684
Views
0
CrossRef citations to date
0
Altmetric
Review

Transgenerational Epigenetic Inheritance: Adaptation Through the Germline Epigenome?

, &
Pages 829-846 | Published online: 14 Sep 2015

References

  • Hajkova P , ErhardtS , LaneNet al. Epigenetic reprogramming in mouse primordial germ cells . Mech. Dev.117 ( 1–2 ), 15 – 23 ( 2002 ).
  • Saitou M , KagiwadaS , KurimotoK . Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells . Development139 ( 1 ), 15 – 31 ( 2012 ).
  • Morgan HD , SantosF , GreenK , DeanW , ReikW . Epigenetic reprogramming in mammals . Hum. Mol. Genet.14 ( Suppl. 1 ), R47 – R58 ( 2005 ).
  • Feng S , JacobsenSE , ReikW . Epigenetic reprogramming in plant and animal development . Science330 ( 6004 ), 622 – 627 ( 2010 ).
  • Kelly WG . Transgenerational epigenetics in the germline cycle of Caenorhabditis elegans . Epigenetics Chromatin7 ( 1 ), 6 ( 2014 ).
  • Mintz B , RussellES . Gene-induced embryological modifications of primordial germ cells in the mouse . J. Exp. Zool.134 ( 2 ), 207 – 237 ( 1957 ).
  • Tam PPL , SnowMHL . Proliferation and migration of primordial germ-cells during compensatory growth in mouse embryos . J. Embryol. Exp. Morph.64 , 133 – 147 ( 1981 ).
  • Tachibana M , UedaJ , FukudaMet al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9 . Genes Dev.19 ( 7 ), 815 – 826 ( 2005 ).
  • Yabuta Y , KurimotoK , OhinataY , SekiY , SaitouM . Gene expression dynamics during germline specification in mice identified by quantitative single-cell gene expression profiling . Biol. Repro.75 ( 5 ), 705 – 716 ( 2006 ).
  • Seki Y , YamajiM , YabutaYet al. Cellular dynamics associated with the genome-wide epigenetic reprogramming in migrating primordial germ cells in mice . Development134 ( 14 ), 2627 – 2638 ( 2007 ).
  • Seki Y , HayashiK , ItohK , MizugakiM , SaitouM , MatsuiY . Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice . Dev. Biol.278 ( 2 ), 440 – 458 ( 2005 ).
  • Hajkova P , AncelinK , WaldmannTet al. Chromatin dynamics during epigenetic reprogramming in the mouse germ line . Nature452 ( 7189 ), 877 – 881 ( 2008 ).
  • Seisenberger S , AndrewsS , KruegerFet al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells . Mol. Cell48 ( 6 ), 849 – 862 ( 2012 ).
  • Ancelin K , LangeUC , HajkovaPet al. Blimp1 associates with Prmt5 and directs histone arginine methylation in mouse germ cells . Nat. Cell. Biol.8 ( 6 ), 623 – 630 ( 2006 ).
  • Kagiwada S , KurimotoK , HirotaT , YamajiM , SaitouM . Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice . EMBO J.32 ( 3 ), 340 – 353 ( 2013 ).
  • Aoto T , SaitohN , SakamotoY , WatanabeS , NakaoM . Polycomb group protein-associated chromatin is reproduced in post-mitotic G1 phase and is required for S phase progression . J. Biol. Chem.283 ( 27 ), 18905 – 18915 ( 2008 ).
  • Hackett JA , ZyliczJJ , SuraniMA . Parallel mechanisms of epigenetic reprogramming in the germline . Trends Genet.28 ( 4 ), 164 – 174 ( 2012 ).
  • Stringer J , BarrandS , WesternP . Fine-tuning evolution: germ-line epigenetics and inheritance . Reproduction146 ( 1 ), R37 – R48 ( 2013 ).
  • Stringer JM , PaskAJ , ShawG , RenfreeMB . Post-natal imprinting: evidence from marsupials . Heredity113 ( 2 ), 145 – 155 ( 2014 ).
  • Constancia M , KelseyG , ReikW . Resourceful imprinting . Nature432 ( 7013 ), 53 – 57 ( 2004 ).
  • Li Y , SasakiH . Genomic imprinting in mammals: its life cycle, molecular mechanisms and reprogramming . Cell Res.21 ( 3 ), 466 – 473 ( 2011 ).
  • Bartolomei MS , Ferguson-SmithAC . Mammalian genomic imprinting . Cold Spring Harb. Perspect. Biol.3 ( 7 ), pii:a002592 ( 2011 ).
  • Charalambous M , Da RochaST , Ferguson-SmithAC . Genomic imprinting, growth control and the allocation of nutritional resources: consequences for postnatal life . Curr. Opin. Endocrinol. Diabetes Obes.14 ( 1 ), 3 – 12 ( 2007 ).
  • Kaneda M , OkanoM , HataKet al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting . Nature429 ( 6994 ), 900 – 903 ( 2004 ).
  • Kato Y , KanedaM , HataKet al. Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse . Hum. Mol. Genet.16 ( 19 ), 2272 – 2280 ( 2007 ).
  • La Salle S , MertineitC , TaketoT , MoensPB , BestorTH , TraslerJM . Windows for sex-specific methylation marked by DNA methyltransferase expression profiles in mouse germ cells . Dev. Biol.268 ( 2 ), 403 – 415 ( 2004 ).
  • Sakai Y , SuetakeI , ShinozakiF , YamashinaS , TajimaS . Co-expression of de novo DNA methyltransferases Dnmt3a2 and Dnmt3L in gonocytes of mouse embryos . Gene Expr. Patterns5 ( 2 ), 231 – 237 ( 2004 ).
  • Shovlin TC , Bourc’hisD , La SalleSet al. Sex-specific promoters regulate Dnmt3L expression in mouse germ cells . Hum. Reprod.22 ( 2 ), 457 – 467 ( 2007 ).
  • Webster KE , O’bryanMK , FletcherSet al. Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis . Proc. Natl Acad. Sci. USA102 ( 11 ), 4068 – 4073 ( 2005 ).
  • Western PS , Van Den BergenJA , MilesDC , SinclairAH . Male germ cell differentiation involves complex repression of the regulatory network controlling pluripotency . FASEB J.24 ( 8 ), 3026 – 3035 ( 2010 ).
  • Bourc’his D , XuGL , LinCS , BollmanB , BestorTH . Dnmt3L and the establishment of maternal genomic imprints . Science294 ( 5551 ), 2536 – 2539 ( 2001 ).
  • Hata K , OkanoM , LeiH , LiE . Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice . Development129 ( 8 ), 1983 – 1993 ( 2002 ).
  • Lucifero D , La SalleS , Bourc’hisD , MartelJ , BestorTH , TraslerJM . Coordinate regulation of DNA methyltransferase expression during oogenesis . BMC Dev. Biol.7 , 36 ( 2007 ).
  • Lesch BJ , DokshinGA , YoungRA , MccarreyJR , PageDC . A set of genes critical to development is epigenetically poised in mouse germ cells from fetal stages through completion of meiosis . Proc. Natl Acad. Sci. USA110 ( 40 ), 16061 – 16066 ( 2013 ).
  • Kota SK , FeilR . Epigenetic transitions in germ cell development and meiosis . Dev. Cell19 ( 5 ), 675 – 686 ( 2010 ).
  • Hammoud SS , NixDA , ZhangH , PurwarJ , CarrellDT , CairnsBR . Distinctive chromatin in human sperm packages genes for embryo development . Nature460 ( 7254 ), 473 – 478 ( 2009 ).
  • Brykczynska U , HisanoM , ErkekSet al. Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa . Nat. Struct. Mol. Biol.17 ( 6 ), 679 – 687 ( 2010 ).
  • Erkek S , HisanoM , LiangCYet al. Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa . Nat. Struct. Mol. Biol.20 ( 7 ), 868 – 875 ( 2013 ).
  • Smallwood SA , TomizawaS , KruegerFet al. Dynamic CpG island methylation landscape in oocytes and preimplantation embryos . Nat. Genet.43 ( 8 ), 811 – 814 ( 2011 ).
  • Chatterjee A , RodgerEJ , StockwellPA , WeeksRJ , MorisonIM . Technical considerations for reduced representation bisulfite sequencing with multiplexed libraries . J. Biomed. Biotechnol. 2012 , 741542 ( 2012 ).
  • Payer B , SaitouM , BartonSCet al. Stella is a maternal effect gene required for normal early development in mice . Curr. Biol.13 ( 23 ), 2110 – 2117 ( 2003 ).
  • Li X , ItoM , ZhouFet al. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints . Dev. Cell15 ( 4 ), 547 – 557 ( 2008 ).
  • Messerschmidt DM , De VriesW , ItoM , SolterD , Ferguson-SmithA , KnowlesBB . Trim28 is required for epigenetic stability during mouse oocyte to embryo transition . Science335 ( 6075 ), 1499 – 1502 ( 2012 ).
  • Monk M , BoubelikM , LehnertS . Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development . Development99 ( 3 ), 371 – 382 ( 1987 ).
  • Howlett SK , ReikW . Methylation levels of maternal and paternal genomes during preimplantation development . Development113 ( 1 ), 119 – 127 ( 1991 ).
  • Van Der Heijden GW , DiekerJW , DerijckAAet al. Asymmetry in histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote . Mech. Dev.122 ( 9 ), 1008 – 1022 ( 2005 ).
  • Mayer W , NiveleauA , WalterJ , FundeleR , HaafT . Demethylation of the zygotic paternal genome . Nature403 ( 6769 ), 501 – 502 ( 2000 ).
  • Oswald J , EngemannS , LaneNet al. Active demethylation of the paternal genome in the mouse zygote . Curr. Biol.10 ( 8 ), 475 – 478 ( 2000 ).
  • Santos F , HendrichB , ReikW , DeanW . Dynamic reprogramming of DNA methylation in the early mouse embryo . Dev. Biol.241 ( 1 ), 172 – 182 ( 2002 ).
  • Wossidlo M , NakamuraT , LepikhovKet al. 5-hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming . Nat. Commun.2 , 241 ( 2011 ).
  • Li Y , O’NeillC . Persistence of cytosine methylation of DNA following fertilisation in the mouse . PLoS ONE7 ( 1 ), e30687 ( 2012 ).
  • Stancheva I , MeehanRR . Transient depletion of xDnmt1 leads to premature gene activation in Xenopus embryos . Genes Dev.14 ( 3 ), 313 – 327 ( 2000 ).
  • Beaujean N , HartshorneG , CavillaJet al. Non-conservation of mammalian preimplantation methylation dynamics . Curr. Biol.14 ( 7 ), R266 – R267 ( 2004 ).
  • Macleod D , ClarkVH , BirdA . Absence of genome-wide changes in DNA methylation during development of the zebrafish . Nat. Genet.23 ( 2 ), 139 – 140 ( 1999 ).
  • Smith ZD , ChanMM , MikkelsenTSet al. A unique regulatory phase of DNA methylation in the early mammalian embryo . Nature484 ( 7394 ), 339 – 344 ( 2012 ).
  • Smith ZD , ChanMM , HummKCet al. DNA methylation dynamics of the human preimplantation embryo . Nature511 ( 7511 ), 611 – 615 ( 2014 ).
  • Inoue A , ZhangY . Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos . Science334 ( 6053 ), 194 ( 2011 ).
  • Tahiliani M , KohKP , ShenYet al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 . Science324 ( 5929 ), 930 – 935 ( 2009 ).
  • Borgel J , GuibertS , LiYet al. Targets and dynamics of promoter DNA methylation during early mouse development . Nat. Genet.42 ( 12 ), 1093 – 1100 ( 2010 ).
  • Nakamura T , LiuYJ , NakashimaHet al. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos . Nature486 ( 7403 ), 415 – 419 ( 2012 ).
  • Messerschmidt DM . Should I stay or should I go: protection and maintenance of DNA methylation at imprinted genes . Epigenetics7 ( 9 ), 969 – 975 ( 2012 ).
  • Nakamura T , AraiY , UmeharaHet al. PGC7/Stella protects against DNA demethylation in early embryogenesis . Nat. Cell Biol.9 ( 1 ), 64 – 71 ( 2007 ).
  • Ratnam S , MertineitC , DingFet al. Dynamics of Dnmt1 methyltransferase expression and intracellular localization during oogenesis and preimplantation development . Dev. Biol.245 ( 2 ), 304 – 314 ( 2002 ).
  • Quenneville S , VerdeG , CorsinottiAet al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions . Mol. Cell44 ( 3 ), 361 – 372 ( 2011 ).
  • Zuo X , ShengJ , LauHTet al. Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain . J. Biol. Chem.287 ( 3 ), 2107 – 2118 ( 2012 ).
  • Kurihara Y , KawamuraY , UchijimaYet al. Maintenance of genomic methylation patterns during preimplantation development requires the somatic form of DNA methyltransferase 1 . Dev. Biol.313 ( 1 ), 335 – 346 ( 2008 ).
  • Cirio MC , RatnamS , DingF , ReinhartB , NavaraC , ChailletJR . Preimplantation expression of the somatic form of Dnmt1 suggests a role in the inheritance of genomic imprints . BMC Dev. Biol.8 , 9 ( 2008 ).
  • Mackay DJ , CallawayJL , MarksSMet al. Hypomethylation of multiple imprinted loci in individuals with transient neonatal diabetes is associated with mutations in ZFP57 . Nat. Genet.40 ( 8 ), 949 – 951 ( 2008 ).
  • Surani MA , BartonSC , NorrisML . Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis . Nature308 ( 5959 ), 548 – 550 ( 1984 ).
  • McGrath J , SolterD . Completion of mouse embryogenesis requires both the maternal and paternal genomes . Cell37 ( 1 ), 179 – 183 ( 1984 ).
  • Mann JR , Lovell-BadgeRH . Inviability of parthenogenones is determined by pronuclei, not egg cytoplasm . Nature310 ( 5972 ), 66 – 67 ( 1984 ).
  • Searle AG , BeecheyCV . Noncomplementation phenomena and their bearing on nondisjunctional effects . Basic Life Sci.36 , 363 – 376 ( 1985 ).
  • Li E , BeardC , JaenischR . Role for DNA methylation in genomic imprinting . Nature366 ( 6453 ), 362 – 365 ( 1993 ).
  • Saitou M , PayerB , LangeUC , ErhardtS , BartonSC , SuraniMA . Specification of germ cell fate in mice . Philos. Trans. R. Soc. Lond. B. Biol. Sci.358 ( 1436 ), 1363 – 1370 ( 2003 ).
  • Davis TL , TraslerJM , MossSB , YangGJ , BartolomeiMS . Acquisition of the H19 methylation imprint occurs differentially on the parental alleles during spermatogenesis . Genomics58 ( 1 ), 18 – 28 ( 1999 ).
  • Davis TL , YangGJ , McCarreyJR , BartolomeiMS . The H19 methylation imprint is erased and re-established differentially on the parental alleles during male germ cell development . Hum. Mol. Genet.9 ( 19 ), 2885 – 2894 ( 2000 ).
  • Li JY , Lees-MurdockDJ , XuGL , WalshCP . Timing of establishment of paternal methylation imprints in the mouse . Genomics84 ( 6 ), 952 – 960 ( 2004 ).
  • Lucifero D , MannMR , BartolomeiMS , TraslerJM . Gene-specific timing and epigenetic memory in oocyte imprinting . Hum. Mol. Genet.13 ( 8 ), 839 – 849 ( 2004 ).
  • Henckel A , ChebliK , KotaSK , ArnaudP , FeilR . Transcription and histone methylation changes correlate with imprint acquisition in male germ cells . EMBO J.31 ( 3 ), 606 – 615 ( 2012 ).
  • Chotalia M , SmallwoodSA , RufNet al. Transcription is required for establishment of germline methylation marks at imprinted genes . Genes Dev.23 ( 1 ), 105 – 117 ( 2009 ).
  • Smith EY , FuttnerCR , ChamberlainSJ , JohnstoneKA , ResnickJL . Transcription is required to establish maternal imprinting at the Prader-Willi syndrome and Angelman syndrome locus . PLoS Genet.7 ( 12 ), e1002422 ( 2011 ).
  • Lander ES , LintonLM , BirrenBet al. Initial sequencing and analysis of the human genome . Nature409 ( 6822 ), 860 – 921 ( 2001 ).
  • Slotkin RK , MartienssenR . Transposable elements and the epigenetic regulation of the genome . Nat. Rev. Genet.8 ( 4 ), 272 – 285 ( 2007 ).
  • Lane N , DeanW , ErhardtSet al. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse . Genesis35 ( 2 ), 88 – 93 ( 2003 ).
  • Hackett JA , SenguptaR , ZyliczJJet al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine . Science339 ( 6118 ), 448 – 452 ( 2013 ).
  • Guibert S , ForneT , WeberM . Global profiling of DNA methylation erasure in mouse primordial germ cells . Genome Res.22 ( 4 ), 633 – 641 ( 2012 ).
  • Peaston AE , EvsikovAV , GraberJHet al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos . Dev. Cell7 ( 4 ), 597 – 606 ( 2004 ).
  • Rubin CM , VandevoortCA , TeplitzRL , SchmidCW . Alu repeated DNAs are differentially methylated in primate germ cells . Nucleic Acids Res.22 ( 23 ), 5121 – 5127 ( 1994 ).
  • Sapienza C . Sex-linked dosage-sensitive modifiers as imprinting genes . Development108 ( Suppl. ), 107 – 113 ( 1990 ).
  • Barlow DP . Methylation and imprinting: from host defense to gene regulation?Science260 ( 5106 ), 309 – 310 ( 1993 ).
  • McDonald JF . Transposable elements: possible catalysts of organismic evolution . Trends Ecol. Evol.10 ( 3 ), 123 – 126 ( 1995 ).
  • Surani MA . Imprinting and the initiation of gene silencing in the germ line . Cell93 ( 3 ), 309 – 312 ( 1998 ).
  • Matzke MA , MetteMF , MatzkeAJM . Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates . Plant Mol. Biol.43 ( 2 ), 401 – 415 ( 2000 ).
  • Mcdonald JF , MatzkeMA , MatzkeAJ . Host defenses to transposable elements and the evolution of genomic imprinting . Cytogenet. Genome Res.110 ( 1–4 ), 242 – 249 ( 2005 ).
  • Constancia M , PickardB , KelseyG , ReikW . Imprinting mechanisms . Genome Res.8 ( 9 ), 881 – 900 ( 1998 ).
  • Reik W , WalterJ . Genomic imprinting: parental influence on the genome . Nat. Rev. Genet.2 ( 1 ), 21 – 32 ( 2001 ).
  • Daxinger L , WhitelawE . Understanding transgenerational epigenetic inheritance via the gametes in mammals . Nat. Rev. Genet.13 ( 3 ), 153 – 162 ( 2012 ).
  • Radford EJ , IsganaitisE , Jimenez-ChillaronJet al. An unbiased assessment of the role of imprinted genes in an intergenerational model of developmental programming . PLoS Genet.8 ( 4 ), 41 – 53 ( 2012 ).
  • Ashe A , SapetschnigA , WeickEMet al. piRNAs can trigger a multigenerational epigenetic memory in the germline of C. elegans . Cell150 ( 1 ), 88 – 99 ( 2012 ).
  • Shirayama M , SethM , LeeHCet al. piRNAs initiate an epigenetic memory of nonself RNA in the C. elegans germline . Cell150 ( 1 ), 65 – 77 ( 2012 ).
  • Bagijn MP , GoldsteinLD , SapetschnigAet al. Function, targets, and evolution of Caenorhabditis elegans piRNAs . Science337 ( 6094 ), 574 – 578 ( 2012 ).
  • Lim SL , Tsend-AyushE , KortschakRDet al. Conservation and expression of PIWI-interacting RNA pathway genes in male and female adult gonad of amniotes . Biol. Reprod.89 ( 6 ), 136 ( 2013 ).
  • Malone CD , HannonGJ . Small RNAs as guardians of the genome . Cell136 ( 4 ), 656 – 668 ( 2009 ).
  • Lee HC , GuW , ShirayamaM , YoungmanE , ConteDJr. , MelloCC . C. elegans piRNAs mediate the genome-wide surveillance of germline transcripts . Cell150 ( 1 ), 78 – 87 ( 2012 ).
  • Grossniklaus U , KellyB , Ferguson-SmithAC , PembreyM , LindquistS . Transgenerational epigenetic inheritance: how important is it?Nat. Rev. Genet.14 ( 3 ), 228 – 235 ( 2013 ).
  • Francis D , DiorioJ , LiuD , MeaneyMJ . Nongenomic transmission across generations of maternal behavior and stress responses in the rat . Science286 ( 5442 ), 1155 – 1158 ( 1999 ).
  • Francis DD , ChampagneFA , LiuD , MeaneyMJ . Maternal care, gene expression, and the development of individual differences in stress reactivity . Ann. NY Acad. Sci.896 , 66 – 84 ( 1999 ).
  • Wolff GL , KodellRL , MooreSR , CooneyCA . Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice . FASEB J.12 ( 11 ), 949 – 957 ( 1998 ).
  • Waterland RA , JirtleRL . Transposable elements: targets for early nutritional effects on epigenetic gene regulation . Mol. Cell. Biol.23 ( 15 ), 5293 – 5300 ( 2003 ).
  • Cropley JE , SuterCM , BeckmanKB , MartinDI . Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation . Proc. Natl Acad. Sci. USA103 ( 46 ), 17308 – 17312 ( 2006 ).
  • Cropley JE , DangTH , MartinDI , SuterCM . The penetrance of an epigenetic trait in mice is progressively yet reversibly increased by selection and environment . Proc. Biol. Sci.279 ( 1737 ), 2347 – 2353 ( 2012 ).
  • Waterland RA , TravisanoM , TahilianiKG . Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female . FASEB J.21 ( 12 ), 3380 – 3385 ( 2007 ).
  • Morgan HD , SutherlandHG , MartinDI , WhitelawE . Epigenetic inheritance at the agouti locus in the mouse . Nat. Genet.23 ( 3 ), 314 – 318 ( 1999 ).
  • Zamudio N , Bourc’hisD . Transposable elements in the mammalian germline: a comfortable niche or a deadly trap?Heredity105 ( 1 ), 92 – 104 ( 2010 ).
  • Blewitt ME , VickaryousNK , PaldiA , KosekiH , WhitelawE . Dynamic reprogramming of DNA methylation at an epigenetically sensitive allele in mice . PLoS Genet.2 ( 4 ), e49 ( 2006 ).
  • Padmanabhan N , JiaD , Geary-JooCet al. Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development . Cell155 ( 1 ), 81 – 93 ( 2013 ).
  • Gapp K , JawaidA , SarkiesPet al. Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice . Nat. Neurosci.17 ( 5 ), 667 – 669 ( 2014 ).
  • Schübeler D . Function and information content of DNA methylation . Nature517 ( 7534 ), 321 – 326 ( 2015 ).
  • Dunn GA , BaleTL . Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice . Endocrinology150 ( 11 ), 4999 – 5009 ( 2009 ).
  • Carone BR , FauquierL , HabibNet al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals . Cell143 ( 7 ), 1084 – 1096 ( 2010 ).
  • Ng SF , LinRC , LaybuttDR , BarresR , OwensJA , MorrisMJ . Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring . Nature467 ( 7318 ), 963 – 966 ( 2010 ).
  • Pembrey ME . Male-line transgenerational responses in humans . Hum. Fertil. (Camb)13 ( 4 ), 268 – 271 ( 2010 ).
  • Jimenez-Chillaron JC , IsganaitisE , CharalambousMet al. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice . Diabetes58 ( 2 ), 460 – 468 ( 2009 ).
  • Wei Y , YangC-R , WeiY-Pet al. Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals . Proc. Natl Acad. Sci. USA111 ( 5 ), 1873 – 1878 ( 2014 ).
  • Guerrero-Bosagna C , SettlesM , LuckerB , SkinnerMK . Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome . PLoS ONE5 ( 9 ), e13100 ( 2010 ).
  • Radford EJ , ItoM , ShiHet al. In utero effects. In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism . Science345 ( 6198 ), 1255903 ( 2014 ).
  • Dunn GA , BaleTL . Maternal high-fat diet effects on third-generation female body size via the paternal lineage . Endocrinology152 ( 6 ), 2228 – 2236 ( 2011 ).
  • Lambrot R , XuC , Saint-PharSet al. Low paternal dietary folate alters the mouse sperm epigenome and is associated with negative pregnancy outcomes . Nat. Commun.4 , 2889 ( 2013 ).
  • Blount BC , MackMM , WehrCMet al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage . Proc. Natl Acad. Sci. USA94 ( 7 ), 3290 – 3295 ( 1997 ).
  • Chong S , VickaryousN , AsheAet al. Modifiers of epigenetic reprogramming show paternal effects in the mouse . Nat. Genet.39 ( 5 ), 614 – 622 ( 2007 ).
  • Gu SG , PakJ , GuangS , ManiarJM , KennedyS , FireA . Amplification of siRNA in Caenorhabditis elegans generates a transgenerational sequence-targeted histone H3 lysine 9 methylation footprint . Nat. Genet.44 ( 2 ), 157 – 164 ( 2012 ).
  • Buckley BA , BurkhartKB , GuSGet al. A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality . Nature489 ( 7416 ) 447 – 451 ( 2012 ).
  • Youngson NA , WhitelawE . Transgenerational epigenetic effects . Annu. Rev. Genomics Hum. Genet.9 , 233 – 257 ( 2008 ).
  • Daxinger L , WhitelawE . Transgenerational epigenetic inheritance: more questions than answers . Genome Res.20 ( 12 ), 1623 – 1628 ( 2010 ).
  • Huxley J . Evolution. The Modern Synthesis.Allen & Unwin , London ( 1942 ).
  • Mayr E . The Growth of Biological Thought: Diversity, Evolution, and Inheritance.Harvard University Press , USA ( 1982 ).
  • Wolf JB , OakeyRJ , FeilR . Imprinted gene expression in hybrids: perturbed mechanisms and evolutionary implications . Heredity113 ( 2 ), 167 – 175 ( 2014 ).
  • Jablonka E , LambMJ . Epigenetic Inheritance and Evolution: The Lamarckian Dimension . Oxford University Press , UK , p360 ( 1995 ).
  • Jablonka E , LambMJ . The evolution of information in the major transitions . J. Theor. Biol.239 ( 2 ), 236 – 246 ( 2006 ).
  • Jablonka E , LambMJ . Soft inheritance: challenging the modern synthesis . Genet. Mol. Biol.31 ( 2 ), 389 – 395 ( 2008 ).
  • Bossdorf O , RichardsCL , PigliucciM . Epigenetics for ecologists . Ecol. Lett.11 ( 2 ), 106 – 115 ( 2008 ).
  • Pigliucci M , MüllerGB . Evolution, the Extended Synthesis.MIT Press , Cambridge, USA ( 2010 ).
  • Suter CM , BoffelliD , MartinDI . A role for epigenetic inheritance in modern evolutionary theory? A comment in response to Dickins and Rahman . Proc. Biol. Sci.280 ( 1771 ), 20130903; 20131820 ( 2013 ).
  • Li CC , YoungPE , MaloneyCAet al. Maternal obesity and diabetes induces latent metabolic defects and widespread epigenetic changes in isogenic mice . Epigenetics8 ( 6 ), 602 – 611 ( 2013 ).
  • Duhl DM , VrielingH , MillerKA , WolffGL , BarshGS . Neomorphic agouti mutations in obese yellow mice . Nat. Genet.8 ( 1 ), 59 – 65 ( 1994 ).
  • Bateson P , GluckmanP . Plasticity and robustness in development and evolution . Int. J. Epidemiol.41 ( 1 ), 219 – 223 ( 2012 ).
  • Reik W , ConstanciaM , FowdenAet al. Regulation of supply and demand for maternal nutrients in mammals by imprinted genes . J. Physiol.547 ( Pt 1 ), 35 – 44 ( 2003 ).
  • Haig D , WestobyM . Parent-specific gene expression and the triploid endosperm . Am. Nat.134 ( 1 ), 147 – 155 ( 1989 ).
  • Haig D . Genomic imprinting and kinship: how good is the evidence?Annu. Rev. Genet.38 ( 1 ), 553 – 585 ( 2004 ).
  • Wolf JB , HagerR . A maternal–offspring coadaptation theory for the evolution of genomic imprinting . PLoS Biol.4 ( 12 ), e380 ( 2006 ).
  • Keverne EB , CurleyJP . Epigenetics, brain evolution and behaviour . Front. Neuroendocrinol.29 ( 3 ), 398 – 412 ( 2008 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.