449
Views
0
CrossRef citations to date
0
Altmetric
Review

Role of Epigenetic Modifications in Luminal Breast Cancer

&
Pages 847-862 | Published online: 17 Feb 2015

References

  • Prat A , KarginovaO , ParkerJSet al. Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes . Breast Cancer Res. Treat.142 ( 2 ), 237 – 255 ( 2013 ).
  • Badia E , OlivaJ , BalaguerP , CavaillesV . Tamoxifen resistance and epigenetic modifications in breast cancer cell lines . Curr. Med. Chem.14 ( 28 ), 3035 – 3045 ( 2007 ).
  • Milani A , GeunaE , MitticaG , ValabregaG . Overcoming endocrine resistance in metastatic breast cancer: current evidence and future directions . World J. Clin. Oncol.5 ( 5 ), 990 – 1001 ( 2014 ).
  • Bianco S , GevryN . Endocrine resistance in breast cancer: from cellular signaling pathways to epigenetic mechanisms . Transcription3 ( 4 ), 165 – 170 ( 2012 ).
  • Garcia-Becerra R , SantosN , DiazL , CamachoJ . Mechanisms of resistance to endocrine therapy in breast cancer: focus on signaling pathways, miRNAs and genetically based resistance . Int. J. Mol. Sci.14 ( 1 ), 108 – 145 ( 2013 ).
  • Stone A , Valdes-MoraF , ClarkSJ . Exploring and exploiting the aberrant DNA methylation profile of endocrine-resistant breast cancer . Epigenomics5 ( 6 ), 595 – 598 ( 2013 ).
  • Maruyama R , ChoudhuryS , KowalczykAet al. Epigenetic regulation of cell type-specific expression patterns in the human mammary epithelium . PLoS Genet.7 ( 4 ), e1001369 ( 2011 ).
  • de Souza Rocha Simonini P , BreilingA , GuptaNet al. Epigenetically deregulated microRNA-375 is involved in a positive feedback loop with estrogen receptor alpha in breast cancer cells . Cancer Res.70 ( 22 ), 9175 – 9184 ( 2010 ).
  • Huang Y , NayakS , JankowitzR , DavidsonNE , OesterreichS . Epigenetics in breast cancer: what’s new?Breast Cancer Res.13 ( 6 ), 225 ( 2011 ).
  • Stathis A , HotteSJ , ChenEXet al. Phase I study of decitabine in combination with vorinostat in patients with advanced solid tumors and non-Hodgkin’s lymphomas . Clin. Cancer Res.27 ( 15S ) ( 2009 ).
  • Arce C , Perez-PlasenciaC , Gonzalez-FierroAet al. A proof-of-principle study of epigenetic therapy added to neoadjuvant doxorubicin cyclophosphamide for locally advanced breast cancer . PLoS ONE1 , e98 ( 2006 ).
  • Candelaria M , Gallardo-RinconD , ArceCet al. A Phase II study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors . Ann. Oncol.18 ( 9 ), 1529 – 1538 ( 2007 ).
  • Kelly WK , O’ConnorOA , KrugLMet al. Phase I study of an oral histone deacetylase inhibitor, suberoylanilide hydroxamic acid, in patients with advanced cancer . J. Clin. Oncol.23 ( 17 ), 3923 – 3931 ( 2005 ).
  • Luu TH , MorganRJ , LeongLet al. A Phase II trial of vorinostat (suberoylanilide hydroxamic acid) in metastatic breast cancer: a California Cancer Consortium study . Clin. Cancer Res.14 ( 21 ), 7138 – 7142 ( 2008 ).
  • Munster PN , ThurnKT , ThomasSet al. A Phase II study of the histone deacetylase inhibitor vorinostat combined with tamoxifen for the treatment of patients with hormone therapy-resistant breast cancer . Br. J. Cancer104 ( 12 ), 1828 – 1835 ( 2011 ).
  • Wardley A , McCafferyJ , CrownJet al. Phase II data for entinostat, a class 1 selective histone deacetylase inhibitor, in patients whose breast cancer is progressing on aromatase inhibitor therapy . J. Clin. Oncol.28 ( Suppl. 15 ) Abstract 1052 ( 2010 ).
  • Ramaswamy B , FiskusW , CohenBet al. Phase I–II study of vorinostat plus paclitaxel and bevacizumab in metastatic breast cancer: evidence for vorinostat-induced tubulin acetylation and Hsp90 inhibition in vivo . Breast Cancer Res. Treat.132 ( 3 ), 1063 – 1072 ( 2012 ).
  • Swaby R , SparanoJA , BhallaKet al. A Phase II study of the histone deacetylase inhibitor, vorinostat, in combination with trastuzumab in patients with advanced metastatic and/or local chest wall recurrent HER-2 amplified breast cancer resistant to transtuzumab- containing therapy: (E1104) a Trial of the Eastern Cooperative Oncology Group . Cancer Res.69 ( 24 Suppl. ) Abstract nr 5084 ( 2009 ).
  • Conte P , CamponeM , PronzatoPet al. Phase I trial of panobinostat (LBH589) in combination with trastuzumab in pre-treated HER2-positive metastatic breast cancer (mBC): preliminary safety and tolerability results . J. Clin. Oncol. (Meeting Abstracts)27 ( 15 Suppl. ), 1081 ( 2009 ).
  • Peacock N , JonesSE , YardleyDet al. A Phase I study of panobinostat (LBH589) with capecitabine with or without lapatinib . J. Clin. Oncol.28 ( 15 Suppl. ), Abstract 1115 ( 2010 ).
  • Yardley DA , Ismail-KhanRR , MelicharBet al. Randomized Phase II, double-blind, placebo-controlled study of exemestane with or without entinostat in postmenopausal women with locally recurrent or metastatic estrogen receptor-positive breast cancer progressing on treatment with a nonsteroidal aromatase inhibitor . J. Clin. Oncol.31 ( 17 ), 2128 – 2135 ( 2013 ).
  • Munster PN , MarchionD , ThomasSet al. Phase I trial of vorinostat and doxorubicin in solid tumours: histone deacetylase 2 expression as a predictive marker . Br. J. Cancer101 ( 7 ), 1044 – 1050 ( 2009 ).
  • ClinicalTrails.gov . http://clinicaltrials.gov
  • Jelinic P , ShawP . Loss of imprinting and cancer . J. Pathol.211 ( 3 ), 261 – 268 ( 2007 ).
  • Portela A , EstellerM . Epigenetic modifications and human disease . Nat. Biotechnol.28 ( 10 ), 1057 – 1068 ( 2010 ).
  • Girault I , TozluS , LidereauR , BiecheI . Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas . Clin. Cancer Res.9 ( 12 ), 4415 – 4422 ( 2003 ).
  • Duthie SJ . Epigenetic modifications and human pathologies: cancer and CVD . Proc. Nutr. Soc.70 ( 1 ), 47 – 56 ( 2011 ).
  • Lan J , HuaS , HeX , ZhangY . DNA methyltransferases and methyl-binding proteins of mammals . Acta Biochim. Biophys. Sin. (Shanghai) , 42 ( 4 ), 243 – 252 ( 2010 ).
  • Khan SI , AumsuwanP , KhanIA , WalkerLA , DasmahapatraAK . Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome . Chem. Res. Toxicol.25 ( 1 ), 61 – 73 ( 2012 ).
  • Ordway JM , BudimanMA , KorshunovaYet al. Identification of novel high-frequency DNA methylation changes in breast cancer . PLoS ONE2 ( 12 ), e1314 ( 2007 ).
  • Fang F , TurcanS , RimnerAet al. Breast cancer methylomes establish an epigenomic foundation for metastasis . Sci. Transl. Med.3 ( 75 ), 75ra25 ( 2011 ).
  • Holm K , HegardtC , StaafJet al. Molecular subtypes of breast cancer are associated with characteristic DNA methylation patterns . Breast Cancer Res.12 ( 3 ), R36 ( 2010 ).
  • Sawan C , HercegZ . Histone modifications and cancer . Adv. Genet.70 , 57 – 85 ( 2010 ).
  • Marson CM . Histone deacetylase inhibitors: design, structure-activity relationships and therapeutic implications for cancer . Anticancer Agents Med. Chem.9 ( 6 ), 661 – 692 ( 2009 ).
  • Belinsky SA , GrimesMJ , PicchiMAet al. Combination therapy with vidaza and entinostat suppresses tumor growth and reprograms the epigenome in an orthotopic lung cancer model . Cancer Res.71 ( 2 ), 454 – 462 ( 2011 ).
  • Gao C , BourkeE , ScobieMet al. Rational design and validation of a Tip60 histone acetyltransferase inhibitor . Sci. Rep.4 , 5372 ( 2014 ).
  • Balasubramanyam K , SwaminathanV , RanganathanA , KunduTK . Small molecule modulators of histone acetyltransferase p300 . J. Biol. Chem.278 ( 21 ), 19134 – 19140 ( 2003 ).
  • Eliseeva ED , ValkovV , JungM , JungMO . Characterization of novel inhibitors of histone acetyltransferases . Mol. Cancer Ther.6 ( 9 ), 2391 – 2398 ( 2007 ).
  • Jenuwein T , AllisCD . Translating the histone code . Science293 ( 5532 ), 1074 – 1080 ( 2001 ).
  • Collett K , EideGE , ArnesJet al. Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer . Clin. Cancer Res.12 ( 4 ), 1168 – 1174 ( 2006 ).
  • Tan J , YangX , ZhuangLet al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells . Genes Dev.21 ( 9 ), 1050 – 1063 ( 2007 ).
  • Woo J , KimHY , ByunBJet al. Biological evaluation of tanshindiols as EZH2 histone methyltransferase inhibitors . Bioorg. Med. Chem. Lett.24 ( 11 ), 2486 – 2492 ( 2014 ).
  • Smadbeck J , PetersonMB , ZeeBMet al. De novo peptide design and experimental validation of histone methyltransferase inhibitors . PLoS ONE9 ( 4 ), e95535 ( 2014 ).
  • Hamamoto R , SilvaFP , TsugeMet al. Enhanced SMYD3 expression is essential for the growth of breast cancer cells . Cancer Sci.97 ( 2 ), 113 – 118 ( 2006 ).
  • Luo XG , ZouJN , WangSZ , ZhangTC , XiT . Novobiocin decreases SMYD3 expression and inhibits the migration of MDA-MB-231 human breast cancer cells . IUBMB Life62 ( 3 ), 194 – 199 ( 2010 ).
  • Huang J , SenguptaR , EspejoABet al. p53 is regulated by the lysine demethylase LSD1 . Nature449 ( 7158 ), 105 – 108 ( 2007 ).
  • Lim S , JanzerA , BeckerAet al. Lysine-specific demethylase 1 (LSD1) is highly expressed in ER-negative breast cancers and a biomarker predicting aggressive biology . Carcinogenesis31 ( 3 ), 512 – 520 ( 2010 ).
  • Huang Y , GreeneE , Murray StewartTet al. Inhibition of lysine-specific demethylase 1 by polyamine analogues results in reexpression of aberrantly silenced genes . Proc. Natl Acad. Sci. USA104 ( 19 ), 8023 – 8028 ( 2007 ).
  • Zhu Q , HuangY , MartonLJ , WosterPM , DavidsonNE , CaseroRAJr . Polyamine analogs modulate gene expression by inhibiting lysine-specific demethylase 1 (LSD1) and altering chromatin structure in human breast cancer cells . Amino Acids42 ( 2–3 ), 887 – 898 ( 2011 ).
  • Huang J , DorseyJ , ChuikovSet al. G9a and Glp methylate lysine 373 in the tumor suppressor p53 . J. Biol. Chem.285 ( 13 ), 9636 – 9641 ( 2010 ).
  • Chen MW , HuaKT , KaoHJet al. H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM . Cancer Res.70 ( 20 ), 7830 – 7840 ( 2010 ).
  • Kondo Y , ShenL , AhmedSet al. Downregulation of histone H3 lysine 9 methyltransferase G9a induces centrosome disruption and chromosome instability in cancer cells . PLoS ONE3 ( 4 ), e2037 ( 2008 ).
  • Kubicek S , O’SullivanRJ , AugustEMet al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase . Mol. Cell25 ( 3 ), 473 – 481 ( 2007 ).
  • Lu Z , TianY , SalwenHRet al. Histone-lysine methyltransferase EHMT2 is involved in proliferation, apoptosis, cell invasion, and DNA methylation of human neuroblastoma cells . Anticancer Drugs24 ( 5 ), 484 – 493 ( 2013 ).
  • Yuan Y , WangQ , PaulkJet al. A small-molecule probe of the histone methyltransferase G9a induces cellular senescence in pancreatic adenocarcinoma . ACS Chem. Biol.7 ( 7 ), 1152 – 1157 ( 2012 ).
  • Dong C , WuY , YaoJet al. G9a interacts with Snail and is critical for Snail-mediated E-cadherin repression in human breast cancer . J. Clin. Invest.122 ( 4 ), 1469 – 1486 ( 2012 ).
  • Iorio MV , FerracinM , LiuCGet al. MicroRNA gene expression deregulation in human breast cancer . Cancer Res.65 ( 16 ), 7065 – 7070 ( 2005 ).
  • Frankel LB , ChristoffersenNR , JacobsenA , LindowM , KroghA , LundAH . Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells . J. Biol. Chem.283 ( 2 ), 1026 – 1033 ( 2008 ).
  • Iliopoulos D , PolytarchouC , HatziapostolouMet al. MicroRNAs differentially regulated by Akt isoforms control EMT and stem cell renewal in cancer cells . Sci. Signal2 ( 92 ), ra62 ( 2009 ).
  • Piva R , SpandidosDA , GambariR . From microRNA functions to microRNA therapeutics: novel targets and novel drugs in breast cancer research and treatment (Review) . Int. J. Oncol.43 ( 4 ), 985 – 994 ( 2013 ).
  • Angeloni SV , MartinMB , Garcia-MoralesP , Castro-GalacheMD , FerragutJA , SacedaM . Regulation of estrogen receptor-alpha expression by the tumor suppressor gene p53 in MCF-7 cells . J. Endocrinol.180 ( 3 ), 497 – 504 ( 2004 ).
  • Fuqua SA , GuG , RechoumY . Estrogen receptor (ER) alpha mutations in breast cancer: hidden in plain sight . Breast Cancer Res. Treat.144 ( 1 ), 11 – 19 ( 2014 ).
  • Alluri P , SpeersC , ChinnaiyanA . Estrogen receptor mutations and their role in breast cancer progression . Breast Cancer Research16 ( 6 ), 494 ( 2014 ).
  • Lustberg MB , RamaswamyB . Epigenetic therapy in breast cancer . Curr. Breast Cancer Rep.3 ( 1 ), 34 – 43 ( 2011 ).
  • Yan L , NassSJ , SmithD , NelsonWG , HermanJG , DavidsonNE . Specific inhibition of DNMT1 by antisense oligonucleotides induces re-expression of estrogen receptor-alpha (ER) in ER-negative human breast cancer cell lines . Cancer Biol. Ther.2 ( 5 ), 552 – 556 ( 2003 ).
  • Zhou Q , AtadjaP , DavidsonNE . Histone deacetylase inhibitor LBH589 reactivates silenced estrogen receptor alpha (ER) gene expression without loss of DNA hypermethylation . Cancer Biol. Ther.6 ( 1 ), 64 – 69 ( 2007 ).
  • Sabnis GJ , GoloubevaOG , KaziAA , ShahP , BrodieAH . HDAC inhibitor entinostat restores responsiveness of letrozole-resistant MCF-7Ca xenografts to aromatase inhibitors through modulation of Her-2 . Mol. Cancer Ther.12 ( 12 ), 2804 – 2816 ( 2013 ).
  • Pathiraja TN , NayakSR , XiYet al. Epigenetic reprogramming of HOXC10 in endocrine-resistant breast cancer . Sci. Transl. Med.6 ( 229 ), 229ra241 ( 2014 ).
  • Garcia-Bassets I , KwonYS , TeleseFet al. Histone methylation-dependent mechanisms impose ligand dependency for gene activation by nuclear receptors . Cell128 ( 3 ), 505 – 518 ( 2007 ).
  • Bovenzi V , MomparlerRL . Antineoplastic action of 5-aza-2’-deoxycytidine and histone deacetylase inhibitor and their effect on the expression of retinoic acid receptor beta and estrogen receptor alpha genes in breast carcinoma cells . Cancer Chemother. Pharmacol.48 ( 1 ), 71 – 76 ( 2001 ).
  • Belinsky SA , KlingeDM , StidleyCAet al. Inhibition of DNA methylation and histone deacetylation prevents murine lung cancer . Cancer Res.63 ( 21 ), 7089 – 7093 ( 2003 ).
  • Fan J , YinWJ , LuJSet al. ER alpha negative breast cancer cells restore response to endocrine therapy by combination treatment with both HDAC inhibitor and DNMT inhibitor . J. Cancer Res. Clin. Oncol.134 ( 8 ), 883 – 890 ( 2008 ).
  • Xiong J , YuD , WeiNet al. An estrogen receptor alpha suppressor, microRNA-22, is downregulated in estrogen receptor alpha-positive human breast cancer cell lines and clinical samples . FEBS J.277 ( 7 ), 1684 – 1694 ( 2010 ).
  • Huynh KT , ChongKK , GreenbergES , HoonDS . Epigenetics of estrogen receptor-negative primary breast cancer . Expert Rev. Mol. Diagn.12 ( 4 ), 371 – 382 ( 2012 ).
  • Dowsett M , CuzickJ , WaleC , HowellT , HoughtonJ , BaumM . Retrospective analysis of time to recurrence in the ATAC trial according to hormone receptor status: an hypothesis-generating study . J. Clin. Oncol.23 ( 30 ), 7512 – 7517 ( 2005 ).
  • Kim HJ , CuiX , HilsenbeckSG , LeeAV . Progesterone receptor loss correlates with human epidermal growth factor receptor 2 overexpression in estrogen receptor-positive breast cancer . Clin. Cancer Res.12 ( 3 Pt 2 ), s1013 – s1018 ( 2006 ).
  • Saal LH , HolmK , MaurerMet al. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma . Cancer Res.65 ( 7 ), 2554 – 2559 ( 2005 ).
  • Widschwendter M , SiegmundKD , MullerHMet al. Association of breast cancer DNA methylation profiles with hormone receptor status and response to tamoxifen . Cancer Res.64 ( 11 ), 3807 – 3813 ( 2004 ).
  • Mirza S , SharmaG , PrasadCPet al. Promoter hypermethylation of TMS1, BRCA1, ERalpha and PRB in serum and tumor DNA of invasive ductal breast carcinoma patients . Life Sci.81 ( 4 ), 280 – 287 ( 2007 ).
  • Pathiraja TN , ShettyPB , JelinekJet al. Progesterone receptor isoform-specific promoter methylation: association of PRA promoter methylation with worse outcome in breast cancer patients . Clin. Cancer Res.17 ( 12 ), 4177 – 4186 ( 2011 ).
  • Billam M , SobolewskiMD , DavidsonNE . Effects of a novel DNA methyltransferase inhibitor zebularine on human breast cancer cells . Breast Cancer Res. Treat.120 ( 3 ), 581 – 592 ( 2009 ).
  • Fiegl H , MillingerS , GoebelGet al. Breast cancer DNA methylation profiles in cancer cells and tumor stroma: association with HER-2/neu status in primary breast cancer . Cancer Res.66 ( 1 ), 29 – 33 ( 2006 ).
  • Kastner P , KrustA , TurcotteBet al. Two distinct estrogen-regulated promoters generate transcripts encoding the two functionally different human progesterone receptor forms A and B . EMBO J.9 ( 5 ), 1603 – 1614 ( 1990 ).
  • Mote PA , BartowS , TranN , ClarkeCL . Loss of co-ordinate expression of progesterone receptors A and B is an early event in breast carcinogenesis . Breast Cancer Res. Treat.72 ( 2 ), 163 – 172 ( 2002 ).
  • Hopp TA , WeissHL , HilsenbeckSGet al. Breast cancer patients with progesterone receptor PR-A-rich tumors have poorer disease-free survival rates . Clin. Cancer Res.10 ( 8 ), 2751 – 2760 ( 2004 ).
  • Richer JK , JacobsenBM , ManningNG , AbelMG , WolfDM , HorwitzKB . Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells . J. Biol. Chem.277 ( 7 ), 5209 – 5218 ( 2002 ).
  • Pathiraja TN , StearnsV , OesterreichS . Epigenetic regulation in estrogen receptor positive breast cancer–role in treatment response . J. Mammary Gland Biol. Neoplasia15 ( 1 ), 35 – 47 ( 2010 ).
  • Gaudet MM , CampanM , FigueroaJDet al. DNA hypermethylation of ESR1 and PGR in breast cancer: pathologic and epidemiologic associations . Cancer Epidemiol. Biomarkers Prev.18 ( 11 ), 3036 – 3043 ( 2009 ).
  • Faivre EJ , LangeCA . Progesterone receptors upregulate Wnt-1 to induce epidermal growth factor receptor transactivation and c-Src-dependent sustained activation of Erk1/2 mitogen-activated protein kinase in breast cancer cells . Mol. Cell Biol.27 ( 2 ), 466 – 480 ( 2007 ).
  • Zheng ZY , ZhengSM , BayBH , AwSE , VCLL . Anti-estrogenic mechanism of unliganded progesterone receptor isoform B in breast cancer cells . Breast Cancer Res. Treat.110 ( 1 ), 111 – 125 ( 2008 ).
  • Abdel-Hafiz H , TakimotoGS , TungL , HorwitzKB . The inhibitory function in human progesterone receptor N termini binds SUMO-1 protein to regulate autoinhibition and transrepression . J. Biol. Chem.277 ( 37 ), 33950 – 33956 ( 2002 ).
  • Wargon V , HelgueroLA , BoladoJet al. Reversal of antiprogestin resistance and progesterone receptor isoform ratio in acquired resistant mammary carcinomas . Breast Cancer Res. Treat.116 ( 3 ), 449 – 460 ( 2009 ).
  • Wargon V , FernandezSV , GoinM , GiulianelliS , RussoJ , LanariC . Hypermethylation of the progesterone receptor A in constitutive antiprogestin-resistant mouse mammary carcinomas . Breast Cancer Res. Treat.126 ( 2 ), 319 – 332 ( 2011 ).
  • Yin H , GlassJ . The phenotypic radiation resistance of CD44+/CD24(-or low) breast cancer cells is mediated through the enhanced activation of ATM signaling . PLoS ONE6 ( 9 ), e24080 ( 2011 ).
  • Maugeri-Sacca M , VigneriP , De MariaR . Cancer stem cells and chemosensitivity . Clin. Cancer Res.17 ( 15 ), 4942 – 4947 ( 2011 ).
  • Balic M , SchwarzenbacherD , StanzerSet al. Genetic and epigenetic analysis of putative breast cancer stem cell models . BMC Cancer13 , 358 ( 2013 ).
  • van Vlerken LE , HurtEM , HollingsworthRE . The role of epigenetic regulation in stem cell and cancer biology . J. Mol. Med. (Berl)90 ( 7 ), 791 – 801 ( 2012 ).
  • Baba T , ConveryPA , MatsumuraNet al. Epigenetic regulation of CD133 and tumorigenicity of CD133 +ovarian cancer cells . Oncogene28 ( 2 ), 209 – 218 ( 2009 ).
  • Tabu K , SasaiK , KimuraTet al. Promoter hypomethylation regulates CD133 expression in human gliomas . Cell Res.18 ( 10 ), 1037 – 1046 ( 2008 ).
  • Yi JM , TsaiHC , GlocknerSCet al. Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors . Cancer Res.68 ( 19 ), 8094 – 8103 ( 2008 ).
  • You H , DingW , RountreeCB . Epigenetic regulation of cancer stem cell marker CD133 by transforming growth factor-beta . Hepatology51 ( 5 ), 1635 – 1644 ( 2010 ).
  • van Vlerken LE , KieferCM , MorehouseCet al. EZH2 is required for breast and pancreatic cancer stem cell maintenance and can be used as a functional cancer stem cell reporter . Stem Cells Transl. Med.2 ( 1 ), 43 – 52 ( 2013 ).
  • Crea F , HurtEM , MathewsLAet al. Pharmacologic disruption of Polycomb repressive complex 2 inhibits tumorigenicity and tumor progression in prostate cancer . Mol. Cancer10 , 40 ( 2011 ).
  • Rizzo S , HerseyJM , MellorPet al. Ovarian cancer stem cell-like side populations are enriched following chemotherapy and overexpress EZH2 . Mol. Cancer Ther.10 ( 2 ), 325 – 335 ( 2011 ).
  • Crea F , HurtEM , FarrarWL . Clinical significance of Polycomb gene expression in brain tumors . Mol. Cancer9 , 265 ( 2010 ).
  • Fouse SD , ShenY , PellegriniMet al. Promoter CpG methylation contributes to ES cell gene regulation in parallel with Oct4/Nanog, PcG complex, and histone H3 K4/K27 trimethylation . Cell Stem Cell2 ( 2 ), 160 – 169 ( 2008 ).
  • Zhou J , BiC , CheongLLet al. The histone methyltransferase inhibitor, DZNep, up-regulates TXNIP, increases ROS production, and targets leukemia cells in AML . Blood118 ( 10 ), 2830 – 2839 ( 2011 ).
  • Chiba T , SuzukiE , NegishiMet al. 3-Deazaneplanocin A is a promising therapeutic agent for the eradication of tumor-initiating hepatocellular carcinoma cells . Int. J. Cancer130 ( 11 ), 2557 – 2567 ( 2011 ).
  • Suva ML , RiggiN , JaniszewskaMet al. EZH2 is essential for glioblastoma cancer stem cell maintenance . Cancer Res.69 ( 24 ), 9211 – 9218 ( 2009 ).
  • Wang J , LuF , RenQet al. Novel histone demethylase LSD1 inhibitors selectively target cancer cells with pluripotent stem cell properties . Cancer Res.71 ( 23 ), 7238 – 7249 ( 2011 ).
  • Schwarzenbacher D , BalicM , PichlerM . The role of microRNAs in breast cancer stem cells . Int. J. Mol. Sci.14 ( 7 ), 14712 – 14723 ( 2013 ).
  • Park SM , GaurAB , LengyelE , PeterME . The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2 . Genes Dev.22 ( 7 ), 894 – 907 ( 2008 ).
  • Heo I , JooC , KimYKet al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation . Cell138 ( 4 ), 696 – 708 ( 2009 ).
  • Martello G , RosatoA , FerrariFet al. A MicroRNA targeting dicer for metastasis control . Cell141 ( 7 ), 1195 – 1207 ( 2010 ).
  • Mani SA , GuoW , LiaoMJet al. The epithelial-mesenchymal transition generates cells with properties of stem cells . Cell133 ( 4 ), 704 – 715 ( 2008 ).
  • Nalls D , TangSN , RodovaM , SrivastavaRK , ShankarS . Targeting epigenetic regulation of miR-34a for treatment of pancreatic cancer by inhibition of pancreatic cancer stem cells . PLoS ONE6 ( 8 ), e24099 ( 2011 ).
  • Wu MY , FuJ , XiaoX , WuJ , WuRC . MiR-34a regulates therapy resistance by targeting HDAC1 and HDAC7 in breast cancer . Cancer Lett.354 ( 2 ), 311 – 319 ( 2014 ).
  • Shankar S , KumarD , SrivastavaRK . Epigenetic modifications by dietary phytochemicals: implications for personalized nutrition . Pharmacol. Ther.138 ( 1 ), 1 – 17 ( 2013 ).
  • Lee JH , KhorTO , ShuL , SuZY , FuentesF , KongAN . Dietary phytochemicals and cancer prevention: Nrf2 signaling, epigenetics, and cell death mechanisms in blocking cancer initiation and progression . Pharmacol. Ther.137 ( 2 ), 153 – 171 ( 2013 ).
  • Siddiqui IA , AdhamiVM , SaleemM , MukhtarH . Beneficial effects of tea and its polyphenols against prostate cancer . Mol. Nutr. Food Res.50 ( 2 ), 130 – 143 ( 2006 ).
  • Fang MZ , WangY , AiNet al. Tea polyphenol (-)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines . Cancer Res.63 ( 22 ), 7563 – 7570 ( 2003 ).
  • Savouret JF , QuesneM . Resveratrol and cancer: a review . Biomed. Pharmacother.56 ( 2 ), 84 – 87 ( 2002 ).
  • Srivastava RK , UntermanTG , ShankarS . FOXO transcription factors and VEGF neutralizing antibody enhance antiangiogenic effects of resveratrol . Mol. Cell Biochem.337 ( 1–2 ), 201 – 212 ( 2010 ).
  • Wang Y , LeeKW , ChanFL , ChenS , LeungLK . The red wine polyphenol resveratrol displays bilevel inhibition on aromatase in breast cancer cells . Toxicol. Sci.92 ( 1 ), 71 – 77 ( 2006 ).
  • Roy SK , ChenQ , FuJ , ShankarS , SrivastavaRK . Resveratrol inhibits growth of orthotopic pancreatic tumors through activation of FOXO transcription factors . PLoS ONE6 ( 9 ), e25166 ( 2011 ).
  • Stefanska B , RudnickaK , BednarekA , Fabianowska-MajewskaK . Hypomethylation and induction of retinoic acid receptor beta 2 by concurrent action of adenosine analogues and natural compounds in breast cancer cells . Eur. J. Pharmacol.638 ( 1–3 ), 47 – 53 ( 2010 ).
  • Teiten MH , EifesS , DicatoM , DiederichM . Curcumin-the paradigm of a multi-target natural compound with applications in cancer prevention and treatment . Toxins (Basel)2 ( 1 ), 128 – 162 ( 2010 ).
  • Liu Z , XieZ , JonesWet al. Curcumin is a potent DNA hypomethylation agent . Bioorg. Med. Chem. Lett.19 ( 3 ), 706 – 709 ( 2009 ).
  • Medina-Franco JL , Lopez-VallejoF , KuckD , LykoF . Natural products as DNA methyltransferase inhibitors: a computer-aided discovery approach . Mol. Divers.15 ( 2 ), 293 – 304 ( 2011 ).
  • Chen Y , ShuW , ChenW , WuQ , LiuH , CuiG . Curcumin, both histone deacetylase and p300/CBP-specific inhibitor, represses the activity of nuclear factor kappa B and Notch 1 in Raji cells . Basic. Clin. Pharmacol. Toxicol.101 ( 6 ), 427 – 433 ( 2007 ).
  • Yang J , CaoY , SunJ , ZhangY . Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells . Med. Oncol.27 ( 4 ), 1114 – 1118 ( 2010 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.