10,875
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Regulation by Histone Demethylases in Hypoxia

, , , &
Pages 791-811 | Published online: 02 Apr 2015

References

  • Carreau A , El Hafny-RahbiB , MatejukA , GrillonC , KiedaC . Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia . J. Cell. Mol. Med.15 ( 6 ), 1239 – 1253 ( 2011 ).
  • Harvey AJ , KindKL , ThompsonJG . REDOX regulation of early embryo development . Reproduction123 ( 4 ), 479 – 486 ( 2002 ).
  • Fischer B , BavisterBD . Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits . J. Reprod. Fertil.99 ( 2 ), 673 – 679 ( 1993 ).
  • Bertout JA , PatelSA , SimonMC . The impact of O2 availability on human cancer . Nat. Rev. Cancer8 ( 12 ), 967 – 975 ( 2008 ).
  • Chen EY , FujinagaM , GiacciaAJ . Hypoxic microenvironment within an embryo induces apoptosis and is essential for proper morphological development . Teratology60 ( 4 ), 215 – 225 ( 1999 ).
  • Kaelin WG , RatcliffePJ . Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway . Mol. Cell30 ( 4 ), 393 – 402 ( 2008 ).
  • Myllyharju J . Prolyl 4-hydroxylases, master regulators of the hypoxia response . Acta Physiol. (Oxf.)208 ( 2 ), 148 – 165 ( 2013 ).
  • Semenza GL . Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology . Annu. Rev. Pathol.9 , 47 – 71 ( 2014 ).
  • Chowdhury R , HardyA , SchofieldCJ . The human oxygen sensing machinery and its manipulation . Chem. Soc. Rev.37 ( 7 ), 1308 – 1319 ( 2008 ).
  • Loboda A , JozkowiczA , DulakJ . HIF-1 and HIF-2 transcription factors–similar but not identical . Mol. Cells29 ( 5 ), 435 – 442 ( 2010 ).
  • Semenza GL . Hypoxia-inducible factor 1: master regulator of O2 homeostasis . Curr. Opin. Genet. Dev.8 ( 5 ), 588 – 594 ( 1998 ).
  • Kouzarides T . Chromatin modifications and their function . Cell128 ( 4 ), 693 – 705 ( 2007 ).
  • Krieg AJ , RankinEB , ChanD , RazorenovaO , FernandezS , GiacciaAJ . Regulation of the histone demethylase JMJD1A by hypoxia-inducible factor 1 alpha enhances hypoxic gene expression and tumor growth . Mol. Cell Biol.30 ( 1 ), 344 – 353 ( 2010 ).
  • Xia X , LemieuxME , LiWet al. Integrative analysis of HIF binding and transactivation reveals its role in maintaining histone methylation homeostasis . Proc. Natl Acad. Sci. USA106 ( 11 ), 4260 – 4265 ( 2009 ).
  • Luo W , ChangR , ZhongJ , PandeyA , SemenzaGL . Histone demethylase JMJD2C is a coactivator for hypoxia-inducible factor 1 that is required for breast cancer progression . Proc. Natl Acad. Sci. USA109 ( 49 ), E3367 – E3376 ( 2012 ).
  • Tausendschon M , DehneN , BruneB . Hypoxia causes epigenetic gene regulation in macrophages by attenuating Jumonji histone demethylase activity . Cytokine53 ( 2 ), 256 – 262 ( 2011 ).
  • Hausinger RP . Fe(II)/α-ketoglutarate-dependent hydroxylases and related enzymes . Crit. Rev. Biochem. Mol. Biol.39 ( 1 ), 21 – 68 ( 2008 ).
  • McDonough MA , LoenarzC , ChowdhuryR , CliftonIJ , SchofieldCJ . Structural studies on human 2-oxoglutarate dependent oxygenases . Curr. Opin. Struct. Biol.20 ( 6 ), 659 – 672 ( 2010 ).
  • Clifton IJ , McDonoughMA , EhrismannD , KershawNJ , GranatinoN , SchofieldCJ . Structural studies on 2-oxoglutarate oxygenases and related double-stranded beta-helix fold proteins . J. Inorg. Biochem.100 ( 4 ), 644 – 669 ( 2006 ).
  • Sanchez-Fernandez EM , TarhonskayaH , Al-QahtaniKet al. Investigations on the oxygen dependence of a 2-oxoglutarate histone demethylase . Biochem. J.449 ( 2 ), 491 – 496 ( 2013 ).
  • Chan DA , SutphinPD , YenS-E , GiacciaAJ . Coordinate regulation of the oxygen-dependent degradation domains of hypoxia-inducible factor 1 alpha . Mol. Cell Biol.25 ( 15 ), 6415 – 6426 ( 2005 ).
  • Tian Y-M , YeohKK , LeeMKet al. Differential sensitivity of hypoxia inducible factor hydroxylation sites to hypoxia and hydroxylase inhibitors . J. Biol. Chem.286 ( 15 ), 13041 – 13051 ( 2011 ).
  • Hirsilä M , KoivunenP , GünzlerV , KivirikkoKI , MyllyharjuJ . Characterization of the human prolyl 4-hydroxylases that modify the hypoxia-inducible factor . J. Biol. Chem.278 ( 33 ), 30772 – 30780 ( 2003 ).
  • Ehrismann D , FlashmanE , GennDNet al. Studies on the activity of the hypoxia-inducible-factor hydroxylases using an oxygen consumption assay . Biochem. J.401 ( 1 ), 227 – 234 ( 2007 ).
  • Koivunen P , HirsiläM , GünzlerV , KivirikkoKI , MyllyharjuJ . Catalytic properties of the asparaginyl hydroxylase (FIH) in the oxygen sensing pathway are distinct from those of its prolyl 4-hydroxylases . J. Biol. Chem.279 ( 11 ), 9899 – 9904 ( 2004 ).
  • Cascella B , MiricaLM . Kinetic analysis of iron-dependent histone demethylases: α-ketoglutarate substrate inhibition and potential relevance to the regulation of histone demethylation in cancer cells . Biochemistry51 ( 44 ), 8699 – 8701 ( 2012 ).
  • Tarhonskaya H , ChowdhuryR , LeungIKHet al. Investigating the contribution of the active site environment to the slow reaction of hypoxia-inducible factor prolyl hydroxylase domain 2 with oxygen . Biochem. J.463 ( 3 ), 363 – 372 ( 2014 ).
  • Dao JH , KurzejaRJM , MorachisJMet al. Kinetic characterization and identification of a novel inhibitor of hypoxia-inducible factor prolyl hydroxylase 2 using a time-resolved fluorescence resonance energy transfer-based assay technology . Anal. Biochem.384 ( 2 ), 213 – 223 ( 2009 ).
  • Flashman E , HoffartLM , HamedRB , BollingerJMJr , KrebsC , SchofieldCJ . Evidence for the slow reaction of hypoxia-inducible factor prolyl hydroxylase 2 with oxygen . FEBS J.277 ( 19 ), 4089 – 4099 ( 2010 ).
  • Berra E , BenizriE , GinouvèsA , VolmatV , RouxD , PouysségurJ . HIF prolyl-hydroxylase 2 is the key oxygen sensor setting low steady-state levels of HIF-1alpha in normoxia . EMBO J.22 ( 16 ), 4082 – 4090 ( 2003 ).
  • Ozolins , TRS , FisherTS , NadeauDMet al. Defects in embryonic development of EGLN1/PHD2 knockdown transgenic mice are associated with induction of Igfbp in the placenta . Biochem. Biophys. Res. Commun.390 ( 3 ), 372 – 376 ( 2009 ).
  • Wilkins SE , HyvärinenJ , ChicherJet al. Differences in hydroxylation and binding of Notch and HIF-1alpha demonstrate substrate selectivity for factor inhibiting HIF-1 (FIH-1) . Int. J. Biochem. Cell Biol.41 ( 7 ), 1563 – 1571 ( 2009 ).
  • Cockman ME , LancasterDE , StolzeIPet al. Posttranslational hydroxylation of ankyrin repeats in IkappaB proteins by the hypoxia-inducible factor (HIF) asparaginyl hydroxylase, factor inhibiting HIF (FIH) . Proc. Natl Acad. Sci. USA103 ( 40 ), 14767 – 14772 ( 2006 ).
  • Coleman ML , McDonoughMA , HewitsonKSet al. Asparaginyl hydroxylation of the Notch ankyrin repeat domain by factor inhibiting hypoxia-inducible factor . J. Biol. Chem.282 ( 33 ), 24027 – 24038 ( 2007 ).
  • Kelly L , McDonoughMA , ColemanML , RatcliffePJ , SchofieldCJ . Asparagine beta-hydroxylation stabilizes the ankyrin repeat domain fold . Mol. Biosyst.5 ( 1 ), 52 – 58 ( 2009 ).
  • Zhang N , FuZ , LinkeSet al. The asparaginyl hydroxylase factor inhibiting HIF-1alpha is an essential regulator of metabolism . Cell Metab.11 ( 5 ), 364 – 378 ( 2010 ).
  • Ryle MJ , PadmakumarR , HausingerRP . Stopped-flow kinetic analysis of Escherichia coli taurine/alpha-ketoglutarate dioxygenase: interactions with alpha-ketoglutarate, taurine, and oxygen . Biochemistry38 ( 46 ), 15278 – 15286 ( 1999 ).
  • Hoffart LM , BarrEW , GuyerRB , BollingerJM , KrebsC . Direct spectroscopic detection of a C-H-cleaving high-spin Fe(IV) complex in a prolyl-4-hydroxylase . Proc. Natl Acad. Sci. USA103 ( 40 ), 14738 – 14743 ( 2006 ).
  • Tan M , LuoH , LeeSet al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification . Cell146 ( 6 ), 1016 – 1028 ( 2011 ).
  • Strahl BD , AllisCD . The language of covalent histone modifications . Nature403 ( 6765 ), 41 – 45 ( 2000 ).
  • Barski A , CuddapahS , CuiKet al. High-resolution profiling of histone methylations in the human genome . Cell129 ( 4 ), 823 – 837 ( 2007 ).
  • Kooistra SM , HelinK . Molecular mechanisms and potential functions of histone demethylases . Nat. Rev. Mol. Cell Biol.13 ( 5 ), 297 – 311 ( 2012 ).
  • Bernstein BE , MikkelsenTS , XieXet al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells . Cell125 ( 2 ), 315 – 326 ( 2006 ).
  • Rea S , EisenhaberF , O’CarrollDet al. Regulation of chromatin structure by site-specific histone H3 methyltransferases . Nature406 ( 6796 ), 593 – 599 ( 2000 ).
  • Dillon SC , ZhangX , TrievelRC , ChengX . The SET-domain protein superfamily: protein lysine methyltransferases . Genome Biol.6 ( 8 ), 227 ( 2005 ).
  • Feng Q , WangH , NgHHet al. Methylation of H3-lysine 79 is mediated by a new family of HMTases without a SET domain . Curr. Biol.12 ( 12 ), 1052 – 1058 ( 2002 ).
  • Ng SS , KavanaghKL , McDonoughMAet al. Crystal structures of histone demethylase JMJD2A reveal basis for substrate specificity . Nature448 ( 7149 ), 87 – 91 ( 2007 ).
  • Chen Z , ZangJ , WhetstineJet al. Structural insights into histone demethylation by JMJD2 family members . Cell125 ( 4 ), 691 – 702 ( 2006 ).
  • Couture J-F , CollazoE , Ortiz-TelloPA , BrunzelleJS , TrievelRC . Specificity and mechanism of JMJD2A, a trimethyllysine-specific histone demethylase . Nat. Struct. Mol. Biol.14 ( 8 ), 689 – 695 ( 2007 ).
  • Aik W , McDonoughMA , ThalhammerA , ChowdhuryR , SchofieldCJ . Role of the jelly-roll fold in substrate binding by 2-oxoglutarate oxygenases . Curr. Opin. Struct. Biol.22 ( 6 ), 691 – 700 ( 2012 ).
  • Klose RJ , KallinEM , ZhangY . JmjC-domain-containing proteins and histone demethylation . Nat. Rev. Genet.7 ( 9 ), 715 – 727 ( 2006 ).
  • H⊘jfeldt JW , AggerK , HelinK . Histone lysine demethylases as targets for anticancer therapy . Nat. Rev. Drug Discov.12 ( 12 ), 917 – 930 ( 2013 ).
  • Williams ST , WalportLJ , HopkinsonRJet al. Studies on the catalytic domains of multiple JmjC oxygenases using peptide substrates . Epigenetics9 ( 12 ), 1596 – 1603 ( 2015 ).
  • Horton JR , UpadhyayAK , QiHH , ZhangX , ShiY , ChengX . Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases . Nat. Struct. Mol. Biol.17 ( 1 ), 38 – 43 ( 2010 ).
  • Mosammaparast N , ShiY . Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases . Annu. Rev. Biochem.79 , 155 – 179 ( 2010 ).
  • Lee H-Y , ChoiK , OhH , Park , Y-K , ParkH . HIF-1-dependent induction of Jumonji domain-containing protein (JMJD) 3 under hypoxic conditions . Mol. Cells37 ( 1 ), 43 – 50 ( 2014 ).
  • Beyer S , KristensenMM , JensenKS , JohansenJV , StallerP . The histone demethylases JMJD1A and JMJD2B are transcriptional targets of hypoxia-inducible factor HIF . J. Biol. Chem.283 ( 52 ), 36542 – 36552 ( 2008 ).
  • Pollard PJ , LoenarzC , MoleDRet al. Regulation of Jumonji-domain-containing histone demethylases by hypoxia-inducible factor (HIF)-1alpha . Biochem. J.416 ( 3 ), 387 – 394 ( 2008 ).
  • Wellmann S , BettkoberM , ZelmerAet al. Hypoxia upregulates the histone demethylase JMJD1A via HIF-1 . Biochem. Biophys. Res. Commun.372 ( 4 ), 892 – 897 ( 2008 ).
  • Niu X , ZhangT , LiaoLet al. The von Hippel-Lindau tumor suppressor protein regulates gene expression and tumor growth through histone demethylase JARID1C . Oncogene31 ( 6 ), 776 – 786 ( 2012 ).
  • Yang J , LedakiI , TurleyHet al. Role of hypoxia-inducible factors in epigenetic regulation via histone demethylases . Ann. NY Acad. Sci.1177 , 185 – 197 ( 2009 ).
  • Shmakova A , BatieM , DrukerJ , RochaS . Chromatin and oxygen sensing in the context of JmjC histone demethylases . Biochem. J.462 ( 3 ), 385 – 395 ( 2014 ).
  • Lee HY , YangEG , ParkH . Hypoxia enhances the expression of prostate-specific antigen by modifying the quantity and catalytic activity of Jumonji C domain-containing histone demethylases . Carcinogenesis34 ( 12 ), 2706 – 2715 ( 2013 ).
  • Costa M , DavidsonTL , ChenHet al. Nickel carcinogenesis: epigenetics and hypoxia signaling . Mutat. Res.592 ( 1–2 ), 79 – 88 ( 2005 ).
  • Islam KN , MendelsonCR . Permissive effects of oxygen on cyclic AMP and interleukin-1 stimulation of surfactant protein A gene expression are mediated by epigenetic mechanisms . Mol. Cell Biol.26 ( 8 ), 2901 – 2912 ( 2006 ).
  • Chen H , YanY , DavidsonTL , ShinkaiY , CostaM . Hypoxic stress induces dimethylated histone H3 lysine 9 through histone methyltransferase G9a in mammalian cells . Cancer Res.66 ( 18 ), 9009 – 9016 ( 2006 ).
  • Johnson AB , DenkoN , BartonMC . Hypoxia induces a novel signature of chromatin modifications and global repression of transcription . Mutat. Res.640 ( 1–2 ), 174 – 179 ( 2008 ).
  • Zhou X , SunH , ChenHet al. Hypoxia induces trimethylated H3 lysine 4 by inhibition of JARID1A demethylase . Cancer Res.70 ( 10 ), 4214 – 4221 ( 2010 ).
  • Osumek JE , ReveszA , MortonJS , DavidgeST , HardyDB . Enhanced trimethylation of histone h3 mediates impaired expression of hepatic glucose 6-phosphatase expression in offspring from rat dams exposed to hypoxia during pregnancy . Reprod. Sci.21 ( 1 ), 112 – 121 ( 2014 ).
  • Perez-Perri JI , AcevedoJM , WappnerP . Epigenetics: new questions on the response to hypoxia . Int. J. Mol. Sci.12 ( 7 ), 4705 – 4721 ( 2011 ).
  • Melvin A , RochaS . Chromatin as an oxygen sensor and active player in the hypoxia response . Cell. Signal.24 ( 1 ), 35 – 43 ( 2012 ).
  • Guo X , TianZ , WangXet al. Regulation of histone demethylase KDM6B by hypoxia-inducible factor-2α . Acta Biochim. Biophys. Sin. (Shanghai)47 ( 2 ), 106 – 113 ( 2014 ).
  • Dunwoodie SL . The role of hypoxia in development of the Mammalian embryo . Dev. Cell17 ( 6 ), 755 – 773 ( 2009 ).
  • Ufer C , WangCC . The roles of glutathione peroxidases during embryo development . Front. Mol. Neurosci.4 , 12 ( 2011 ).
  • Jauniaux E , GulbisB , BurtonGJ . The human first trimester gestational sac limits rather than facilitates oxygen transfer to the foetus – a review . Placenta24 ( Suppl. A ), S86 – S93 ( 2003 ).
  • Hutter D , KingdomJ , JaeggiE . Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review . Int. J. Pediatr.401323 ( 2010 ) ( 2010 ).
  • Ostadal B , OstadalovaI , DhallaNS . Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenetic aspects . Physiol. Rev.79 ( 3 ), 635 – 659 ( 1999 ).
  • Puente BN , KimuraW , MuralidharSAet al. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response . Cell157 ( 3 ), 565 – 579 ( 2014 ).
  • Taegtmeyer H , SenS , VelaD . Return to the fetal gene program: a suggested metabolic link to gene expression in the heart . Ann. NY Acad. Sci.1188 , 191 – 198 ( 2010 ).
  • Razeghi P , YoungME , AlcornJL , MoravecCS , FrazierOH , TaegtmeyerH . Metabolic gene expression in fetal and failing human heart . Circulation104 ( 24 ), 2923 – 2931 ( 2001 ).
  • Rajabi M , KassiotisC , RazeghiP , TaegtmeyerH . Return to the fetal gene program protects the stressed heart: a strong hypothesis . Heart Fail. Rev.12 ( 3–4 ), 331 – 343 ( 2007 ).
  • Patterson AJ , ZhangL . Hypoxia and fetal heart development . Curr. Mol. Med.10 ( 7 ), 653 – 666 ( 2010 ).
  • Balasubramaniam V , MervisCF , MaxeyAM , MarkhamNE , AbmanSH . Hyperoxia reduces bone marrow, circulating, and lung endothelial progenitor cells in the developing lung: implications for the pathogenesis of bronchopulmonary dysplasia . Am. J. Physiol. Lung Cell. Mol. Physiol.292 ( 5 ), L1073 – L1084 ( 2007 ).
  • Mohyeldin A , Garzón-MuvdiT , Quiñones-HinojosaA . Oxygen in stem cell biology: a critical component of the stem cell niche . Cell Stem Cell7 ( 2 ), 150 – 161 ( 2010 ).
  • Guo N , LiY , AiJ , GuL , ChenW , LiuQ . Two different concentrations of oxygen for culturing precompaction stage embryos on human embryo development competence: a prospective randomized sibling-oocyte study . Int. J. Clin. Exp. Pathol.7 ( 9 ), 6191 – 6198 ( 2014 ).
  • Vastenhouw NL , SchierAF . Bivalent histone modifications in early embryogenesis . Curr. Opin. Cell Biol.24 ( 3 ), 374 – 386 ( 2012 ).
  • Denissov S , HofemeisterH , MarksHet al. Mll2 is required for H3K4 trimethylation on bivalent promoters in embryonic stem cells, whereas Mll1 is redundant . Development141 ( 3 ), 526 – 537 ( 2014 ).
  • Alder O , LavialF , HelnessAet al. Ring1B and Suv39h1 delineate distinct chromatin states at bivalent genes during early mouse lineage commitment . Development137 ( 15 ), 2483 – 2492 ( 2010 ).
  • Rugg-Gunn PJ , CoxBJ , RalstonA , RossantJ . Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo . Proc. Natl Acad. Sci. USA107 ( 24 ), 10783 – 10790 ( 2010 ).
  • Vastenhouw NL , ZhangY , WoodsIGet al. Chromatin signature of embryonic pluripotency is established during genome activation . Nature464 ( 7290 ), 922 – 926 ( 2010 ).
  • Dahl JA , ReinerAH , KlunglandA , WakayamaT , CollasP . Histone H3 lysine 27 methylation asymmetry on developmentally-regulated promoters distinguish the first two lineages in mouse preimplantation embryos . PLoS ONE5 ( 2 ), e9150 ( 2010 ).
  • Leschik J , CaronL , YangH , CowanC , PucéatM . A view of bivalent epigenetic marks in two human embryonic stem cell lines reveals a different cardiogenic potential . Stem Cells Dev.24 ( 3 ), 384 – 392 ( 2014 ).
  • Voigt P , TeeW-W , ReinbergD . A double take on bivalent promoters . Genes Dev.27 ( 12 ), 1318 – 1338 ( 2013 ).
  • Soshnikova N , DubouleD . Epigenetic regulation of Hox gene activation: the waltz of methyls . Bioessays30 ( 3 ), 199 – 202 ( 2008 ).
  • Zheng L-W , ZhangB-P , XuR-S , XuX , YeL , ZhouX-D . Bivalent histone modifications during tooth development . Int. J. Oral Sci.6 ( 4 ), 205 – 211 ( 2014 ).
  • Lee MG , VillaR , TrojerPet al. Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination . Science318 ( 5849 ), 447 – 450 ( 2007 ).
  • Agger K , CloosPAC , ChristensenJet al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development . Nature449 ( 7163 ), 731 – 734 ( 2007 ).
  • Nottke A , ColaiacovoMP , ShiY , ColaiácovoMP . Developmental roles of the histone lysine demethylases . Development136 ( 6 ), 879 – 889 ( 2009 ).
  • Pedersen MT , HelinK . Histone demethylases in development and disease . Trends Cell Biol.20 ( 11 ), 662 – 671 ( 2010 ).
  • Dambacher S , HahnM , SchottaG . Epigenetic regulation of development by histone lysine methylation . Heredity (Edinb).105 ( 1 ), 24 – 37 ( 2010 ).
  • Wang J , ZhangM , ZhangYet al. The histone demethylase JMJD2C is stage-specifically expressed in preimplantation mouse embryos and is required for embryonic development . Biol. Reprod.82 ( 1 ), 105 – 111 ( 2010 ).
  • Pagé-Larivière F , SirardM-A . Spatiotemporal expression of DNA demethylation enzymes and histone demethylases in bovine embryos . Cell. Reprogram.16 ( 1 ), 40 – 53 ( 2014 ).
  • Banka S , LedererD , BenoitVet al. Novel KDM6A (UTX) mutations and a clinical and molecular review of the X-linked Kabuki syndrome (KS2) . Clin. Genet.87 ( 3 ), 252 – 258 ( 2014 ).
  • Abidi FE , MianoMG , MurrayJC , SchwartzCE . A novel mutation in the PHF8 gene is associated with X-linked mental retardation with cleft lip/cleft palate . Clin. Genet.72 ( 1 ), 19 – 22 ( 2007 ).
  • Ounap K , Puusepp-BenazzouzH , PetersMet al. A novel c.2T > C mutation of the KDM5C/JARID1C gene in one large family with X-linked intellectual disability . Eur. J. Med. Genet.55 ( 3 ), 178 – 184 ( 2012 ).
  • Fukuda T , TokunagaA , SakamotoR , YoshidaN . Fbxl10/Kdm2b deficiency accelerates neural progenitor cell death and leads to exencephaly . Mol. Cell Neurosci.46 ( 3 ), 614 – 624 ( 2011 ).
  • Kawakami E , TokunagaA , OzawaM , SakamotoR , YoshidaN . The histone demethylase fbxl11/kdm2a plays an essential role in embryonic development by repressing cell-cycle regulators . Mech. Dev.135 , 31 – 42 ( 2014 ).
  • Testoni S , BartoloneE , RossiMet al. KDM2B is implicated in bovine lethal multi-organic developmental dysplasia . PLoS ONE7 ( 9 ), e45634 ( 2012 ).
  • Murgiano L , DrögemüllerC , SbarraF , BolcatoM , GentileA . Prevalence of paunch calf syndrome carriers in Italian Romagnola cattle . Vet. J.200 ( 3 ), 459 – 461 ( 2014 ).
  • Kuroki S , MatobaS , AkiyoshiMet al. Epigenetic regulation of mouse sex determination by the histone demethylase Jmjd1a . Science341 ( 6150 ), 1106 – 1109 ( 2013 ).
  • Herzog M , JosseauxE , DedeurwaerderS , CalonneE , VolkmarM , FuksF . The histone demethylase Kdm3a is essential to progression through differentiation . Nucleic Acids Res.40 ( 15 ), 7219 – 7232 ( 2012 ).
  • Tsurumi A , DuttaP , DuttaPet al. Drosophila Kdm4 demethylases in histone H3 lysine 9 demethylation and ecdysteroid signaling . Sci. Rep.3 , 2894 ( 2013 ).
  • Schmitz SU , AlbertM , MalatestaMet al. Jarid1b targets genes regulating development and is involved in neural differentiation . EMBO J.30 ( 22 ), 4586 – 4600 ( 2011 ).
  • Albert M , SchmitzSU , KooistraSMet al. The histone demethylase Jarid1b ensures faithful mouse development by protecting developmental genes from aberrant H3K4me3 . PLoS Genet.9 ( 4 ), e1003461 ( 2013 ).
  • Poeta L , FuscoF , DrongitisDet al. A regulatory path associated with X-linked intellectual disability and epilepsy links KDM5C to the polyalanine expansions in ARX . Am. J. Hum. Genet.92 ( 1 ), 114 – 125 ( 2013 ).
  • Iwase S , LanF , BaylissPet al. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases . Cell128 ( 6 ), 1077 – 1088 ( 2007 ).
  • Welstead GG , CreyghtonMP , BilodeauSet al. X-linked H3K27me3 demethylase Utx is required for embryonic development in a sex-specific manner . Proc. Natl Acad. Sci. USA109 ( 32 ), 13004 – 13009 ( 2012 ).
  • Burgold T , SpreaficoF , De SantaFet al. The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment . PLoS ONE3 ( 8 ), e3034 ( 2008 ).
  • Jepsen K , SolumD , ZhouTet al. SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron . Nature450 ( 7168 ), 415 – 419 ( 2007 ).
  • Estarás C , AkizuN , GarcíaA , BeltránS , de la CruzX , Martínez-BalbásMA . Genome-wide analysis reveals that Smad3 and JMJD3 HDM co-activate the neural developmental program . Development139 ( 15 ), 2681 – 2691 ( 2012 ).
  • Shahhoseini M , TaghizadehZ , HatamiM , BaharvandH . Retinoic acid dependent histone 3 demethylation of the clustered HOX genes during neural differentiation of human embryonic stem cells . Biochem. Cell Biol.91 ( 2 ), 116 – 122 ( 2013 ).
  • Ohtani K , ZhaoC , DobrevaGet al. Jmjd3 controls mesodermal and cardiovascular differentiation of embryonic stem cells . Circ. Res.113 ( 7 ), 856 – 862 ( 2013 ).
  • Lee S , LeeJW , LeeS-K . UTX, a histone H3-Lysine 27 demethylase, acts as a critical switch to activate the cardiac developmental program . Dev. Cell22 ( 1 ), 25 – 37 ( 2012 ).
  • Tsukada Y , IshitaniT , NakayamaKI . KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development . Genes Dev.24 ( 5 ), 432 – 437 ( 2010 ).
  • Loenarz C , GeW , ColemanMLet al. PHF8, a gene associated with cleft lip/palate and mental retardation, encodes for an N -dimethyl lysine demethylase . Hum. Mol. Genet.19 ( 2 ), 217 – 222 ( 2009 ).
  • Qi HH , SarkissianM , HuG-Qet al. Histone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial development . Nature466 ( 7305 ), 503 – 507 ( 2010 ).
  • Kleine-Kohlbrecher D , ChristensenJ , VandammeJet al. A functional link between the histone demethylase PHF8 and the transcription factor ZNF711 in X-linked mental retardation . Mol. Cell38 ( 2 ), 165 – 178 ( 2010 ).
  • Huang C , XiangY , WangYet al. Dual-specificity histone demethylase KIAA1718 (KDM7A) regulates neural differentiation through FGF4 . Cell Res.20 ( 2 ), 154 – 165 ( 2010 ).
  • WARBURG O . On the origin of cancer cells . Science123 ( 3191 ), 309 – 314 ( 1956 ).
  • Dawson MA , KouzaridesT . Cancer epigenetics: from mechanism to therapy . Cell150 ( 1 ), 12 – 27 ( 2012 ).
  • Greer EL , ShiY . Histone methylation: a dynamic mark in health, disease and inheritance . Nat. Rev. Genet.13 ( 5 ), 343 – 357 ( 2012 ).
  • Cho H-S , ToyokawaG , DaigoYet al. The JmjC domain-containing histone demethylase KDM3A is a positive regulator of the G1/S transition in cancer cells via transcriptional regulation of the HOXA1 gene . Int. J. Cancer131 ( 3 ), E179 – E189 ( 2012 ).
  • Yamada D , KobayashiS , YamamotoHet al. Role of the hypoxia-related gene, JMJD1A, in hepatocellular carcinoma: clinical impact on recurrence after hepatic resection . Ann. Surg. Oncol.19 ( Suppl. 3 ), S355 – S364 ( 2012 ).
  • Park SJ , KimJG , SonTGet al. The histone demethylase JMJD1A regulates adrenomedullin-mediated cell proliferation in hepatocellular carcinoma under hypoxia . Biochem. Biophys. Res. Commun.434 ( 4 ), 722 – 727 ( 2013 ).
  • Uemura M , YamamotoH , TakemasaIet al. Jumonji domain containing 1A is a novel prognostic marker for colorectal cancer: in vivo identification from hypoxic tumor cells . Clin. Cancer Res.16 ( 18 ), 4636 – 4646 ( 2010 ).
  • Cloos PAC , ChristensenJ , AggerKet al. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3 . Nature442 ( 7100 ), 307 – 311 ( 2006 ).
  • Black JC , AllenA , Van RechemCet al. Conserved antagonism between JMJD2A/KDM4A and HP1γ during cell cycle progression . Mol. Cell40 ( 5 ), 736 – 748 ( 2010 ).
  • Berry WL , JanknechtR . KDM4/JMJD2 histone demethylases: epigenetic regulators in cancer cells . Cancer Res.73 ( 10 ), 2936 – 2942 ( 2013 ).
  • Wissmann M , YinN , MüllerJMet al. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression . Nat. Cell Biol.9 ( 3 ), 347 – 353 ( 2007 ).
  • Liu G , Bollig-FischerA , KreikeBet al. Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer . Oncogene28 ( 50 ), 4491 – 4500 ( 2009 ).
  • Metzger E , WissmannM , YinNet al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription . Nature437 ( 7057 ), 436 – 439 ( 2005 ).
  • Yamane K , ToumazouC , TsukadaYet al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor . Cell125 ( 3 ), 483 – 495 ( 2006 ).
  • Yamane K , TateishiK , KloseRJet al. PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation . Mol. Cell25 ( 6 ), 801 – 812 ( 2007 ).
  • Roesch A , Fukunaga-KalabisM , SchmidtECet al. A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth . Cell141 ( 4 ), 583 – 594 ( 2010 ).
  • Xiang Y , ZhuZ , HanGet al. JARID1B is a histone H3 lysine 4 demethylase up-regulated in prostate cancer . Proc. Natl Acad. Sci. USA104 ( 49 ), 19226 – 19231 ( 2007 ).
  • Blair LP , CaoJ , ZouMR , SayeghJ , YanQ . Epigenetic regulation by lysine demethylase 5 (KDM5) enzymes in cancer . Cancers (Basel)3 ( 1 ), 1383 – 1404 ( 2011 ).
  • Ntziachristos P , TsirigosA , WelsteadGGet al. Contrasting roles of histone 3 lysine 27 demethylases in acute lymphoblastic leukaemia . Nature514 ( 7523 ), 513 – 517 ( 2014 ).
  • Shen Y , GuoX , WangYet al. Expression and significance of histone H3K27 demethylases in renal cell carcinoma . BMC Cancer12 , 470 ( 2012 ).
  • Ueda J , HoJC , LeeKLet al. The hypoxia-inducible epigenetic regulators Jmjd1a and G9a provide a mechanistic link between angiogenesis and tumor growth . Mol. Cell Biol.34 ( 19 ), 3702 – 3720 ( 2014 ).
  • Mudie S , BandarraD , BatieMet al. PITX1, a specificity determinant in the HIF-1α-mediated transcriptional response to hypoxia . Cell Cycle13 ( 24 ), 3878 – 3891 ( 2014 ).
  • Lohse B , KristensenJL , KristensenLHet al. Inhibitors of histone demethylases . Bioorg. Med. Chem.19 ( 12 ), 3625 – 3636 ( 2011 ).
  • Rose NR , McDonoughMA , KingONF , KawamuraA , SchofieldCJ . Inhibition of 2-oxoglutarate dependent oxygenases . Chem. Soc. Rev.40 ( 8 ), 4364 – 4397 ( 2011 ).
  • McGrath J , TrojerP . Targeting histone lysine methylation in cancer . Pharmacol. Ther. doi: https://doi.org/10.1016/j.pharmthera.2015.01.002 ( 2015 ) ( Epub ahead of print ).
  • Thinnes CC , EnglandKS , KawamuraA , ChowdhuryR , SchofieldCJ , HopkinsonRJ . Targeting histone lysine demethylases – progress, challenges, and the future . Biochim. Biophys. Acta1839 ( 12 ), 1416 – 1432 ( 2014 ).
  • Hopkinson RJ , TumberA , YappCet al. 5-Carboxy-8-hydroxyquinoline is a broad spectrum 2-oxoglutarate oxygenase inhibitor which causes iron translocation . Chem. Sci.4 ( 8 ), 3110 – 3117 ( 2013 ).
  • King ONF , LiXS , SakuraiMet al. Quantitative high-throughput screening identifies 8-hydroxyquinolines as cell-active histone demethylase inhibitors . PLoS ONE5 ( 11 ), e15535 ( 2010 ).
  • SGC . Epigenetics probes collection . www.thesgc.org/chemical-probes/epigenetics .
  • Luo X , LiuY , KubicekSet al. A selective inhibitor and probe of the cellular functions of Jumonji C domain-containing histone demethylases. . J. Am. Chem. Soc.133 ( 24 ), 9451 – 9456 ( 2011 ).
  • Wang L , ChangJ , VargheseDet al. A small molecule modulates Jumonji histone demethylase activity and selectively inhibits cancer growth . Nat. Commun.4 , 2035 ( 2013 ).
  • Rotili D , TomassiS , ConteMet al. Pan-histone demethylase inhibitors simultaneously targeting Jumonji C and lysine-specific demethylases display high anticancer activities . J. Med. Chem.57 ( 1 ), 42 – 55 ( 2014 ).
  • Kruidenier L , ChungC , ChengZet al. A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response . Nature488 ( 7411 ), 404 – 408 ( 2012 ).
  • Heinemann B , NielsenJM , HudlebuschHRet al. Inhibition of demethylases by GSK-J1/J4 . Nature514 ( 7520 ), E1 – E2 ( 2014 ).
  • Steller P . Discovery on Target . Boston, US , 8–10 October 2014 .
  • Papait R , CondorelliG . Epigenetics in heart failure . Ann. NY Acad. Sci.1188 , 159 – 164 ( 2010 ).
  • Duygu B , PoelsEM , da Costa MartinsPA . Genetics and epigenetics of arrhythmia and heart failure . Front. Genet.4 , 219 ( 2013 ).
  • Oka T , KomuroI . Molecular mechanisms underlying the transition of cardiac hypertrophy to heart failure . Circ. J.72 ( Suppl. A ), A13 – A16 ( 2008 ).
  • Sano M , MinaminoT , TokoHet al. p53-induced inhibition of Hif-1 causes cardiac dysfunction during pressure overload . Nature446 ( 7134 ), 444 – 448 ( 2007 ).
  • Handley MG , MedinaRA , NagelE , BlowerPJ , SouthworthR . PET imaging of cardiac hypoxia: opportunities and challenges . J. Mol. Cell Cardiol.51 ( 5 ), 640 – 650 ( 2011 ).
  • Kaneda R , TakadaS , YamashitaYet al. Genome-wide histone methylation profile for heart failure . Genes Cells14 ( 1 ), 69 – 77 ( 2009 ).
  • Stein AB , JonesTA , HerronTJet al. Loss of H3K4 methylation destabilizes gene expression patterns and physiological functions in adult murine cardiomyocytes . J. Clin. Invest.121 ( 7 ), 2641 – 2650 ( 2011 ).
  • Zhang QJ , ChenHZ , WangL , LiuDP , HillJA , LiuZP . The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice . J. Clin. Invest.121 ( 6 ), 2447 – 2456 ( 2011 ).
  • Movassagh M , ChoyM , KnowlesDAet al. Europe PMC funders group distinct epigenomic features in end-stage failing human hearts . Circulation124 ( 22 ), 2411 – 2422 ( 2013 ).
  • Hohl M , WagnerM , ReilJ-Cet al. HDAC4 controls histone methylation in response to elevated cardiac load . J. Clin. Invest.123 ( 3 ), 1359 – 1370 ( 2013 ).
  • Tingare A , ThienpontB , RoderickHL . Epigenetics in the heart: the role of histone modifications in cardiac remodelling . Biochem. Soc. Trans.41 ( 3 ), 789 – 796 ( 2013 ).
  • Papait R , CattaneoP , KunderfrancoPet al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy . Proc. Natl Acad. Sci. USA110 ( 50 ), 20164 – 20169 ( 2013 ).
  • Sheikh F , RaskinA , ChuP-Het al. An FHL1-containing complex within the cardiomyocyte sarcomere mediates hypertrophic biomechanical stress responses in mice . J. Clin. Invest.118 ( 12 ), 3870 – 3880 ( 2008 ).
  • Björnheden T , LevinM , EvaldssonM , WiklundO . Evidence of hypoxic areas within the arterial wall in vivo . Arterioscler. Thromb. Vasc. Biol.19 ( 4 ), 870 – 876 ( 1999 ).
  • Vink A , SchoneveldAH , LamersDet al. HIF-1 alpha expression is associated with an atheromatous inflammatory plaque phenotype and upregulated in activated macrophages . Atherosclerosis195 ( 2 ), e69 – e75 ( 2007 ).
  • Zhang W-J , WeiH , FreiB . The iron chelator, desferrioxamine, reduces inflammation and atherosclerotic lesion development in experimental mice . Exp. Biol. Med. (Maywood)235 ( 5 ), 633 – 641 ( 2010 ).
  • De Santa F , TotaroMG , ProsperiniE , NotarbartoloS , TestaG , NatoliG . The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing . Cell130 ( 6 ), 1083 – 1094 ( 2007 ).
  • De Santa F , NarangV , YapZHet al. Jmjd3 contributes to the control of gene expression in LPS-activated macrophages . EMBO J.28 ( 21 ), 3341 – 3352 ( 2009 ).
  • Yan Q , SunL , ZhuZ , WangL , LiS , YeRD . Jmjd3-mediated epigenetic regulation of inflammatory cytokine gene expression in serum amyloid A-stimulated macrophages . Cell. Signal.26 ( 9 ), 1783 – 1791 ( 2014 ).
  • King VL , ThompsonJ , TannockLR . Serum amyloid A in atherosclerosis . Curr. Opin. Lipidol.22 ( 4 ), 302 – 307 ( 2011 ).
  • Lippi G , FranchiniM , TargherG . Arterial thrombus formation in cardiovascular disease . Nat. Rev. Cardiol.8 ( 9 ), 502 – 512 ( 2011 ).
  • Iwamori N , ZhaoM , MeistrichML , MatzukMM . The testis-enriched histone demethylase, KDM4D, regulates methylation of histone H3 lysine 9 during spermatogenesis in the mouse but is dispensable for fertility . Biol. Reprod.84 ( 6 ), 1225 – 1234 ( 2011 ).
  • Shpargel KB , StarmerJ , YeeD , PohlersM , MagnusonT . KDM6 demethylase independent loss of histone H3 lysine 27 trimethylation during early embryonic development . PLoS Genet.10 ( 8 ), e1004507 ( 2014 ).
  • Miller SA , MohnSE , WeinmannAS . Jmjd3 and UTX play a demethylase-independent role in chromatin remodeling to regulate T-box family member-dependent gene expression . Mol. Cell40 ( 4 ), 594 – 605 ( 2010 ).
  • Khoury-Haddad H , Guttmann-RavivN , IpenbergI , HugginsD , JeyasekharanAD , AyoubN . PARP1-dependent recruitment of KDM4D histone demethylase to DNA damage sites promotes double-strand break repair . Proc. Natl Acad. Sci. USA111 ( 7 ), E728 – E737 ( 2014 ).
  • Watson JA , WatsonCJ , McCrohanA-Met al. Generation of an epigenetic signature by chronic hypoxia in prostate cells . Hum. Mol. Genet.18 ( 19 ), 3594 – 3604 ( 2009 ).
  • Shahrzad S , BertrandK , MinhasK , CoomberBL . Induction of DNA hypomethylation by tumor hypoxia . Epigenetics2 ( 2 ), 119 – 125 .