL target genes in the leukemic genome . Blood117 ( 25 ), 6895 – 6905 ( 2011 ).
  • Li BE , ErnstP . Two decades of leukemia oncoprotein epistasis: the mixed lineage leukemia paradigm for epigenetic deregulation in leukemia . Exp. Hematol.42 ( 12 ), 995 – 1012 ( 2014 ).
  • Chen CS , SorensenPH , DomerPHet al. Molecular rearrangements on chromosome 11q23 predominate in infant acute lymphoblastic leukemia and are associated with specific biologic variables and poor outcome . Blood81 ( 9 ), 2386 – 2393 ( 1993 ).
  • Schoch C , SchnittgerS , KlausM , KernW , HiddemannW , HaferlachT . AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases . Blood102 ( 7 ), 2395 – 2402 ( 2003 ).
  • Huret JL , DessenP , Le MinorS , BernheimA . The “Atlas of genetics and cytogenetics in oncology and haematology” on the internet and a review on infant leukemias . Cancer Genet. Cytogenet.120 ( 2 ), 155 – 159 ( 2000 ).
  • Armstrong SA , StauntonJE , SilvermanLBet al. MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia . Nat. Genet.30 ( 1 ), 41 – 47 ( 2002 ).
  • Ferrando AA , ArmstrongSA , NeubergDSet al. Gene expression signatures in MLL-rearranged T-lineage and B-precursor acute leukemias: dominance of HOX dysregulation . Blood102 ( 1 ), 262 – 268 ( 2003 ).
  • Balgobind B V , ZwaanCM , PietersR , Van den Heuvel-EibrinkMM . The heterogeneity of pediatric MLL-rearranged acute myeloid leukemia . Leukemia25 ( 8 ), 1239 – 1248 ( 2011 ).
  • Yokoyama A , SomervailleTCP , SmithKS , Rozenblatt-RosenO , MeyersonM , ClearyML . The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis . Cell123 ( 2 ), 207 – 218 ( 2005 ).
  • Caslini C , YangZ , El-OstaM , MilneTA , SlanyRK , HessJL . Interaction of MLL amino terminal sequences with menin is required for transformation . Cancer Res.67 ( 15 ), 7275 – 7283 ( 2007 ).
  • Grembecka J , HeS , ShiAet al. Menin-MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia . Nat. Chem. Biol.8 ( 3 ), 277 – 284 ( 2012 ).
  • Cao F , TownsendEC , KaratasHet al. Targeting MLL1 H3K4 methyltransferase activity in mixed-lineage leukemia . Mol. Cell.53 ( 2 ), 247 – 261 ( 2014 ).
  • Muntean AG , TanJ , SitwalaKet al. The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis . Cancer Cell17 ( 6 ), 609 – 621 ( 2010 ).
  • Tan J , JonesM , KosekiHet al. CBX8, a polycomb group protein, is essential for MLL-AF9-induced leukemogenesis . Cancer Cell20 ( 5 ), 563 – 575 ( 2011 ).
  • Glaser S , SchaftJ , LubitzSet al. Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development . Development133 ( 8 ), 1423 – 1432 ( 2006 ).
  • Yokoyama A , WangZ , WysockaJet al. Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression . Mol. Cell. Biol.24 ( 13 ), 5639 – 5649 ( 2004 ).
  • Denissov S , HofemeisterH , MarksHet al. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant . Development141 ( 3 ), 526 – 537 ( 2014 ).
  • Hu D , GarrussAS , GaoXet al. The Mll2 branch of the COMPASS family regulates bivalent promoters in mouse embryonic stem cells . Nat. Struct. Mol. Biol.20 ( 9 ), 1093 – 1097 ( 2013 ).
  • Vastenhouw NL , SchierAF . Bivalent histone modifications in early embryogenesis . Curr. Opin. Cell Biol.24 ( 3 ), 374 – 386 ( 2012 ).
  • Herz H-M , MohanM , GarrussASet al. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4 . Genes Dev.26 ( 23 ), 2604 – 2620 ( 2012 ).
  • Hu D , GaoX , MorganMA , HerzH-M , SmithER , ShilatifardA . The MLL3/MLL4 branches of the COMPASS family function as major histone H3K4 monomethylases at enhancers . Mol. Cell. Biol.33 ( 23 ), 4745 – 4754 ( 2013 ).
  • Cheng J , BlumR , BowmanCet al. A role for H3K4 monomethylation in gene repression and partitioning of chromatin readers . Mol. Cell.53 ( 6 ), 979 – 992 ( 2014 ).
  • Lawrence MS , StojanovP , MermelCHet al. Discovery and saturation analysis of cancer genes across 21 tumour types . Nature505 ( 7484 ), 495 – 501 ( 2014 ).
  • Pasqualucci L , TrifonovV , FabbriGet al. Analysis of the coding genome of diffuse large B-cell lymphoma . Nat. Genet.43 ( 9 ), 830 – 837 ( 2011 ).
  • Lee J , KimD-H , LeeSet al. A tumor suppressive coactivator complex of p53 containing ASC-2 and histone H3-lysine-4 methyltransferase MLL3 or its paralogue MLL4 . Proc. Natl Acad. Sci. USA106 ( 21 ), 8513 – 8518 ( 2009 ).
  • Herz H-M , MaddenLD , ChenZet al. The H3K27me3 demethylase dUTX is a suppressor of Notch- and Rb-dependent tumors in Drosophila . Mol. Cell. Biol.30 ( 10 ), 2485 – 2497 ( 2010 ).
  • Santos MA , FaryabiRB , ErgenAVet al. DNA-damage-induced differentiation of leukaemic cells as an anti-cancer barrier . Nature514 ( 7520 ), 107 – 111 ( 2014 ).
  • Van Leeuwen F , GafkenPR , GottschlingDE . Dot1p modulates silencing in yeast by methylation of the nucleosome core . Cell109 ( 6 ), 745 – 756 ( 2002 ).
  • Steger DJ , LefterovaMI , YingLet al. DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells . Mol. Cell. Biol.28 ( 8 ), 2825 – 2839 ( 2008 ).
  • Nguyen AT , HeJ , TaranovaO , ZhangY . Essential role of DOT1L in maintaining normal adult hematopoiesis . Cell Res.21 ( 9 ), 1370 – 1373 ( 2011 ).
  • Jo SY , GranowiczEM , MaillardI , ThomasD , HessJL . Requirement for Dot1l in murine postnatal hematopoiesis and leukemogenesis by MLL translocation . Blood117 ( 18 ), 4759 – 4768 ( 2011 ).
  • Okada Y , FengQ , LinYet al. hDOT1L links histone methylation to leukemogenesis . Cell121 ( 2 ), 167 – 178 ( 2005 ).
  • Yokoyama A , LinM , NareshA , KitabayashiI , ClearyML . A higher-order complex containing AF4 and ENL family proteins with P-TEFb facilitates oncogenic and physiologic MLL-dependent transcription . Cancer Cell17 ( 2 ), 198 – 212 ( 2010 ).
  • Bernt KM , ZhuN , SinhaAUet al. MLL-rearranged leukemia is dependent on aberrant H3K79 methylation by DOT1L . Cancer Cell20 ( 1 ), 66 – 78 ( 2011 ).
  • Daigle SR , OlhavaEJ , TherkelsenCAet al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor . Cancer Cell20 ( 1 ), 53 – 65 ( 2011 ).
  • Chang M-J , WuH , AchilleNJet al. Histone H3 lysine 79 methyltransferase Dot1 is required for immortalization by MLL oncogenes . Cancer Res.70 ( 24 ), 10234 – 10242 ( 2010 ).
  • Nguyen AT , TaranovaO , HeJ , ZhangY . DOT1L, the H3K79 methyltransferase, is required for MLL-AF9-mediated leukemogenesis . Blood117 ( 25 ), 6912 – 6922 ( 2011 ).
  • Deshpande AJ , ChenL , FazioMet al. Leukemic transformation by the MLL-AF6 fusion oncogene requires the H3K79 methyltransferase Dot1l . Blood121 ( 13 ), 2533 – 2541 ( 2013 ).
  • Hadler M , DaigleSR , ChenC-Wet al. Myeloid leukemia cells with MLL partial tandem duplication are sensitive to pharmacological inhibition of the H3K79 methyltransferase DOT1L . Blood122 ( 21 ), 1256 ( 2013 ).
  • Yu W , ChoryEJ , WernimontAKet al. Catalytic site remodelling of the DOT1L methyltransferase by selective inhibitors . Nat. Commun.3 , 1288 ( 2012 ).
  • Chen L , DeshpandeAJ , BankaDet al. Abrogation of MLL-AF10 and CALM-AF10-mediated transformation through genetic inactivation or pharmacological inhibition of the H3K79 methyltransferase Dot1l . Leukemia27 ( 4 ), 813 – 822 ( 2013 ).
  • Daigle SR , OlhavaEJ , TherkelsenCAet al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia . Blood122 ( 6 ), 1017 – 1025 ( 2013 ).
  • Heinrich MC , BlankeCD , DrukerBJ , CorlessCL . Inhibition of KIT tyrosine kinase activity: a novel molecular approach to the treatment of KIT-positive malignancies . J. Clin. Oncol.20 ( 6 ), 1692 – 1703 ( 2002 ).
  • Klaus CR , IwanowiczD , JohnstonDet al. DOT1L inhibitor EPZ-5676 displays synergistic antiproliferative activity in combination with standard of care drugs and hypomethylating agents in MLL-rearranged leukemia cells . J. Pharmacol. Exp. Ther.350 ( 3 ), 646 – 656 ( 2014 ).
  • Sarkaria SM , ChristopherMJ , KlcoJM , LeyTJ . Primary acute myeloid leukemia cells with IDH1 or IDH2 mutations respond to a DOT1L inhibitor in vitro . Leukemia28 ( 12 ), 2403 – 2406 ( 2014 ).
  • Cao R , TsukadaY-I , ZhangY . Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing . Mol. Cell.20 ( 6 ), 845 – 854 ( 2005 ).
  • Gao Z , ZhangJ , BonasioRet al. PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes . Mol. Cell.45 ( 3 ), 344 – 356 ( 2012 ).
  • Tavares L , DimitrovaE , OxleyDet al. RYBP-PRC1 complexes mediate H2A ubiquitylation at polycomb target sites independently of PRC2 and H3K27me3 . Cell148 ( 4 ), 664 – 678 ( 2012 ).
  • Yu M , MazorT , HuangHet al. Direct recruitment of polycomb repressive complex 1 to chromatin by core binding transcription factors . Mol. Cell.45 ( 3 ), 330 – 343 ( 2012 ).
  • Blackledge NP , FarcasAM , KondoTet al. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation . Cell157 ( 6 ), 1445 – 1459 ( 2014 ).
  • Cao R , WangL , WangHet al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing . Science.298 ( 5595 ), 1039 – 1043 ( 2002 ).
  • Kuzmichev A , NishiokaK , Erdjument-BromageH , TempstP , ReinbergD . Histone methyltransferase activity associated with a human multiprotein complex containing the Enhancer of Zeste protein . Genes Dev.16 ( 22 ), 2893 – 2905 ( 2002 ).
  • Shen X , LiuY , HsuY-Jet al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency . Mol. Cell.32 ( 4 ), 491 – 502 ( 2008 ).
  • Margueron R , LiG , SarmaKet al. Ezh1 and Ezh2 maintain repressive chromatin through different mechanisms . Mol. Cell.32 ( 4 ), 503 – 518 ( 2008 ).
  • Xu K , WuZJ , GronerACet al. EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent . Science338 ( 6113 ), 1465 – 1469 ( 2012 ).
  • Lee ST , LiZ , WuZet al. Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers . Mol. Cell.43 ( 5 ), 798 – 810 ( 2011 ).
  • Shi B , LiangJ , YangXet al. Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells . Mol. Cell. Biol.27 ( 14 ), 5105 – 5119 ( 2007 ).
  • Mousavi K , ZareH , WangAH , SartorelliV . Polycomb protein Ezh1 promotes RNA polymerase II elongation . Mol. Cell.45 ( 2 ), 255 – 262 ( 2012 ).
  • Lee JM , LeeJS , KimHet al. EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex . Mol. Cell.48 ( 4 ), 572 – 586 ( 2012 ).
  • He A , ShenX , MaQet al. PRC2 directly methylates GATA4 and represses its transcriptional activity . Genes Dev.26 ( 1 ), 37 – 42 ( 2012 ).
  • Rinn JL , KerteszM , WangJKet al. Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs . Cell129 ( 7 ), 1311 – 1323 ( 2007 ).
  • Zhao J , SunBK , ErwinJA , SongJ-J , LeeJT . Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome . Science322 ( 5902 ), 750 – 756 ( 2008 ).
  • Davidovich C , ZhengL , GoodrichKJ , CechTR . Promiscuous RNA binding by polycomb repressive complex 2 . Nat. Struct. Mol. Biol.20 ( 11 ), 1250 – 1257 ( 2013 ).
  • Peng JC , ValouevA , SwigutTet al. Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells . Cell139 ( 7 ), 1290 – 1302 ( 2009 ).
  • Shen X , KimW , FujiwaraYet al. Jumonji modulates polycomb activity and self-renewal versus differentiation of stem cells . Cell139 ( 7 ), 1303 – 1314 ( 2009 ).
  • Herranz N , PasiniD , DíazVMet al. Polycomb complex 2 is required for E-cadherin repression by the Snail1 transcription factor . Mol. Cell. Biol.28 ( 15 ), 4772 – 4781 ( 2008 ).
  • Villa R , PasiniD , GutierrezAet al. Role of the polycomb repressive complex 2 in acute promyelocytic leukemia . Cancer Cell11 ( 6 ), 513 – 525 ( 2007 ).
  • Scelfo A , PiuntiA , PasiniD . The controversial role of the Polycomb group proteins in transcription and cancer: how much do we not understand Polycomb proteins?FEBS J. doi:10.1111/febs.13112 ( 2014 ) ( Epub ahead of print ).
  • Rizo A , OlthofS , HanL , VellengaE , de HaanG , SchuringaJJ . Repression of BMI1 in normal and leukemic human CD34(+) cells impairs self-renewal and induces apoptosis . Blood114 ( 8 ), 1498 – 1505 ( 2009 ).
  • Liu J , CaoL , ChenJet al. Bmi1 regulates mitochondrial function and the DNA damage response pathway . Nature459 ( 7245 ), 387 – 392 ( 2009 ).
  • Jacobs JJ , KieboomK , MarinoS , DePinhoRA , van LohuizenM . The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus . Nature397 ( 6715 ), 164 – 168 ( 1999 ).
  • Park I , QianD , KielMet al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells . Nature423 ( 6937 ), 302 – 305 ( 2003 ).
  • Oguro H , YuanJ , TanakaSet al. Lethal myelofibrosis induced by Bmi1-deficient hematopoietic cells unveils a tumor suppressor function of the polycomb group genes . J. Exp. Med.209 ( 3 ), 445 – 454 ( 2012 ).
  • Oguro H , YuanJ , IchikawaHet al. Poised lineage specification in multipotential hematopoietic stem and progenitor cells by the polycomb protein Bmi1 . Cell Stem Cell.6 ( 3 ), 279 – 286 ( 2010 ).
  • Chowdhury M , MiharaK , YasunagaS , OhtakiM , TakiharaY , KimuraA . Expression of polycomb-group (PcG) protein BMI-1 predicts prognosis in patients with acute myeloid leukemia . Leukemia21 ( 5 ), 1116 – 1122 ( 2007 ).
  • Mohty M , YongASM , SzydloRM , ApperleyJF , MeloJ V . The polycomb group BMI1 gene is a molecular marker for predicting prognosis of chronic myeloid leukemia . Blood110 ( 1 ), 380 – 383 ( 2007 ).
  • Kreso A , van GalenP , PedleyNMet al. Self-renewal as a therapeutic target in human colorectal cancer . Nat. Med.20 ( 1 ), 29 – 36 ( 2014 ).
  • Tetsu O , IshiharaH , KannoRet al. mel-18 negatively regulates cell cycle progression upon B cell antigen receptor stimulation through a cascade leading to c-myc/cdc25 . Immunity9 ( 4 ), 439 – 448 ( 1998 ).
  • Lessard J , BabanS , SauvageauG . Stage-specific expression of polycomb group genes in human bone marrow cells . Blood91 ( 4 ), 1216 – 1224 ( 1998 ).
  • Klauke K , RadulovićV , BroekhuisMet al. Polycomb Cbx family members mediate the balance between haematopoietic stem cell self-renewal and differentiation . Nat. Cell Biol.15 ( 4 ), 353 – 362 ( 2013 ).
  • Ross K , SedelloAK , ToddGPet al. Polycomb group ring finger 1 cooperates with Runx1 in regulating differentiation and self-renewal of hematopoietic cells . Blood119 ( 18 ), 4152 – 4161 ( 2012 ).
  • Gearhart MD , CorcoranCM , WamstadJA , BardwellVJ . Polycomb group and SCF ubiquitin ligases are found in a novel BCOR complex that is recruited to BCL6 targets . Mol. Cell. Biol.26 ( 18 ), 6880 – 6889 ( 2006 ).
  • Damm F , ChesnaisV , NagataYet al. BCOR and BCORL1 mutations in myelodysplastic syndromes and related disorders . Blood122 ( 18 ), 3169 – 3177 ( 2013 ).
  • Grossmann V , TiacciE , HolmesABet al. Whole-exome sequencing identifies somatic mutations of BCOR in acute myeloid leukemia with normal karyotype . Blood118 ( 23 ), 6153 – 6163 ( 2011 ).
  • Mochizuki-Kashio M , MishimaY , MiyagiSet al. Dependency on the polycomb gene Ezh2 distinguishes fetal from adult hematopoietic stem cells . Blood118 ( 25 ), 6553 – 6561 ( 2011 ).
  • Su I-H , BasavarajA , KrutchinskyANet al. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement . Nat. Immunol.4 ( 2 ), 124 – 131 ( 2003 ).
  • Su I , DobeneckerM-W , DickinsonEet al. Polycomb group protein ezh2 controls actin polymerization and cell signaling . Cell121 ( 3 ), 425 – 436 ( 2005 ).
  • Muto T , SashidaG , OshimaMet al. Concurrent loss of Ezh2 and Tet2 cooperates in the pathogenesis of myelodysplastic disorders . J. Exp. Med.210 ( 12 ), 2627 – 2639 ( 2013 ).
  • Simon C , ChagraouiJ , KroslJet al. A key role for EZH2 and associated genes in mouse and human adult T-cell acute leukemia . Genes Dev.26 ( 7 ), 651 – 656 ( 2012 ).
  • Xie H , XuJ , HsuJHet al. Polycomb repressive complex 2 regulates normal hematopoietic stem cell function in a developmental-stage-specific manner . Cell Stem Cell.14 ( 1 ), 68 – 80 ( 2014 ).
  • Bejar R , StevensonK , Abdel-WahabOet al. Clinical effect of point mutations in myelodysplastic syndromes . N. Engl. J. Med.364 ( 26 ), 2496 – 2506 ( 2011 ).
  • Ueda T , SanadaM , MatsuiHet al. EED mutants impair polycomb repressive complex 2 in myelodysplastic syndrome and related neoplasms . Leukemia26 ( 12 ), 2557 – 2560 ( 2012 ).
  • Brecqueville M , ReyJ , BertucciFet al. Mutation analysis of ASXL1, CBL, DNMT3A, IDH1, IDH2, JAK2, MPL, NF1, SF3B1, SUZ12, and TET2 in myeloproliferative neoplasms . Genes Chromosomes Cancer51 ( 8 ), 743 – 755 ( 2012 ).
  • Pasini D , CloosPAC , WalfridssonJet al. JARID2 regulates binding of the Polycomb repressive complex 2 to target genes in ES cells . Nature464 ( 7286 ), 306 – 310 ( 2010 ).
  • Puda A , MilosevicJD , BergTet al. Frequent deletions of JARID2 in leukemic transformation of chronic myeloid malignancies . Am. J. Hematol.87 ( 3 ), 245 – 250 ( 2012 ).
  • Sashida G , HaradaH , MatsuiHet al. Ezh2 loss promotes development of myelodysplastic syndrome but attenuates its predisposition to leukaemic transformation . Nat. Commun.5 , 4177 ( 2014 ).
  • Kamminga LM , BystrykhL V , de BoerAet al. The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion . Blood107 ( 5 ), 2170 – 2179 ( 2006 ).
  • Herrera-Merchan A , ArranzL , LigosJM , de MolinaA , DominguezO , GonzalezS . Ectopic expression of the histone methyltransferase Ezh2 in haematopoietic stem cells causes myeloproliferative disease . Nat. Commun.3 , 623 ( 2012 ).
  • Sneeringer CJ , ScottMP , KuntzKWet al. Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas . Proc. Natl Acad. Sci. USA107 ( 49 ), 20980 – 20985 ( 2010 ).
  • Okosun J , BödörC , WangJet al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma . Nat. Genet.46 ( 2 ), 176 – 181 ( 2014 ).
  • Visser HP , GunsterMJ , Kluin-NelemansHCet al. The Polycomb group protein EZH2 is upregulated in proliferating, cultured human mantle cell lymphoma . Br. J. Haematol.112 ( 4 ), 950 – 958 ( 2001 ).
  • Varambally S , DhanasekaranSM , ZhouMet al. The polycomb group protein EZH2 is involved in progression of prostate cancer . Nature419 ( 6907 ), 624 – 629 ( 2002 ).
  • Yap DB , ChuJ , BergTet al. Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selectively altered PRC2 catalytic activity, to increase H3K27 trimethylation . Blood117 ( 8 ), 2451 – 2459 ( 2011 ).
  • Knutson SK , WigleTJ , WarholicNMet al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells . Nat. Chem. Biol.8 ( 11 ), 890 – 896 ( 2012 ).
  • Konze KD , MaA , LiFet al. An orally bioavailable chemical probe of the lysine methyltransferases EZH2 and EZH1 . ACS Chem. Biol.8 ( 6 ), 1324 – 1334 ( 2013 ).
  • Nasveschuk CG , GagnonA , Garapaty-RaoSet al. Discovery and optimization of tetramethylpiperidinyl benzamides as inhibitors of EZH2 . ACS Med. Chem. Lett.5 ( 4 ), 378 – 383 ( 2014 ).
  • Béguelin W , PopovicR , TeaterMet al. EZH2 is required for germinal center formation and somatic EZH2 mutations promote lymphoid transformation . Cancer Cell23 ( 5 ), 677 – 692 ( 2013 ).
  • Caganova M , CarrisiC , VaranoGet al. Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis . J. Clin. Invest.123 ( 12 ), 5009 – 5022 ( 2013 ).
  • Wilson BG , WangX , ShenXet al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation . Cancer Cell18 ( 4 ), 316 – 328 ( 2010 ).
  • Knutson SK , WarholicNM , WigleTJet al. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2 . Proc. Natl Acad. Sci. USA110 ( 19 ), 7922 – 7927 ( 2013 ).
  • Shi J , WangE , ZuberJet al. The Polycomb complex PRC2 supports aberrant self-renewal in a mouse model of MLL-AF9;Nras(G12D) acute myeloid leukemia . Oncogene32 ( 7 ), 930 – 938 ( 2013 ).
  • Neff T , SinhaAU , KlukMJet al. Polycomb repressive complex 2 is required for MLL-AF9 leukemia . Proc. Natl Acad. Sci. USA109 ( 13 ), 5028 – 5033 ( 2012 ).
  • Tanaka S , MiyagiS , SashidaGet al. Ezh2 augments leukemogenicity by reinforcing differentiation blockage in acute myeloid leukemia . Blood120 ( 5 ), 1107 – 1117 ( 2012 ).
  • Kim W , BirdGH , NeffTet al. Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer . Nat. Chem. Biol.9 ( 10 ), 643 – 650 ( 2013 ).
  • Kuo AJ , CheungP , ChenKet al. NSD2 links dimethylation of histone H3 at lysine 36 to oncogenic programming . Mol. Cell.44 ( 4 ), 609 – 620 ( 2011 ).
  • Li Y , TrojerP , XuC-Fet al. The target of the NSD family of histone lysine methyltransferases depends on the nature of the substrate . J. Biol. Chem.284 ( 49 ), 34283 – 34295 ( 2009 ).
  • Kim J-Y , KeeHJ , ChoeN-Wet al. Multiple-myeloma-related WHSC1/MMSET isoform RE-IIBP is a histone methyltransferase with transcriptional repression activity . Mol. Cell. Biol.28 ( 6 ), 2023 – 2034 ( 2008 ).
  • Marango J , ShimoyamaM , NishioHet al. The MMSET protein is a histone methyltransferase with characteristics of a transcriptional corepressor . Blood111 ( 6 ), 3145 – 3154 ( 2008 ).
  • Pei H , ZhangL , LuoKet al. MMSET regulates histone H4K20 methylation and 53BP1 accumulation at DNA damage sites . Nature470 ( 7332 ), 124 – 128 ( 2011 ).
  • Martinez-Garcia E , PopovicR , MinD-Jet al. The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells . Blood117 ( 1 ), 211 – 220 ( 2011 ).
  • Jaffe JD , WangY , ChanHMet al. Global chromatin profiling reveals NSD2 mutations in pediatric acute lymphoblastic leukemia . Nat. Genet.45 ( 11 ), 1386 – 1391 ( 2013 ).
  • Huang Z , WuH , ChuaiSet al. NSD2 is recruited through its PHD domain to oncogenic gene loci to drive multiple myeloma . Cancer Res.73 ( 20 ), 6277 – 6288 ( 2013 ).
  • Bergsagel PL , KuehlWM . Molecular pathogenesis and a consequent classification of multiple myeloma . J. Clin. Oncol.23 ( 26 ), 6333 – 6338 ( 2005 ).
  • Oyer JA , HuangX , ZhengYet al. Point mutation E1099K in MMSET/NSD2 enhances its methyltranferase activity and leads to altered global chromatin methylation in lymphoid malignancies . Leukemia28 ( 1 ), 198 – 201 ( 2014 ).
  • Smith EM , BoydK , DaviesFE . The potential role of epigenetic therapy in multiple myeloma . Br. J. Haematol.148 ( 5 ), 702 – 713 ( 2010 ).
  • Xie Z , ChngWJ . MMSET: role and therapeutic opportunities in multiple myeloma . Biomed Res. Int.2014 , 636514 ( 2014 ).
  • Keats JJ , ReimanT , MaxwellCAet al. In multiple myeloma, t(4;14)(p16;q32) is an adverse prognostic factor irrespective of FGFR3 expression . Blood101 ( 4 ), 1520 – 1529 ( 2003 ).
  • Chesi M , NardiniE , LimRS , SmithKD , KuehlWM , BergsagelPL . The t(4;14) translocation in myeloma dysregulates both FGFR3 and a novel gene, MMSET, resulting in IgH/MMSET hybrid transcripts . Blood92 ( 9 ), 3025 – 3034 ( 1998 ).
  • Kuehl WM , BergsagelPL . Multiple myeloma: evolving genetic events and host interactions . Nat. Rev. Cancer2 ( 3 ), 175 – 187 ( 2002 ).
  • Brito JLR , WalkerB , JennerMet al. MMSET deregulation affects cell cycle progression and adhesion regulons in t(4;14) myeloma plasma cells . Haematologica94 ( 1 ), 78 – 86 ( 2009 ).
  • Min D-J , EzpondaT , KimMKet al. MMSET stimulates myeloma cell growth through microRNA-mediated modulation of c-MYC . Leukemia27 ( 3 ), 686 – 694 ( 2013 ).
  • Morgan GJ , KaiserMF . How to use new biology to guide therapy in multiple myeloma . Hematology Am. Soc. Hematol. Educ. Program.2012 , 342 – 349 ( 2012 ).
  • Qiao Q , LiY , ChenZ , WangM , ReinbergD , XuR-M . The structure of NSD1 reveals an autoregulatory mechanism underlying histone H3K36 methylation . J. Biol. Chem.286 ( 10 ), 8361 – 8368 ( 2011 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.