386
Views
0
CrossRef citations to date
0
Altmetric
Review

DNA Methylation Dynamics in Neurogenesis

, , &
Pages 401-414 | Received 18 Sep 2015, Accepted 18 Dec 2015, Published online: 07 Mar 2016

References

  • Taverna E , GotzM , HuttnerWB . The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex . Annu. Rev. Cell Dev. Biol.30 , 465 – 502 ( 2014 ).
  • Ming GL , SongH . Adult neurogenesis in the mammalian brain: significant answers and significant questions . Neuron70 ( 4 ), 687 – 702 ( 2011 ).
  • Russo VEA , MartienssenRA , RiggsADet al. Epigenetic Mechanisms of Gene Regulation . RussoVEA , MartienssenRA , RiggsAD ( Eds ). Cold Spring Harbor Laboratory Press , Woodbury, NY, USA ( 1996 ).
  • Bird A . Perceptions of epigenetics . Nature447 ( 7143 ), 396 – 398 ( 2007 ).
  • Kriaucionis S , HeintzN . The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain . Science324 ( 5929 ), 929 – 930 ( 2009 ).
  • Tahiliani M , KohKP , ShenYet al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 . Science324 ( 5929 ), 930 – 935 ( 2009 ).
  • Ito S , D’AlessioAC , TaranovaOV , HongK , SowersLC , ZhangY . Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification . Nature466 ( 7310 ), 1129 – 1133 ( 2010 ).
  • Ficz G , BrancoMR , SeisenbergerSet al. Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation . Nature473 ( 7347 ), 398 – 402 ( 2011 ).
  • He YF , LiBZ , LiZet al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA . Science333 ( 6047 ), 1303 – 1307 ( 2011 ).
  • Ito S , ShenL , DaiQet al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine . Science333 ( 6047 ), 1300 – 1303 ( 2011 ).
  • Pastor WA , PapeUJ , HuangYet al. Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells . Nature473 ( 7347 ), 394 – 397 ( 2011 ).
  • Meissner A , MikkelsenTS , GuHet al. Genome-scale DNA methylation maps of pluripotent and differentiated cells . Nature454 ( 7205 ), 766 – 770 ( 2008 ).
  • Siegel A , SapruHN . Essential Neuroscience . Wolters Kluwer , MD, PA, USA , 19 – 32 ( 2015 ).
  • Gotz M , HuttnerWB . The cell biology of neurogenesis . Nat. Rev. Mol. Cell Biol.6 ( 10 ), 777 – 788 ( 2005 ).
  • Gotz M , BardeYA . Radial glial cells defined and major intermediates between embryonic stem cells and CNS neurons . Neuron46 ( 3 ), 369 – 372 ( 2005 ).
  • Mori T , BuffoA , GotzM . The novel roles of glial cells revisited: the contribution of radial glia and astrocytes to neurogenesis . Curr. Top. Dev. Biol.69 , 67 – 99 ( 2005 ).
  • Qian X , ShenQ , GoderieSKet al. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells . Neuron28 ( 1 ), 69 – 80 ( 2000 ).
  • Molyneaux BJ , ArlottaP , MenezesJR , MacklisJD . Neuronal subtype specification in the cerebral cortex . Nat. Rev. Neurosci.8 ( 6 ), 427 – 437 ( 2007 ).
  • Sauvageot CM , StilesCD . Molecular mechanisms controlling cortical gliogenesis . Curr. Opin. Neurobiol.12 ( 3 ), 244 – 249 ( 2002 ).
  • Kriegstein A , Alvarez-BuyllaA . The glial nature of embryonic and adult neural stem cells . Annu. Rev. Neurosci.32 , 149 – 184 ( 2009 ).
  • Ge WP , MiyawakiA , GageFH , JanYN , JanLY . Local generation of glia is a major astrocyte source in postnatal cortex . Nature484 ( 7394 ), U376 – U381 ( 2012 ).
  • Suzuki IK , VanderhaeghenP . Is this a brain which I see before me? Modeling human neural development with pluripotent stem cells . Development142 ( 18 ), 3138 – 3150 ( 2015 ).
  • Rakic P . A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution . Trends Neurosci.18 ( 9 ), 383 – 388 ( 1995 ).
  • Zappaterra MW , LehtinenMK . The cerebrospinal fluid: regulator of neurogenesis, behavior, and beyond . Cell. Mol. Life Sci.69 ( 17 ), 2863 – 2878 ( 2012 ).
  • Zhang X , HuangCT , ChenJet al. Pax6 is a human neuroectoderm cell fate determinant . Cell Stem Cell7 ( 1 ), 90 – 100 ( 2010 ).
  • Hamby ME , CoskunV , SunYE . Transcriptional regulation of neuronal differentiation: the epigenetic layer of complexity . Biochim. Biophys. Acta1779 ( 8 ), 432 – 437 ( 2008 ).
  • Ballas N , GrunseichC , LuDD , SpehJC , MandelG . REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis . Cell121 ( 4 ), 645 – 657 ( 2005 ).
  • Codega P , Silva-VargasV , PaulAet al. Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche . Neuron82 ( 3 ), 545 – 559 ( 2014 ).
  • Lazarini F , LledoPM . Is adult neurogenesis essential for olfaction?Trends Neurosci.34 ( 1 ), 20 – 30 ( 2011 ).
  • Aimone JB , DengW , GageFH . Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis, and pattern separation . Neuron70 ( 4 ), 589 – 596 ( 2011 ).
  • Bergmann O , SpaldingKL , FrisenJ . Adult neurogenesis in humans . Cold Spring Harb. Perspect. Biol.7 ( 7 ), a018994 ( 2015 ).
  • Spalding KL , BergmannO , AlkassKet al. Dynamics of hippocampal neurogenesis in adult humans . Cell153 ( 6 ), 1219 – 1227 ( 2013 ).
  • Imayoshi I , SakamotoM , YamaguchiM , MoriK , KageyamaR . Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains . J. Neurosci.30 ( 9 ), 3489 – 3498 ( 2010 ).
  • Pierfelice T , AlberiL , GaianoN . Notch in the vertebrate nervous system: an old dog with new tricks . Neuron69 ( 5 ), 840 – 855 ( 2011 ).
  • Nam HS , BenezraR . High levels of Id1 expression define B1 type adult neural stem cells . Cell Stem Cell5 ( 5 ), 515 – 526 ( 2009 ).
  • Lim DA , HuangYC , SwigutTet al. Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells . Nature458 ( 7237 ), 529 – 533 ( 2009 ).
  • Kempermann G , KuhnHG , GageFH . More hippocampal neurons in adult mice living in an enriched environment . Nature386 ( 6624 ), 493 – 495 ( 1997 ).
  • Van Praag H , SchinderAF , ChristieBR , ToniN , PalmerTD , GageFH . Functional neurogenesis in the adult hippocampus . Nature415 ( 6875 ), 1030 – 1034 ( 2002 ).
  • Ma DK , MarchettoMC , GuoJU , MingGL , GageFH , SongH . Epigenetic choreographers of neurogenesis in the adult mammalian brain . Nat. Neurosci.13 ( 11 ), 1338 – 1344 ( 2010 ).
  • Law JA , JacobsenSE . Establishing, maintaining and modifying DNA methylation patterns in plants and animals . Nat. Rev. Genet.11 ( 3 ), 204 – 220 ( 2010 ).
  • Lee HJ , HoreTA , ReikW . Reprogramming the methylome: erasing memory and creating diversity . Cell Stem Cell14 ( 6 ), 710 – 719 ( 2014 ).
  • Lister R , MukamelEA , NeryJRet al. Global epigenomic reconfiguration during mammalian brain development . Science341 ( 6146 ), 1237905 ( 2013 ).
  • Shirane K , TohH , KobayashiHet al. Mouse oocyte methylomes at base resolution reveal genome-wide accumulation of non-CpG methylation and role of DNA methyltransferases . PLoS Genet.9 ( 4 ), e1003439 ( 2013 ).
  • Okano M , XieS , LiE . Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases . Nat. Genet.19 ( 3 ), 219 – 220 ( 1998 ).
  • Okano M , BellDW , HaberDA , LiE . DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development . Cell99 ( 3 ), 247 – 257 ( 1999 ).
  • Goll MG , BestorTH . Eukaryotic cytosine methyltransferases . Annu. Rev. Biochem.74 , 481 – 514 ( 2005 ).
  • Bestor TH . The DNA methyltransferases of mammals . Hum. Mol. Genet.9 ( 16 ), 2395 – 2402 ( 2000 ).
  • Bostick M , KimJK , EstevePO , ClarkA , PradhanS , JacobsenSE . UHRF1 plays a role in maintaining DNA methylation in mammalian cells . Science317 ( 5845 ), 1760 – 1764 ( 2007 ).
  • Smith ZD , MeissnerA . DNA methylation: roles in mammalian development . Nat. Rev. Genet.14 ( 3 ), 204 – 220 ( 2013 ).
  • Tate PH , BirdAP . Effects of DNA methylation on DNA-binding proteins and gene expression . Curr. Opin. Genet. Dev.3 ( 2 ), 226 – 231 ( 1993 ).
  • Defossez PA , StanchevaI . Biological functions of methyl-CpG-binding proteins . Prog. Mol. Biol. Transl. Sci.101 , 377 – 398 ( 2011 ).
  • Bird A . DNA methylation patterns and epigenetic memory . Genes Dev.16 ( 1 ), 6 – 21 ( 2002 ).
  • Mayer W , NiveleauA , WalterJ , FundeleR , HaafT . Demethylation of the zygotic paternal genome . Nature403 ( 6769 ), 501 – 502 ( 2000 ).
  • Wu H , ZhangY . Reversing DNA methylation: mechanisms, genomics, and biological functions . Cell156 ( 1–2 ), 45 – 68 ( 2014 ).
  • Maiti A , DrohatAC . Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine potential implications for active demethylation of CpG sites . J. Biol. Chem.286 ( 41 ), 35334 – 35338 ( 2011 ).
  • Gu TP , GuoF , YangHet al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes . Nature477 ( 7366 ), 606 – 610 ( 2011 ).
  • Inoue A , ShenL , DaiQ , HeC , ZhangY . Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development . Cell Res.21 ( 12 ), 1670 – 1676 ( 2011 ).
  • Iqbal K , JinSG , PfeiferGP , SzaboPE . Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine . Proc. Natl Acad. Sci. USA108 ( 9 ), 3642 – 3647 ( 2011 ).
  • Santos F , PeatJ , BurgessH , RadaC , ReikW , DeanW . Active demethylation in mouse zygotes involves cytosine deamination and base excision repair . Epigenet. Chromatin6 ( 1 ), 39 ( 2013 ).
  • Pastor WA , AravindL , RaoA . TETonic shift: biological roles of TET proteins in DNA demethylation and transcription . Nat. Rev. Mol. Cell Biol.14 ( 6 ), 341 – 356 ( 2013 ).
  • Goto K , NumataM , KomuraJI , OnoT , BestorTH , KondoH . Expression of DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in mice . Differentiation56 ( 1–2 ), 39 – 44 ( 1994 ).
  • Feng J , ChangH , LiE , FanG . Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system . J. Neurosci. Res.79 ( 6 ), 734 – 746 ( 2005 ).
  • Li E , BestorTH , JaenischR . Targeted mutation of the DNA methyltransferase gene results in embryonic lethality . Cell69 ( 6 ), 915 – 926 ( 1992 ).
  • Fan G , BeardC , ChenRZet al. DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals . J. Neurosci.21 ( 3 ), 788 – 797 ( 2001 ).
  • Rhee KD , YuJ , ZhaoCY , FanG , YangXJ . Dnmt1-dependent DNA methylation is essential for photoreceptor terminal differentiation and retinal neuron survival . Cell Death Dis.3 , e427 ( 2012 ).
  • Nguyen S , MeletisK , FuD , JhaveriS , JaenischR . Ablation of de novo DNA methyltransferase Dnmt3a in the nervous system leads to neuromuscular defects and shortened lifespan . Dev. Dyn.236 ( 6 ), 1663 – 1676 ( 2007 ).
  • Tan L , XiongL , XuWet al. Genome-wide comparison of DNA hydroxymethylation in mouse embryonic stem cells and neural progenitor cells by a new comparative hMeDIP-seq method . Nucleic Acids Res.41 ( 7 ), e84 ( 2013 ).
  • Wang Y , ZhangY . Regulation of TET protein stability by calpains . Cell Rep.6 ( 2 ), 278 – 284 ( 2014 ).
  • Li T , YangD , LiJ , TangY , YangJ , LeW . Critical role of Tet3 in neural progenitor cell maintenance and terminal differentiation . Mol. Neurobiol.51 ( 1 ), 142 – 154 ( 2015 ).
  • Hahn MA , QiuR , WuXet al. Dynamics of 5-hydroxymethylcytosine and chromatin marks in Mammalian neurogenesis . Cell Rep.3 ( 2 ), 291 – 300 ( 2013 ).
  • Dawlaty MM , GanzK , PowellBEet al. Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development . Cell Stem Cell9 ( 2 ), 166 – 175 ( 2011 ).
  • Dawlaty MM , BreilingA , LeTet al. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development . Dev. Cell24 ( 3 ), 310 – 323 ( 2013 ).
  • Zhang RR , CuiQY , MuraiKet al. Tet1 regulates adult hippocampal neurogenesis and cognition . Cell Stem Cell13 ( 2 ), 237 – 245 ( 2013 ).
  • Rudenko A , DawlatyMM , SeoJet al. Tet1 is critical for neuronal activity-regulated gene expression and memory extinction . Neuron79 ( 6 ), 1109 – 1122 ( 2013 ).
  • Kaas GA , ZhongC , EasonDEet al. TET1 controls CNS 5-methylcytosine hydroxylation, active DNA demethylation, gene transcription, and memory formation . Neuron79 ( 6 ), 1086 – 1093 ( 2013 ).
  • Xu Y , XuC , KatoAet al. Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development . Cell151 ( 6 ), 1200 – 1213 ( 2012 ).
  • Ma DK , JangMH , GuoJUet al. Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis . Science323 ( 5917 ), 1074 – 1077 ( 2009 ).
  • Guo JU , SuYJ , ZhongC , MingGL , SongHJ . Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain . Cell145 ( 3 ), 423 – 434 ( 2011 ).
  • Stadler MB , MurrR , BurgerLet al. DNA-binding factors shape the mouse methylome at distal regulatory regions . Nature480 ( 7378 ), 490 – 495 ( 2011 ).
  • Yu M , HonGC , SzulwachKEet al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome . Cell149 ( 6 ), 1368 – 1380 ( 2012 ).
  • Etchegaray JP , ChavezL , HuangYet al. The histone deacetylase SIRT6 controls embryonic stem cell fate via TET-mediated production of 5-hydroxymethylcytosine . Nat. Cell Biol.17 ( 5 ), 545 – 557 ( 2015 ).
  • Spruijt CG , GnerlichF , SmitsAHet al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives . Cell152 ( 5 ), 1146 – 1159 ( 2013 ).
  • Colquitt BM , AllenWE , BarneaG , LomvardasS . Alteration of genic 5-hydroxymethylcytosine patterning in olfactory neurons correlates with changes in gene expression and cell identity . Proc. Natl Acad. Sci. USA110 ( 36 ), 14682 – 14687 ( 2013 ).
  • Cortazar D , KunzC , SelfridgeJet al. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability . Nature470 ( 7334 ), 419 – 423 ( 2011 ).
  • Wheldon LM , AbakirA , FerjentsikZet al. Transient accumulation of 5-carboxylcytosine indicates involvement of active demethylation in lineage specification of neural stem cells . Cell. Rep.7 ( 5 ), 1353 – 1361 ( 2014 ).
  • Takizawa T , NakashimaK , NamihiraMet al. DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain . Dev. Cell1 ( 6 ), 749 – 758 ( 2001 ).
  • Fan G , MartinowichK , ChinMHet al. DNA methylation controls the timing of astrogliogenesis through regulation of JAK–STAT signaling . Development132 ( 15 ), 3345 – 3356 ( 2005 ).
  • Namihira M , KohyamaJ , SemiKet al. Committed neuronal precursors confer astrocytic potential on residual neural precursor cells . Dev. Cell16 ( 2 ), 245 – 255 ( 2009 ).
  • Wu H , CoskunV , TaoJet al. Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes . Science329 ( 5990 ), 444 – 448 ( 2010 ).
  • Zhao XY , UebaT , ChristieBRet al. Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function . Proc. Natl Acad. Sci. USA100 ( 11 ), 6777 – 6782 ( 2003 ).
  • Liu C , TengZQ , SantistevanNJet al. Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation . Cell Stem Cell6 ( 5 ), 433 – 444 ( 2010 ).
  • Madsen TM , TreschowA , BengzonJ , BolwigTG , LindvallO , TingstromA . Increased neurogenesis in a model of electroconvulsive therapy . Biol. Psychiatry47 ( 12 ), 1043 – 1049 ( 2000 ).
  • Mo A , MukamelEA , DavisFPet al. Epigenomic signatures of neuronal diversity in the mammalian brain . Neuron86 ( 6 ), 1369 – 1384 ( 2015 ).
  • Wion D , CasadesusJ . N6-methyl-adenine: an epigenetic signal for DNA–protein interactions . Nat. Rev. Microbiol.4 ( 3 ), 183 – 192 ( 2006 ).
  • Fu Y , LuoGZ , ChenKet al. N6-methyldeoxyadenosine marks active transcription start sites in Chlamydomonas . Cell161 ( 4 ), 879 – 892 ( 2015 ).
  • Greer EL , BlancoMA , GuLet al. DNA Methylation on N6-adenine in C. elegans . Cell161 ( 4 ), 868 – 878 ( 2015 ).
  • Zhang G , HuangH , LiuDet al. N6-methyladenine DNA modification in Drosophila . Cell161 ( 4 ), 893 – 906 ( 2015 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.