224
Views
0
CrossRef citations to date
0
Altmetric
Review

Circulating miRNAs as Intercellular Messengers, Potential Biomarkers and Therapeutic Targets for Type 2 Diabetes

, , , , , , & show all
Pages 653-667 | Published online: 25 Jun 2015

References

  • Feinberg AP . Phenotypic plasticity and the epigenetics of human disease . Nature447 ( 7143 ), 433 – 440 ( 2007 ).
  • Keating ST , El-OstaA . Epigenetic changes in diabetes . Clin. Genet.84 ( 1 ), 1 – 10 ( 2013 ).
  • Tetreault N , De GuireV . miRNAs: their discovery, biogenesis and mechanism of action . Clin. Biochem.46 ( 10–11 ), 842 – 845 ( 2013 ).
  • Fabian MR , SonenbergN , FilipowiczW . Regulation of mRNA translation and stability by microRNAs . Annu. Rev. Biochem.79 , 351 – 379 ( 2010 ).
  • Sato F , TsuchiyaS , MeltzerSJ , ShimizuK . MicroRNAs and epigenetics . FEBS J.278 ( 10 ), 1598 – 1609 ( 2011 ).
  • Liu C , TengZQ , McquateALet al. An epigenetic feedback regulatory loop involving microRNA-195 and MBD1 governs neural stem cell differentiation . PLoS ONE8 ( 1 ), e51436 ( 2013 ).
  • Guay C , RoggliE , NescaV , JacovettiC , RegazziR . Diabetes mellitus, a microRNA-related disease?Transl. Res.157 ( 4 ), 253 – 264 ( 2011 ).
  • Rottiers V , NaarAM . MicroRNAs in metabolism and metabolic disorders . Nat. Rev. Mol. Cell. Biol.13 ( 4 ), 239 – 250 ( 2012 ).
  • Frost RJ , OlsonEN . Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs . Proc. Natl Acad. Sci. USA108 ( 52 ), 21075 – 21080 ( 2011 ).
  • Zhu H , Shyh-ChangN , SegreAVet al. The Lin28/let-7 axis regulates glucose metabolism . Cell147 ( 1 ), 81 – 94 ( 2011 ).
  • Ling HY , HuB , HuXBet al. MiRNA-21 reverses high glucose and high insulin induced insulin resistance in 3T3-L1 adipocytes through targeting phosphatase and tensin homologue . Exp. Clin. Endocrinol. Diabetes.120 ( 9 ), 553 – 559 ( 2012 ).
  • He A , ZhuL , GuptaN , ChangY , FangF . Overexpression of micro ribonucleic acid 29, highly up-regulated in diabetic rats, leads to insulin resistance in 3T3-L1 adipocytes . Mol. Endocrinol.21 ( 11 ), 2785 – 2794 ( 2007 ).
  • Herrera BM , LockstoneHE , TaylorJMet al. Global microRNA expression profiles in insulin target tissues in a spontaneous rat model of Type 2 diabetes . Diabetologia53 ( 6 ), 1099 – 1109 ( 2010 ).
  • Pandey AK , VermaG , VigS , SrivastavaS , SrivastavaAK , DattaM . miR-29a levels are elevated in the db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 cells . Mol. Cell. Endocrinol.332 ( 1–2 ), 125 – 133 ( 2011 ).
  • Davalos A , GoedekeL , SmibertPet al. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling . Proc. Natl Acad. Sci. USA108 ( 22 ), 9232 – 9237 ( 2011 ).
  • Rayner KJ , EsauCC , HussainFNet al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides . Nature478 ( 7369 ), 404 – 407 ( 2011 ).
  • Rayner KJ , SheedyFJ , EsauCCet al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis . J. Clin. Invest.121 ( 7 ), 2921 – 2931 ( 2011 ).
  • Lee J , KemperJK . Controlling SIRT1 expression by microRNAs in health and metabolic disease . Aging2 ( 8 ), 527 – 534 ( 2010 ).
  • Chen YH , HeneidiS , LeeJMet al. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance . Diabetes62 ( 7 ), 2278 – 2286 ( 2013 ).
  • Trajkovski M , HausserJ , SoutschekJet al. MicroRNAs 103 and 107 regulate insulin sensitivity . Nature474 ( 7353 ), 649 – 653 ( 2011 ).
  • Ryu HS , ParkSY , MaD , ZhangJ , LeeW . The induction of microRNA targeting IRS-1 is involved in the development of insulin resistance under conditions of mitochondrial dysfunction in hepatocytes . PLoS ONE6 ( 3 ), e17343 ( 2011 ).
  • Jordan SD , KrugerM , WillmesDMet al. Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism . Nat. Cell. Biol.13 ( 4 ), 434 – 446 ( 2011 ).
  • Takanabe R , OnoK , AbeYet al. Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet . Biochem. Biophys. Res. Commun.376 ( 4 ), 728 – 732 ( 2008 ).
  • Lu H , BuchanRJ , CookSA . MicroRNA-223 regulates Glut4 expression and cardiomyocyte glucose metabolism . Cardiovasc. Res.86 ( 3 ), 410 – 420 ( 2010 ).
  • Ling HY , OuHS , FengSDet al. Changes in microRNA (miR) profile and effects of miR-320 in insulin-resistant 3T3-L1 adipocytes . Clin. Exp. Pharmacol. Physiol.36 ( 9 ), e32 – e39 ( 2009 ).
  • Lee H , JeeY , HongK , HwangGS , ChunKH . MicroRNA-494, upregulated by tumor necrosis factor-alpha, desensitizes insulin effect in C2C12 muscle cells . PLoS ONE8 ( 12 ), e83471 ( 2013 ).
  • Kornfeld JW , BaitzelC , KonnerACet al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b . Nature494 ( 7435 ), 111 – 115 ( 2013 ).
  • Ramachandran D , RoyU , GargS , GhoshS , PathakS , Kolthur-SeetharamU . Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic beta-islets . FEBS J.278 ( 7 ), 1167 – 1174 ( 2011 ).
  • Plaisance V , AbderrahmaniA , Perret-MenoudV , JacqueminP , LemaigreF , RegazziR . MicroRNA-9 controls the expression of Granuphilin/Slp4 and the secretory response of insulin-producing cells . J. Biol. Chem.281 ( 37 ), 26932 – 26942 ( 2006 ).
  • Pullen TJ , Da Silva XavierG , KelseyG , RutterGA . miR-29a and miR-29b contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 (Mct1) . Mol. Cell. Biol.31 ( 15 ), 3182 – 3194 ( 2011 ).
  • Roggli E , GattescoS , CailleDet al. Changes in microRNA expression contribute to pancreatic beta-cell dysfunction in prediabetic NOD mice . Diabetes61 ( 7 ), 1742 – 1751 ( 2012 ).
  • Tang X , MuniappanL , TangG , OzcanS . Identification of glucose-regulated miRNAs from pancreatic {beta} cells reveals a role for miR-30d in insulin transcription . RNA15 ( 2 ), 287 – 293 ( 2009 ).
  • Zhao X , MohanR , OzcanS , TangX . MicroRNA-30d induces insulin transcription factor MafA and insulin production by targeting mitogen-activated protein 4 kinase 4 (MAP4K4) in pancreatic beta-cells . J. Biol. Chem.287 ( 37 ), 31155 – 31164 ( 2012 ).
  • Lovis P , RoggliE , LaybuttDRet al. Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction . Diabetes57 ( 10 ), 2728 – 2736 ( 2008 ).
  • Roggli E , BritanA , GattescoSet al. Involvement of microRNAs in the cytotoxic effects exerted by proinflammatory cytokines on pancreatic beta-cells . Diabetes59 ( 4 ), 978 – 986 ( 2010 ).
  • Yamakuchi M , LowensteinCj . MiR-34, SIRT1 and p53: the feedback loop . Cell Cycle8 ( 5 ), 712 – 715 ( 2009 ).
  • Yamakuchi M , FerlitoM , LowensteinCJ . miR-34a repression of SIRT1 regulates apoptosis . Proc. Natl Acad. Sci. USA105 ( 36 ), 13421 – 13426 ( 2008 ).
  • Esguerra JL , BolmesonC , CilioCM , EliassonL . Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat . PLoS ONE6 ( 4 ), e18613 ( 2011 ).
  • Zhao H , GuanJ , LeeHMet al. Up-regulated pancreatic tissue microRNA-375 associates with human Type 2 diabetes through beta-cell deficit and islet amyloid deposition . Pancreas39 ( 6 ), 843 – 846 ( 2010 ).
  • Kloosterman WP , LagendijkAK , KettingRF , MoultonJD , PlasterkRH . Targeted inhibition of miRNA maturation with morpholinos reveals a role for miR-375 in pancreatic islet development . PLoS Biol.5 ( 8 ), e203 ( 2007 ).
  • Poy MN , EliassonL , KrutzfeldtJet al. A pancreatic islet-specific microRNA regulates insulin secretion . Nature432 ( 7014 ), 226 – 230 ( 2004 ).
  • Poy MN , HausserJ , TrajkovskiMet al. miR-375 maintains normal pancreatic alpha-and beta-cell mass . Proc. Natl Acad. Sci. USA106 ( 14 ), 5813 – 5818 ( 2009 ).
  • El Ouaamari A , BaroukhN , MartensGA , LebrunP , PipeleersD , Van ObberghenE . miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells . Diabetes57 ( 10 ), 2708 – 2717 ( 2008 ).
  • Villeneuve LM , KatoM , ReddyMA , WangM , LantingL , NatarajanR . Enhanced levels of microRNA-125b in vascular smooth muscle cells of diabetic db/db mice lead to increased inflammatory gene expression by targeting the histone methyltransferase Suv39h1 . Diabetes59 ( 11 ), 2904 – 2915 ( 2010 ).
  • Feng B , CaoY , ChenS , RuizM , ChakrabartiS . miRNA-1 regulates endothelin-1 in diabetes . Life Sci.98 ( 1 ), 18 – 23 ( 2014 ).
  • Zeng J , XiongY , LiGet al. MiR-21 is overexpressed in response to high glucose and protects endothelial cells from apoptosis . Exp. Clin. Endocrinol. Diabetes121 ( 7 ), 425 – 430 ( 2013 ).
  • Zampetaki A , KiechlS , DrozdovIet al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in Type 2 diabetes . Circ. Res.107 ( 6 ), 810 – 817 ( 2010 ).
  • Togliatto G , TrombettaA , DentelliPet al. Unacylated ghrelin (UnAG) induces oxidative stress resistance in a glucose intolerance mouse model and peripheral artery disease by restoring endothelial cell miR-126 expression . Diabetes doi:10.2337/db14-0991 ( 2014 ).
  • Feng B , ChenS , McarthurKet al. miR-146a-Mediated extracellular matrix protein production in chronic diabetes complications . Diabetes60 ( 11 ), 2975 – 2984 ( 2011 ).
  • Li Y , SongYH , LiF , YangT , LuYW , GengYJ . MicroRNA-221 regulates high glucose-induced endothelial dysfunction . Biochem. Biophys. Res. Commun.381 ( 1 ), 81 – 83 ( 2009 ).
  • Togliatto G , TrombettaA , DentelliP , RossoA , BrizziMF . MIR221/MIR222-driven post-transcriptional regulation of P27KIP1 and P57KIP2 is crucial for high-glucose-and AGE-mediated vascular cell damage . Diabetologia54 ( 7 ), 1930 – 1940 ( 2011 ).
  • Caporali A , MeloniM , VollenkleCet al. Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia . Circulation123 ( 3 ), 282 – 291 ( 2011 ).
  • Lotvall J , ValadiH . Cell to cell signalling via exosomes through esRNA . Cell. Adh. Migr.1 ( 3 ), 156 – 158 ( 2007 ).
  • Chen X , BaY , MaLet al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases . Cell Res.18 ( 10 ), 997 – 1006 ( 2008 ).
  • Hunter MP , IsmailN , ZhangXet al. Detection of microRNA expression in human peripheral blood microvesicles . PLoS ONE3 ( 11 ), e3694 ( 2008 ).
  • Lawrie CH , GalS , DunlopHMet al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma . Br. J. Haematol.141 ( 5 ), 672 – 675 ( 2008 ).
  • Mitchell PS , ParkinRK , KrohEMet al. Circulating microRNAs as stable blood-based markers for cancer detection . Proc. Natl Acad. Sci. USA105 ( 30 ), 10513 – 10518 ( 2008 ).
  • Skog J , WurdingerT , Van RijnSet al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers . Nat. Cell. Biol.10 ( 12 ), 1470 – 1476 ( 2008 ).
  • Vencio EF , PascalLE , PageLSet al. Embryonal carcinoma cell induction of miRNA and mRNA changes in co-cultured prostate stromal fibromuscular cells . J. Cell. Physiol.226 ( 6 ), 1479 – 1488 ( 2011 ).
  • Weber JA , BaxterDH , ZhangSet al. The microRNA spectrum in 12 body fluids . Clin. Chem.56 ( 11 ), 1733 – 1741 ( 2010 ).
  • Arroyo JD , ChevilletJR , KrohEMet al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma . Proc. Natl Acad. Sci. USA108 ( 12 ), 5003 – 5008 ( 2011 ).
  • Turchinovich A , WeizL , LangheinzA , BurwinkelB . Characterization of extracellular circulating microRNA . Nucleic. Acids. Res.39 ( 16 ), 7223 – 7233 ( 2011 ).
  • Camussi G , DeregibusMC , BrunoS , GrangeC , FonsatoV , TettaC . Exosome/microvesicle-mediated epigenetic reprogramming of cells . Am. J. Cancer Res.1 ( 1 ), 98 – 110 ( 2011 ).
  • Gyorgy B , SzaboTG , PasztoiMet al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles . Cell. Mol. Life Sci.68 ( 16 ), 2667 – 2688 ( 2011 ).
  • Vickers KC , PalmisanoBT , ShoucriBM , ShamburekRD , RemaleyAT . MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins . Nat. Cell. Biol.13 ( 4 ), 423 – 433 ( 2011 ).
  • Wagner J , RiwantoM , BeslerCet al. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs . Arterioscler. Thromb. Vasc. Biol.33 ( 6 ), 1392 – 1400 ( 2013 ).
  • Hulsmans M , HolvoetP . MicroRNA-containing microvesicles regulating inflammation in association with atherosclerotic disease . Cardiovasc. Res.100 ( 1 ), 7 – 18 ( 2013 ).
  • Hulsmans M , HolvoetP . MicroRNAs as early biomarkers in obesity and related metabolic and cardiovascular diseases . Curr. Pharm. Des.19 ( 32 ), 5704 – 5717 ( 2013 ).
  • Park NJ , ZhouH , ElashoffDet al. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection . Clin. Cancer Res.15 ( 17 ), 5473 – 5477 ( 2009 ).
  • Hanke M , HoefigK , MerzHet al. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer . Urol. Oncol.28 ( 6 ), 655 – 661 ( 2010 ).
  • Montecalvo A , LarreginaAt , ShufeskyWJet al. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes . Blood119 ( 3 ), 756 – 766 ( 2012 ).
  • Kosaka N , IguchiH , YoshiokaY , TakeshitaF , MatsukiY , OchiyaT . Secretory mechanisms and intercellular transfer of microRNAs in living cells . J. Biol. Chem.285 ( 23 ), 17442 – 17452 ( 2010 ).
  • Mittelbrunn M , Gutierrez-VazquezC , Villarroya-BeltriCet al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells . Nat. Commun.2 , 282 ( 2011 ).
  • Iguchi H , KosakaN , OchiyaT . Versatile applications of microRNA in anti-cancer drug discovery: from therapeutics to biomarkers . Curr. Drug Discov. Technol.7 ( 2 ), 95 – 105 ( 2010 ).
  • Kogure T , LinWL , YanIK , BraconiC , PatelT . Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth . Hepatology54 ( 4 ), 1237 – 1248 ( 2011 ).
  • Liu AY , PascalLE , VencioRZ , VencioEF . Stromal-epithelial interactions in early neoplasia . Cancer Biomark9 ( 1–6 ), 141 – 155 ( 2010 ).
  • Yang M , ChenJ , SuFet al. Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells . Mol. Cancer10 , 117 ( 2011 ).
  • Valadi H , EkstromK , BossiosA , SjostrandM , LeeJJ , LotvallJO . Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells . Nat. Cell. Biol.9 ( 6 ), 654 – 659 ( 2007 ).
  • Ismail N , WangY , DakhlallahDet al. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer . Blood121 ( 6 ), 984 – 995 ( 2013 ).
  • Zhang Y , LiuD , ChenXet al. Secreted monocytic miR-150 enhances targeted endothelial cell migration . Mol. Cell.39 ( 1 ), 133 – 144 ( 2010 ).
  • Liu Y , ZhaoL , LiDet al. Microvesicle-delivery miR-150 promotes tumorigenesis by up-regulating VEGF, and the neutralization of miR-150 attenuate tumor development . Protein Cell.4 ( 12 ), 932 – 941 ( 2013 ).
  • Zernecke A , BidzhekovK , NoelsHet al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection . Sci. Signal.2 ( 100 ), ra81 ( 2009 ).
  • Jansen F , YangX , HoelscherMet al. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles . Circulation128 ( 18 ), 2026 – 2038 ( 2013 ).
  • Mocharla P , BriandS , GiannottiGet al. AngiomiR-126 expression and secretion from circulating CD34(+) and CD14(+) PBMCs: role for proangiogenic effects and alterations in type 2 diabetics . Blood121 ( 1 ), 226 – 236 ( 2013 ).
  • Hergenreider E , HeydtS , TreguerKet al. Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs . Nat. Cell. Biol.14 ( 3 ), 249 – 256 ( 2012 ).
  • Ogawa R , TanakaC , SatoMet al. Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation . Biochem. Biophys. Res. Commun.398 ( 4 ), 723 – 729 ( 2010 ).
  • Muller G . Take-over: multiple mechanisms of inter-adipocyte communication . J. Mol. Cell. Biol.3 ( 2 ), 81 – 90 ( 2011 ).
  • Schwarzenbach H , NishidaN , CalinGA , PantelK . Clinical relevance of circulating cell-free microRNAs in cancer . Nat. Rev. Clin. Oncol.11 ( 3 ), 145 – 156 ( 2014 ).
  • Kong L , ZhuJ , HanWet al. Significance of serum microRNAs in pre-diabetes and newly diagnosed Type 2 diabetes: a clinical study . Acta Diabetol.48 ( 1 ), 61 – 69 ( 2011 ).
  • Karolina DS , TavintharanS , ArmugamAet al. Circulating miRNA profiles in patients with metabolic syndrome . J. Clin. Endocrinol. Metab.97 ( 12 ), E2271 – 2276 ( 2012 ).
  • Bouchie A . First microRNA mimic enters clinic . Nat. Biotechnol.31 ( 7 ), 577 ( 2013 ).
  • Janssen HL , ReesinkHW , LawitzEJet al. Treatment of HCV infection by targeting microRNA . N. Engl. J. Med.368 ( 18 ), 1685 – 1694 ( 2013 ).
  • Janssen HL , KauppinenS , HodgesMR . HCV infection and miravirsen . N. Engl. J. Med.369 ( 9 ), 878 ( 2013 ).
  • Gebert LF , RebhanMA , CrivelliSE , DenzlerR , StoffelM , HallJ . Miravirsen (SPC3649) can inhibit the biogenesis of miR-122 . Nucleic Acids Res.42 ( 1 ), 609 – 621 ( 2014 ).
  • Elmen J , LindowM , SilahtarogluAet al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver . Nucleic Acids Res.36 ( 4 ), 1153 – 1162 ( 2008 ).
  • Montgomery RL , HullingerTG , SemusHMet al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure . Circulation124 ( 14 ), 1537 – 1547 ( 2011 ).
  • Grueter CE , Van RooijE , JohnsonBAet al. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13 . Cell149 ( 3 ), 671 – 683 ( 2012 ).
  • Ohno S , TakanashiM , SudoKet al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA to breast cancer cells . Mol. Ther.21 ( 1 ), 185 – 191 ( 2013 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.