27,333
Views
4
CrossRef citations to date
0
Altmetric
Review

Methyl-CpG-Binding Domain Proteins: Readers of the Epigenome

, , &
Pages 1051-1073 | Published online: 30 Apr 2015

References

  • Bestor T , LaudanoA , MattalianoR , IngramV . Cloning and sequencing of a cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal domain of the mammalian enzymes is related to bacterial restriction methyltransferases . J. Mol. Biol.203 ( 4 ), 971 – 983 ( 1988 ).
  • Stirzaker C , TaberlayPC , StathamAL , ClarkSJ . Mining cancer methylomes: prospects and challenges . Trends Genet.30 ( 2 ), 75 – 84 ( 2014 ).
  • Gardiner-Garden M , FrommerM . CpG islands in vertebrate genomes . J. Mol. Biol.196 ( 2 ), 261 – 282 ( 1987 ).
  • Ogoshi K , HashimotoS , NakataniYet al. Genome-wide profiling of DNA methylation in human cancer cells . Genomics98 ( 4 ), 280 – 287 ( 2011 ).
  • Ball MP , LiJB , GaoYet al. Targeted and genome-scale strategies reveal gene-body methylation signatures in human cells . Nat. Biotechnol.27 ( 4 ), 361 – 368 ( 2009 ).
  • Taberlay PC , StathamAL , KellyTK , ClarkSJ , JonesPA . Reconfiguration of nucleosome-depleted regions at distal regulatory elements accompanies DNA methylation of enhancers and insulators in cancer . Genome Res.24 ( 9 ), 1421 – 1432 ( 2014 ).
  • Okano M , XieS , LiE . Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases . Nat. Genet.19 ( 3 ), 219 – 220 ( 1998 ).
  • Bogdanovic O , VeenstraGJ . DNA methylation and methyl-CpG binding proteins: developmental requirements and function . Chromosoma118 ( 5 ), 549 – 565 ( 2009 ).
  • Hashimoto H , VertinoPM , ChengX . Molecular coupling of DNA methylation and histone methylation . Epigenomics2 ( 5 ), 657 – 669 ( 2010 ).
  • Filion GJ , ZheniloS , SalozhinS , YamadaD , ProkhortchoukE , DefossezPA . A family of human zinc finger proteins that bind methylated DNA and repress transcription . Mol. Cell. Biol.26 ( 1 ), 169 – 181 ( 2006 ).
  • Unoki M , NishidateT , NakamuraY . ICBP90, an E2F-1 target, recruits HDAC1 and binds to methyl-CpG through its SRA domain . Oncogene23 ( 46 ), 7601 – 7610 ( 2004 ).
  • Prokhortchouk A , HendrichB , JorgensenHet al. The p120 catenin partner Kaiso is a DNA methylation-dependent transcriptional repressor . Genes Dev.15 ( 13 ), 1613 – 1618 ( 2001 ).
  • Hendrich B , BirdA . Identification and characterization of a family of mammalian methyl-CpG binding proteins . Mol. Cell. Biol.18 ( 11 ), 6538 – 6547 ( 1998 ).
  • Pastor WA , AravindL , RaoA . TETonic shift: biological roles of TET proteins in DNA demethylation and transcription . Nat. Rev. Mol. Cell Biol.14 ( 6 ), 341 – 356 ( 2013 ).
  • Baymaz HI , FournierA , LagetSet al. MBD5 and MBD6 interact with the human PR-DUB complex through their methyl-CpG-binding domain . Proteomics14 ( 19 ), 2179 – 2189 ( 2014 ).
  • Hendrich B , TweedieS . The methyl-CpG binding domain and the evolving role of DNA methylation in animals . Trends Genet.19 ( 5 ), 269 – 277 ( 2003 ).
  • Nan X , MeehanRR , BirdA . Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2 . Nucleic Acids Res.21 ( 21 ), 4886 – 4892 ( 1993 ).
  • Ohki I , ShimotakeN , FujitaNet al. Solution structure of the methyl-CpG binding domain of human MBD1 in complex with methylated DNA . Cell105 ( 4 ), 487 – 497 ( 2001 ).
  • Boeke J , AmmerpohlO , KegelS , MoehrenU , RenkawitzR . The minimal repression domain of MBD2b overlaps with the methyl-CpG-binding domain and binds directly to Sin3A . J. Biol. Chem.275 ( 45 ), 34963 – 34967 ( 2000 ).
  • Wade PA , GegonneA , JonesPL , BallestarE , AubryF , WolffeAP . Mi-2 complex couples DNA methylation to chromatin remodelling and histone deacetylation . Nat. Genet.23 ( 1 ), 62 – 66 ( 1999 ).
  • Ng HH , JeppesenP , BirdA . Active repression of methylated genes by the chromosomal protein MBD1 . Mol. Cell. Biol.20 ( 4 ), 1394 – 1406 ( 2000 ).
  • Meehan RR , LewisJD , BirdAP . Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA . Nucleic Acids Res.20 ( 19 ), 5085 – 5092 ( 1992 ).
  • Fuks F , HurdPJ , WolfD , NanX , BirdAP , KouzaridesT . The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation . J. Biol. Chem.278 ( 6 ), 4035 – 4040 ( 2003 ).
  • Nan X , NgHH , JohnsonCAet al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex . Nature393 ( 6683 ), 386 – 389 ( 1998 ).
  • Kernohan KD , VernimmenD , GloorGB , BerubeNG . Analysis of neonatal brain lacking ATRX or MeCP2 reveals changes in nucleosome density, CTCF binding and chromatin looping . Nucleic Acids Res.42 ( 13 ), 8356 – 8368 ( 2014 ).
  • Agarwal N , HardtT , BreroAet al. MeCP2 interacts with HP1 and modulates its heterochromatin association during myogenic differentiation . Nucleic Acids Res.35 ( 16 ), 5402 – 5408 ( 2007 ).
  • Dhasarathy A , WadePA . The MBD protein family-reading an epigenetic mark?Mutat. Res.647 ( 1–2 ), 39 – 43 ( 2008 ).
  • Maunakea AK , ChepelevI , CuiK , ZhaoK . Intragenic DNA methylation modulates alternative splicing by recruiting MeCP2 to promote exon recognition . Cell Res.23 ( 11 ), 1256 – 1269 ( 2013 ).
  • Amir RE , Van Den VeyverIB , WanM , TranCQ , FranckeU , ZoghbiHY . Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 . Nat. Genet.23 ( 2 ), 185 – 188 ( 1999 ).
  • D’esposito M , QuaderiNA , CiccodicolaAet al. Isolation, physical mapping, and northern analysis of the X-linked human gene encoding methyl CpG-binding protein, MECP2 . Mamm. Genome7 ( 7 ), 533 – 535 ( 1996 ).
  • Shahbazian MD , AntalffyB , ArmstrongDL , ZoghbiHY . Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation . Hum. Mol. Genet.11 ( 2 ), 115 – 124 ( 2002 ).
  • Kokura K , KaulSC , WadhwaRet al. The Ski protein family is required for MeCP2-mediated transcriptional repression . J. Biol. Chem.276 ( 36 ), 34115 – 34121 ( 2001 ).
  • Lyst MJ , EkiertR , EbertDHet al. Rett syndrome mutations abolish the interaction of MeCP2 with the NCoR/SMRT co-repressor . Nat. Neurosci.16 ( 7 ), 898 – 902 ( 2013 ).
  • Jones PL , VeenstraGJ , WadePAet al. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription . Nat. Genet.19 ( 2 ), 187 – 191 ( 1998 ).
  • Ballas N , GrunseichC , LuDD , SpehJC , MandelG . REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis . Cell121 ( 4 ), 645 – 657 ( 2005 ).
  • Lunyak VV , BurgessR , PrefontaineGGet al. Corepressor-dependent silencing of chromosomal regions encoding neuronal genes . Science298 ( 5599 ), 1747 – 1752 ( 2002 ).
  • Harikrishnan KN , ChowMZ , BakerEKet al. Brahma links the SWI/SNF chromatin-remodeling complex with MeCP2-dependent transcriptional silencing . Nat. Genet.37 ( 3 ), 254 – 264 ( 2005 ).
  • Kimura H , ShiotaK . Methyl-CpG-binding protein, MeCP2, is a target molecule for maintenance DNA methyltransferase, DNMT1 . J. Biol. Chem.278 ( 7 ), 4806 – 4812 ( 2003 ).
  • Kernohan KD , JiangY , TremblayDCet al. ATRX partners with cohesin and MeCP2 and contributes to developmental silencing of imprinted genes in the brain . Dev. Cell18 ( 2 ), 191 – 202 ( 2010 ).
  • Mellen M , AyataP , DewellS , KriaucionisS , HeintzN . MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system . Cell151 ( 7 ), 1417 – 1430 ( 2012 ).
  • Szulwach KE , LiX , LiYet al. 5-hmC-mediated epigenetic dynamics during postnatal neurodevelopment and aging . Nat. Neurosci.14 ( 12 ), 1607 – 1616 ( 2011 ).
  • Vaute O , NicolasE , VandelL , TroucheD . Functional and physical interaction between the histone methyl transferase Suv39H1 and histone deacetylases . Nucleic Acids Res.30 ( 2 ), 475 – 481 ( 2002 ).
  • Villa R , MoreyL , RakerVAet al. The methyl-CpG binding protein MBD1 is required for PML-RARalpha function . Proc. Natl Acad. Sci. USA103 ( 5 ), 1400 – 1405 ( 2006 ).
  • Fujita N , WatanabeS , IchimuraTet al. Methyl-CpG binding domain 1 (MBD1) interacts with the Suv39h1-HP1 heterochromatic complex for DNA methylation-based transcriptional repression . J. Biol. Chem.278 ( 26 ), 24132 – 24138 ( 2003 ).
  • Sarraf SA , StanchevaI . Methyl-CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly . Mol. Cell15 ( 4 ), 595 – 605 ( 2004 ).
  • Ichimura T , WatanabeS , SakamotoY , AotoT , FujitaN , NakaoM . Transcriptional repression and heterochromatin formation by MBD1 and MCAF/AM family proteins . J. Biol. Chem.280 ( 14 ), 13928 – 13935 ( 2005 ).
  • Fujita N , WatanabeS , IchimuraTet al. MCAF mediates MBD1-dependent transcriptional repression . Mol. Cell. Biol.23 ( 8 ), 2834 – 2843 ( 2003 ).
  • Uchimura Y , IchimuraT , UwadaJet al. Involvement of SUMO modification in MBD1- and MCAF1-mediated heterochromatin formation . J. Biol. Chem.281 ( 32 ), 23180 – 23190 ( 2006 ).
  • Gu P , XuX , Le MenuetD , ChungAC , CooneyAJ . Differential recruitment of methyl CpG-binding domain factors and DNA methyltransferases by the orphan receptor germ cell nuclear factor initiates the repression and silencing of Oct4 . Stem Cells29 ( 7 ), 1041 – 1051 ( 2011 ).
  • Le Guezennec X , VermeulenM , BrinkmanABet al. MBD2/NuRD and MBD3/NuRD, two distinct complexes with different biochemical and functional properties . Mol. Cell. Biol.26 ( 3 ), 843 – 851 ( 2006 ).
  • Ramirez J , DegeC , KutateladzeTG , HagmanJ . MBD2 and multiple domains of CHD4 are required for transcriptional repression by Mi-2/NuRD complexes . Mol. Cell. Biol.32 ( 24 ), 5078 – 5088 ( 2012 ).
  • Marhold J , BrehmA , KramerK . The Drosophila methyl-DNA binding protein MBD2/3 interacts with the NuRD complex via p55 and MI-2 . BMC Mol. Biol.5 ( 1 ), 20 ( 2004 ).
  • Brackertz M , BoekeJ , ZhangR , RenkawitzR . Two highly related p66 proteins comprise a new family of potent transcriptional repressors interacting with MBD2 and MBD3 . J. Biol. Chem.277 ( 43 ), 40958 – 40966 ( 2002 ).
  • Brackertz M , GongZ , LeersJ , RenkawitzR . p66alpha and p66beta of the Mi-2/NuRD complex mediate MBD2 and histone interaction . Nucleic Acids Res.34 ( 2 ), 397 – 406 ( 2006 ).
  • Sekimata M , TakahashiA , Murakami-SekimataA , HommaY . Involvement of a novel zinc finger protein, MIZF, in transcriptional repression by interacting with a methyl-CpG-binding protein, MBD2 . J. Biol. Chem.276 ( 46 ), 42632 – 42638 ( 2001 ).
  • Tan CP , NakielnyS . Control of the DNA methylation system component MBD2 by protein arginine methylation . Mol. Cell. Biol.26 ( 19 ), 7224 – 7235 ( 2006 ).
  • Feng Q , ZhangY . The MeCP1 complex represses transcription through preferential binding, remodeling, and deacetylating methylated nucleosomes . Genes Dev.15 ( 7 ), 827 – 832 ( 2001 ).
  • Tatematsu KI , YamazakiT , IshikawaF . MBD2-MBD3 complex binds to hemi-methylated DNA and forms a complex containing DNMT1 at the replication foci in late S phase . Genes Cells5 ( 8 ), 677 – 688 ( 2000 ).
  • Angrisano T , LemboF , PeroRet al. TACC3 mediates the association of MBD2 with histone acetyltransferases and relieves transcriptional repression of methylated promoters . Nucleic Acids Res.34 ( 1 ), 364 – 372 ( 2006 ).
  • Baubec T , IvanekR , LienertF , SchubelerD . Methylation-dependent and -independent genomic targeting principles of the MBD protein family . Cell153 ( 2 ), 480 – 492 ( 2013 ).
  • Gunther K , RustM , LeersJet al. Differential roles for MBD2 and MBD3 at methylated CpG islands, active promoters and binding to exon sequences . Nucleic Acids Res.41 ( 5 ), 3010 – 3021 ( 2013 ).
  • Stefanska B , SudermanM , MachnesZ , BhattacharyyaB , HallettM , SzyfM . Transcription onset of genes critical in liver carcinogenesis is epigenetically regulated by methylated DNA-binding protein MBD2 . Carcinogenesis34 ( 12 ), 2738 – 2749 ( 2013 ).
  • Fujita H , FujiiR , ArataniS , AmanoT , FukamizuA , NakajimaT . Antithetic effects of MBD2a on gene regulation . Mol. Cell. Biol.23 ( 8 ), 2645 – 2657 ( 2003 ).
  • Kaji K , CaballeroIM , MacleodR , NicholsJ , WilsonVA , HendrichB . The NuRD component Mbd3 is required for pluripotency of embryonic stem cells . Nat. Cell Biol.8 ( 3 ), 285 – 292 ( 2006 ).
  • Morey L , BrennerC , FaziFet al. MBD3, a component of the NuRD complex, facilitates chromatin alteration and deposition of epigenetic marks . Mol. Cell. Biol.28 ( 19 ), 5912 – 5923 ( 2008 ).
  • Choi WI , JeonBN , YoonJHet al. The proto-oncoprotein FBI-1 interacts with MBD3 to recruit the Mi-2/NuRD-HDAC complex and BCoR and to silence p21WAF/CDKN1A by DNA methylation . Nucleic Acids Res.41 ( 13 ), 6403 – 6420 ( 2013 ).
  • Aguilera C , NakagawaK , SanchoR , ChakrabortyA , HendrichB , BehrensA . c-Jun N-terminal phosphorylation antagonises recruitment of the Mbd3/NuRD repressor complex . Nature469 ( 7329 ), 231 – 235 ( 2011 ).
  • Reynolds N , Salmon-DivonM , DvingeHet al. NuRD-mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression . EMBO J.31 ( 3 ), 593 – 605 ( 2012 ).
  • Whyte WA , BilodeauS , OrlandoDAet al. Enhancer decommissioning by LSD1 during embryonic stem cell differentiation . Nature482 ( 7384 ), 221 – 225 ( 2012 ).
  • Wang Y , ZhangH , ChenYet al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer . Cell138 ( 4 ), 660 – 672 ( 2009 ).
  • Shimbo T , DuY , GrimmSAet al. MBD3 localizes at promoters, gene bodies and enhancers of active genes . PLoS Genet.9 ( 12 ), e1004028 ( 2013 ).
  • Reynolds N , LatosP , Hynes-AllenAet al. NuRD suppresses pluripotency gene expression to promote transcriptional heterogeneity and lineage commitment . Cell Stem Cell10 ( 5 ), 583 – 594 ( 2012 ).
  • Yildirim O , LiR , HungJHet al. Mbd3/NURD complex regulates expression of 5-hydroxymethylcytosine marked genes in embryonic stem cells . Cell147 ( 7 ), 1498 – 1510 ( 2011 ).
  • Cai Y , GeutjesEJ , De LintKet al. The NuRD complex cooperates with DNMTs to maintain silencing of key colorectal tumor suppressor genes . Oncogene33 ( 17 ), 2157 – 2168 ( 2014 ).
  • Kondo E , GuZ , HoriiA , FukushigeS . The thymine DNA glycosylase MBD4 represses transcription and is associated with methylated p16(INK4a) and hMLH1 genes . Mol. Cell. Biol.25 ( 11 ), 4388 – 4396 ( 2005 ).
  • Bellacosa A , CicchillittiL , SchepisFet al. MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1 . Proc. Natl Acad. Sci. USA96 ( 7 ), 3969 – 3974 ( 1999 ).
  • Laget S , MiottoB , ChinHGet al. MBD4 cooperates with DNMT1 to mediate methyl-DNA repression and protects mammalian cells from oxidative stress . Epigenetics9 ( 4 ), 546 – 556 ( 2014 ).
  • Boland MJ , ChristmanJK . Characterization of DNMT3b:thymine-DNA glycosylase interaction and stimulation of thymine glycosylase-mediated repair by DNA methyltransferase(s) and RNA . J. Mol. Biol.379 ( 3 ), 492 – 504 ( 2008 ).
  • Rai K , HugginsIJ , JamesSR , KarpfAR , JonesDA , CairnsBR . DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45 . Cell135 ( 7 ), 1201 – 1212 ( 2008 ).
  • Cortellino S , XuJ , SannaiMet al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair . Cell146 ( 1 ), 67 – 79 ( 2011 ).
  • Hashimoto H , ZhangX , ChengX . Excision of thymine and 5-hydroxymethyluracil by the MBD4 DNA glycosylase domain: structural basis and implications for active DNA demethylation . Nucleic Acids Res.40 ( 17 ), 8276 – 8284 ( 2012 ).
  • Bienvenu T , ChellyJ . Molecular genetics of Rett syndrome: when DNA methylation goes unrecognized . Nat. Rev. Genet.7 ( 6 ), 415 – 426 ( 2006 ).
  • Zhou Z , QinJ , TangJet al. Down-regulation of MeCP2 in Hirschsprung’s disease . J. Pediatr. Surg.48 ( 10 ), 2099 – 2105 ( 2013 ).
  • Carney RM , WolpertCM , RavanSAet al. Identification of MeCP2 mutations in a series of females with autistic disorder . Pediatr. Neurol.28 ( 3 ), 205 – 211 ( 2003 ).
  • Loat CS , CurranS , LewisCMet al. Methyl-CpG-binding protein 2 polymorphisms and vulnerability to autism . Genes Brain Behav.7 ( 7 ), 754 – 760 ( 2008 ).
  • Nagarajan RP , HogartAR , GwyeY , MartinMR , LasalleJM . Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation . Epigenetics1 ( 4 ), e1 – e11 ( 2006 ).
  • Shibayama A , CookEHJr , FengJet al. MECP2 structural and 3’-UTR variants in schizophrenia, autism and other psychiatric diseases: a possible association with autism . Am. J. Med. Genet. B Neuropsychiatr. Genet.128B ( 1 ), 50 – 53 ( 2004 ).
  • Ramocki MB , PetersSU , TavyevYJet al. Autism and other neuropsychiatric symptoms are prevalent in individuals with MeCP2 duplication syndrome . Ann. Neurol.66 ( 6 ), 771 – 782 ( 2009 ).
  • Muller HM , FieglH , GoebelGet al. MeCP2 and MBD2 expression in human neoplastic and non-neoplastic breast tissue and its association with oestrogen receptor status . Br. J. Cancer89 ( 10 ), 1934 – 1939 ( 2003 ).
  • Cukier HN , RabionetR , KonidariIet al. Novel variants identified in methyl-CpG-binding domain genes in autistic individuals . Neurogenetics11 ( 3 ), 291 – 303 ( 2010 ).
  • Liu H , JinG , WangHet al. Methyl-CpG binding domain 1 gene polymorphisms and lung cancer risk in a Chinese population . Biomarkers13 ( 6 ), 607 – 617 ( 2008 ).
  • Bader S , WalkerM , McqueenHAet al. MBD1, MBD2 and CGBP genes at chromosome 18q21 are infrequently mutated in human colon and lung cancers . Oncogene22 ( 22 ), 3506 – 3510 ( 2003 ).
  • Jang JS , LeeSJ , ChoiJEet al. Methyl-CpG binding domain 1 gene polymorphisms and risk of primary lung cancer . Cancer Epidemiol. Biomarkers Prev.14 ( 11 Pt 1 ), 2474 – 2480 ( 2005 ).
  • Ghersi D , SinghM . Interaction-based discovery of functionally important genes in cancers . Nucleic Acids Res.42 ( 3 ), e18 ( 2014 ).
  • Xu J , ZhuW , XuWet al. Up-regulation of MBD1 promotes pancreatic cancer cell epithelial-mesenchymal transition and invasion by epigenetic down-regulation of E-cadherin . Curr. Mol. Med.13 ( 3 ), 387 – 400 ( 2013 ).
  • Xu J , ZhuW , XuWet al. Silencing of MBD1 reverses pancreatic cancer therapy resistance through inhibition of DNA damage repair . Int. J. Oncol.42 ( 6 ), 2046 – 2052 ( 2013 ).
  • Patra SK , PatraA , ZhaoH , CarrollP , DahiyaR . Methyl-CpG-DNA binding proteins in human prostate cancer: expression of CXXC sequence containing MBD1 and repression of MBD2 and MeCP2 . Biochem. Biophys. Res. Commun.302 ( 4 ), 759 – 766 ( 2003 ).
  • Pontes TB , ChenES , GigekCOet al. Reduced mRNA expression levels of MBD2 and MBD3 in gastric carcinogenesis . Tumour Biol.35 ( 4 ), 3447 – 3453 ( 2014 ).
  • He M , FanJ , JiangR , TangWX , WangZW . Expression of DNMTs and MBD2 in GIST . Biomed. Rep.1 ( 2 ), 223 – 227 ( 2013 ).
  • Billard LM , MagdinierF , LenoirGM , FrappartL , DanteR . MeCP2 and MBD2 expression during normal and pathological growth of the human mammary gland . Oncogene21 ( 17 ), 2704 – 2712 ( 2002 ).
  • Sapkota Y , RobsonP , LaiR , CassCE , MackeyJR , DamarajuS . A two-stage association study identifies methyl-CpG-binding domain protein 2 gene polymorphisms as candidates for breast cancer susceptibility . Eur. J. Hum. Genet.20 ( 6 ), 682 – 689 ( 2012 ).
  • Zhu Y , BrownHN , ZhangY , HolfordTR , ZhengT . Genotypes and haplotypes of the methyl-CpG-binding domain 2 modify breast cancer risk dependent upon menopausal status . Breast Cancer Res.7 ( 5 ), R745 – R752 ( 2005 ).
  • Zhu D , HunterSB , VertinoPM , Van MeirEG . Overexpression of MBD2 in glioblastoma maintains epigenetic silencing and inhibits the antiangiogenic function of the tumor suppressor gene BAI1 . Cancer Res.71 ( 17 ), 5859 – 5870 ( 2011 ).
  • Balada E , Ordi-RosJ , Serrano-AcedoS , Martinez-LostaoL , Vilardell-TarresM . Transcript overexpression of the MBD2 and MBD4 genes in CD4+ T cells from systemic lupus erythematosus patients . J. Leukoc. Biol.81 ( 6 ), 1609 – 1616 ( 2007 ).
  • Qin HH , ZhuXH , LiangJet al. Associations between aberrant DNA methylation and transcript levels of DNMT1 and MBD2 in CD4+ T cells from patients with systemic lupus erythematosus . Australas. J. Dermatol.54 ( 2 ), 90 – 95 ( 2013 ).
  • Chen ZP , GuDS , ZhouZPet al. Decreased expression of MBD2 and MBD4 gene and genomic-wide hypomethylation in patients with primary immune thrombocytopenia . Hum. Immunol.72 ( 6 ), 486 – 491 ( 2011 ).
  • Zhao S , ChoiM , OvertonJDet al. Landscape of somatic single-nucleotide and copy-number mutations in uterine serous carcinoma . Proc. Natl Acad. Sci. USA110 ( 8 ), 2916 – 2921 ( 2013 ).
  • Schlegel J , GuneysuS , MennelHD . Expression of the genes of methyl-binding domain proteins in human gliomas . Oncol. Rep.9 ( 2 ), 393 – 395 ( 2002 ).
  • Bader S , WalkerM , HendrichBet al. Somatic frameshift mutations in the MBD4 gene of sporadic colon cancers with mismatch repair deficiency . Oncogene18 ( 56 ), 8044 – 8047 ( 1999 ).
  • Riccio A , AaltonenLA , GodwinAKet al. The DNA repair gene MBD4 (MED1) is mutated in human carcinomas with microsatellite instability . Nat. Genet.23 ( 3 ), 266 – 268 ( 1999 ).
  • Yamada T , KoyamaT , OhwadaSet al. Frameshift mutations in the MBD4/MED1 gene in primary gastric cancer with high-frequency microsatellite instability . Cancer Lett.181 ( 1 ), 115 – 120 ( 2002 ).
  • Saito Y , KanaiY , SakamotoM , SaitoH , IshiiH , HirohashiS . Expression of mRNA for DNA methyltransferases and methyl-CpG-binding proteins and DNA methylation status on CpG islands and pericentromeric satellite regions during human hepatocarcinogenesis . Hepatology33 ( 3 ), 561 – 568 ( 2001 ).
  • Cukier HN , LeeJM , MaDet al. The expanding role of MBD genes in autism: identification of a MECP2 duplication and novel alterations in MBD5, MBD6, and SETDB1 . Autism Res.5 ( 6 ), 385 – 397 ( 2012 ).
  • Hamdan FF , SrourM , Capo-ChichiJMet al. De novo mutations in moderate or severe intellectual disability . PLoS Genet.10 ( 10 ), e1004772 ( 2014 ).
  • Mullegama SV , RosenfeldJA , OrellanaCet al. Reciprocal deletion and duplication at 2q23.1 indicates a role for MBD5 in autism spectrum disorder . Eur. J. Hum. Genet.22 ( 1 ), 57 – 63 ( 2014 ).
  • J⊘rgensen HF , Ben-PorathI , BirdAP . MBD1 is recruited to both methylated and nonmethylated CpGs via distinct DNA binding domains . Mol. Cell. Biol.24 ( 8 ), 3387 – 3395 ( 2004 ).
  • Zhao X , UebaT , ChristieBRet al. Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function . Proc. Natl Acad. Sci. USA100 ( 11 ), 6777 – 6782 ( 2003 ).
  • Roloff TC , RopersHH , NuberUA . Comparative study of methyl-CpG-binding domain proteins . BMC Genomics4 ( 1 ), 1 ( 2003 ).
  • Gnanapragasam MN , ScarsdaleJN , AmayaMLet al. p66Alpha-MBD2 coiled-coil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2-NuRD complex . Proc. Natl Acad. Sci. USA108 ( 18 ), 7487 – 7492 ( 2011 ).
  • Becker A , AllmannL , HofstatterMet al. Direct homo- and hetero-interactions of MeCP2 and MBD2 . PLoS ONE8 ( 1 ), e53730 ( 2013 ).
  • Ng HH , ZhangY , HendrichBet al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex . Nat. Genet.23 ( 1 ), 58 – 61 ( 1999 ).
  • Hendrich B , GuyJ , RamsahoyeB , WilsonVA , BirdA . Closely related proteins MBD2 and MBD3 play distinctive but interacting roles in mouse development . Genes Dev.15 ( 6 ), 710 – 723 ( 2001 ).
  • Saito M , IshikawaF . The mCpG-binding domain of human MBD3 does not bind to mCpG but interacts with NuRD/Mi2 components HDAC1 and MTA2 . J. Biol. Chem.277 ( 38 ), 35434 – 35439 ( 2002 ).
  • Petronzelli F , RiccioA , MarkhamGDet al. Investigation of the substrate spectrum of the human mismatch-specific DNA N-glycosylase MED1 (MBD4): fundamental role of the catalytic domain . J. Cell. Physiol.185 ( 3 ), 473 – 480 ( 2000 ).
  • Hendrich B , HardelandU , NgH-H , JiricnyJ , BirdA . The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites . Nature401 ( 6750 ), 301 – 304 ( 1999 ).
  • Wong E , YangK , KuraguchiMet al. MBD4 inactivation increases C right-arrowT transition mutations and promotes gastrointestinal tumor formation . Proc. Natl Acad. Sci. USA99 ( 23 ), 14937 – 14942 ( 2002 ).
  • Laget S , JoulieM , Le MassonFet al. The human proteins MBD5 and MBD6 associate with heterochromatin but they do not bind methylated DNA . PLoS ONE5 ( 8 ), e11982 ( 2010 ).
  • Qin S , MinJ . Structure and function of the nucleosome-binding PWWP domain . Trends Biochem. Sci.39 ( 11 ), 536 – 547 ( 2014 ).
  • Jung JS , JeeMK , ChoHTet al. MBD6 is a direct target of Oct4 and controls the stemness and differentiation of adipose tissue-derived stem cells . Cell. Mol. Life Sci.70 ( 4 ), 711 – 728 ( 2013 ).
  • Falandry C , FourelG , GalyVet al. CLLD8/KMT1F is a lysine methyltransferase that is important for chromosome segregation . J. Biol. Chem.285 ( 26 ), 20234 – 20241 ( 2010 ).
  • Schultz DC , AyyanathanK , NegorevD , MaulGG , RauscherFJ , 3rd . SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins . Genes Dev.16 ( 8 ), 919 – 932 ( 2002 ).
  • Jones MH , HamanaN , NezuJ , ShimaneM . A novel family of bromodomain genes . Genomics63 ( 1 ), 40 – 45 ( 2000 ).
  • Loyola A , TagamiH , BonaldiTet al. The HP1alpha-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin . EMBO Rep.10 ( 7 ), 769 – 775 ( 2009 ).
  • Strohner R , NemethA , JansaPet al. NoRC – a novel member of mammalian ISWI-containing chromatin remodeling machines . EMBO J.20 ( 17 ), 4892 – 4900 ( 2001 ).
  • Santoro R , GrummtI . Epigenetic mechanism of rRNA gene silencing: temporal order of NoRC-mediated histone modification, chromatin remodeling, and DNA methylation . Mol. Cell. Biol.25 ( 7 ), 2539 – 2546 ( 2005 ).
  • Cramer JM , ScarsdaleJN , WalavalkarNM , BuchwaldWA , GinderGD , WilliamsDC . Probing the dynamic distribution of bound states for methyl-cytosine binding domains on DNA . J. Biol. Chem.289 ( 3 ), 1294 – 1302 ( 2013 ).
  • Fraga MF , BallestarE , MontoyaG , TaysavangP , WadePA , EstellerM . The affinity of different MBD proteins for a specific methylated locus depends on their intrinsic binding properties . Nucleic Acids Res.31 ( 6 ), 1765 – 1774 ( 2003 ).
  • Hashimoto H , LiuY , UpadhyayAKet al. Recognition and potential mechanisms for replication and erasure of cytosine hydroxymethylation . Nucleic Acids Res.40 ( 11 ), 4841 – 4849 ( 2012 ).
  • Valinluck V , TsaiHH , RogstadDK , BurdzyA , BirdA , SowersLC . Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2) . Nucleic Acids Res.32 ( 14 ), 4100 – 4108 ( 2004 ).
  • Spruijt CG , GnerlichF , SmitsAHet al. Dynamic readers for 5-(hydroxy) methylcytosine and its oxidized derivatives . Cell152 ( 5 ), 1146 – 1159 ( 2013 ).
  • Gabel HW , KindeB , StroudHet al. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome . Nature doi:10.1038/nature14319 ( 2015 ) ( Epub ahead of print ).
  • Nestor CE , OttavianoR , ReddingtonJet al. Tissue type is a major modifier of the 5-hydroxymethylcytosine content of human genes . Genome Res.22 ( 3 ), 467 – 477 ( 2012 ).
  • Chatagnon A , PerriaudL , NazaretNet al. Preferential binding of the methyl-CpG binding domain protein 2 at methylated transcriptional start site regions . Epigenetics6 ( 11 ), 1295 – 1307 ( 2011 ).
  • Menafra R , BrinkmanAB , MatareseFet al. Genome-wide binding of MBD2 reveals strong preference for highly methylated loci . PLoS ONE9 ( 6 ), e99603 ( 2014 ).
  • Skene PJ , IllingworthRS , WebbSet al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state . Mol. Cell37 ( 4 ), 457 – 468 ( 2010 ).
  • Mayer C , SchmitzKM , LiJ , GrummtI , SantoroR . Intergenic transcripts regulate the epigenetic state of rRNA genes . Mol. Cell22 ( 3 ), 351 – 361 ( 2006 ).
  • Jeffery L , NakielnyS . Components of the DNA methylation system of chromatin control are RNA-binding proteins . J. Biol. Chem.279 ( 47 ), 49479 – 49487 ( 2004 ).
  • Grewal SI , JiaS . Heterochromatin revisited . Nat. Rev. Genet.8 ( 1 ), 35 – 46 ( 2007 ).
  • Brero A , EaswaranHP , NowakDet al. Methyl CpG-binding proteins induce large-scale chromatin reorganization during terminal differentiation . J. Cell Biol.169 ( 5 ), 733 – 743 ( 2005 ).
  • Casas-Delucchi CS , BeckerA , BoliusJJ , CardosoMC . Targeted manipulation of heterochromatin rescues MeCP2 Rett mutants and re-establishes higher order chromatin organization . Nucleic Acids Res.40 ( 22 ), e176 ( 2012 ).
  • Cedar H , BergmanY . Linking DNA methylation and histone modification: patterns and paradigms . Nat. Rev. Genet.10 ( 5 ), 295 – 304 ( 2009 ).
  • Sakamoto Y , WatanabeS , IchimuraTet al. Overlapping roles of the methylated DNA-binding protein MBD1 and polycomb group proteins in transcriptional repression of HOXA genes and heterochromatin foci formation . J. Biol. Chem.282 ( 22 ), 16391 – 16400 ( 2007 ).
  • Minkovsky A , SahakyanA , Rankin-GeeE , BonoraG , PatelS , PlathK . The MBD1-Atf7ip-Setdb1 pathway contributes to the maintenance of X chromosome inactivation . Epigenetics Chromatin7 , 12 ( 2014 ).
  • Singleton MK , GonzalesML , LeungKNet al. MeCP2 is required for global heterochromatic and nucleolar changes during activity-dependent neuronal maturation . Neurobiol. Dis.43 ( 1 ), 190 – 200 ( 2011 ).
  • Shahbazian M , YoungJ , Yuva-PaylorLet al. Mice with truncated MeCP2 recapitulate many Rett syndrome features and display hyperacetylation of histone H3 . Neuron35 ( 2 ), 243 – 254 ( 2002 ).
  • Meehan RR , LewisJD , MckayS , KleinerEL , BirdAP . Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs . Cell58 ( 3 ), 499 – 507 ( 1989 ).
  • Magdinier F , WolffeAP . Selective association of the methyl-CpG binding protein MBD2 with the silent p14/p16 locus in human neoplasia . Proc. Natl Acad. Sci. USA98 ( 9 ), 4990 – 4995 ( 2001 ).
  • Lin X , NelsonWG . Methyl-CpG-binding domain protein-2 mediates transcriptional repression associated with hypermethylated GSTP1 CpG islands in MCF-7 breast cancer cells . Cancer Res.63 ( 2 ), 498 – 504 ( 2003 ).
  • Zhao Q , RankG , TanYTet al. PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing . Nat. Struct. Mol. Biol.16 ( 3 ), 304 – 311 ( 2009 ).
  • Di Lorenzo A , BedfordMT . Histone arginine methylation . FEBS Lett.585 ( 13 ), 2024 – 2031 ( 2011 ).
  • Wang H , HuangZQ , XiaLet al. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor . Science293 ( 5531 ), 853 – 857 ( 2001 ).
  • Pal S , VishwanathSN , Erdjument-BromageH , TempstP , SifS . Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor-suppressor genes . Mol. Cell. Biol.24 ( 21 ), 9630 – 9645 ( 2004 ).
  • Becker PB , WorkmanJL . Nucleosome remodeling and epigenetics . Cold Spring Harb. Perspect. Biol.5 ( 9 ), a017905 ( 2013 ).
  • Song JZ , StirzakerC , HarrisonJ , MelkiJR , ClarkSJ . Hypermethylation trigger of the glutathione-S-transferase gene (GSTP1) in prostate cancer cells . Oncogene21 ( 7 ), 1048 – 1061 ( 2002 ).
  • Stirzaker C , SongJZ , DavidsonB , ClarkSJ . Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells . Cancer Res.64 ( 11 ), 3871 – 3877 ( 2004 ).
  • Pombo A , DillonN . Three-dimensional genome architecture: players and mechanisms . Nat. Rev. Mol. Cell Biol.16 ( 4 ), 245 – 257 ( 2015 ).
  • Georgel PT , Horowitz-SchererRA , AdkinsN , WoodcockCL , WadePA , HansenJC . Chromatin compaction by human MeCP2. Assembly of novel secondary chromatin structures in the absence of DNA methylation . J. Biol. Chem.278 ( 34 ), 32181 – 32188 ( 2003 ).
  • Nikitina T , ShiX , GhoshRP , Horowitz-SchererRA , HansenJC , WoodcockCL . Multiple modes of interaction between the methylated DNA binding protein MeCP2 and chromatin . Mol. Cell. Biol.27 ( 3 ), 864 – 877 ( 2007 ).
  • Stuss DP , CheemaM , NgMKet al. Impaired in vivo binding of MeCP2 to chromatin in the absence of its DNA methyl-binding domain . Nucleic Acids Res.41 ( 9 ), 4888 – 4900 ( 2013 ).
  • Horike S , CaiS , MiyanoM , ChengJF , Kohwi-ShigematsuT . Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome . Nat. Genet.37 ( 1 ), 31 – 40 ( 2005 ).
  • Nan X , HouJ , MacleanAet al. Interaction between chromatin proteins MECP2 and ATRX is disrupted by mutations that cause inherited mental retardation . Proc. Natl Acad. Sci. USA104 ( 8 ), 2709 – 2714 ( 2007 ).
  • Rountree MR , BachmanKE , BaylinSB . DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci . Nat. Genet.25 ( 3 ), 269 – 277 ( 2000 ).
  • Shibahara K , StillmanB . Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin . Cell96 ( 4 ), 575 – 585 ( 1999 ).
  • Lu Y , LohYH , LiHet al. Alternative splicing of MBD2 supports self-renewal in human pluripotent stem cells . Cell Stem Cell15 ( 1 ), 92 – 101 ( 2014 ).
  • Rais Y , ZviranA , GeulaSet al. Deterministic direct reprogramming of somatic cells to pluripotency . Nature502 ( 7469 ), 65 – 70 ( 2013 ).
  • Shimoda N , HiroseK , KanetoRet al. No evidence for AID/MBD4-coupled DNA demethylation in zebrafish embryos . PLoS ONE9 ( 12 ), e114816 ( 2014 ).
  • Cunha S , LinYC , GoossenEAet al. The RON receptor tyrosine kinase promotes metastasis by triggering MBD4-dependent DNA methylation reprogramming . Cell Rep.6 ( 1 ), 141 – 154 ( 2014 ).
  • Pulukuri S , RaoJS . CpG island promoter methylation and silencing of 14–3–3σ gene expression in LNCaP and Tramp-C1 prostate cancer cell lines is associated with methyl-CpG-binding protein MBD2 . Oncogene25 ( 33 ), 4559 – 4572 ( 2006 ).
  • Chatagnon A , BougelS , PerriaudL , LachuerJ , BenhattarJ , DanteR . Specific association between the methyl-CpG-binding domain protein 2 and the hypermethylated region of the human telomerase reverse transcriptase promoter in cancer cells . Carcinogenesis30 ( 1 ), 28 – 34 ( 2009 ).
  • Lopez-Serra L , BallestarE , FragaMF , AlaminosM , SetienF , EstellerM . A profile of methyl-CpG binding domain protein occupancy of hypermethylated promoter CpG islands of tumor suppressor genes in human cancer . Cancer Res.66 ( 17 ), 8342 – 8346 ( 2006 ).
  • Sansom OJ , BergerJ , BishopSM , HendrichB , BirdA , ClarkeAR . Deficiency of Mbd2 suppresses intestinal tumorigenesis . Nat. Genet.34 ( 2 ), 145 – 147 ( 2003 ).
  • Hodge JC , MitchellE , PillalamarriVet al. Disruption of MBD5 contributes to a spectrum of psychopathology and neurodevelopmental abnormalities . Mol. Psychiatry19 ( 3 ), 368 – 379 ( 2014 ).
  • Talkowski ME , MullegamaSV , RosenfeldJAet al. Assessment of 2q23.1 microdeletion syndrome implicates MBD5 as a single causal locus of intellectual disability, epilepsy, and autism spectrum disorder . Am. J. Hum. Genet.89 ( 4 ), 551 – 563 ( 2011 ).
  • Williams SR , MullegamaSV , RosenfeldJAet al. Haploinsufficiency of MBD5 associated with a syndrome involving microcephaly, intellectual disabilities, severe speech impairment, and seizures . Eur. J. Hum. Genet.18 ( 4 ), 436 – 441 ( 2010 ).
  • Cerami E , GaoJ , DogrusozUet al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data . Cancer Discov.2 ( 5 ), 401 – 404 ( 2012 ).
  • Gao J , AksoyBA , DogrusozUet al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal . Sci. Signal.6 ( 269 ), pl1 ( 2013 ).
  • Desai MA , WebbHD , SinananLMet al. An intrinsically disordered region of methyl-CpG binding domain protein 2 (MBD2) recruits the histone deacetylase core of the NuRD complex . Nucleic Acids Res.43 ( 6 ), 3100 – 3113 ( 2015 ).
  • The Cancer Genome Atlas (TCGA) . http://cancergenome.nih.gov
  • cBioPortal for Cancer Genomics . www.cbioportal.org/public-portal/
  • cBioPortal for Cancer Genomics: MBD1 . http://bit.ly/15Opeso
  • cBioPortal for Cancer Genomics: MBD2 . http://bit.ly/1zR4Jou
  • cBioPortal for Cancer Genomics: MBD3 . http://bit.ly/15OplEn
  • cBioPortal for Cancer Genomics: MBD4 . http://bit.ly/1zgXlSs
  • cBioPortal for Cancer Genomics: MeCP2 . http://bit.ly/1vkwzth
  • Miquel C , JacobS , GrandjouanSet al. Frequent alteration of DNA damage signalling and repair pathways in human colorectal cancers with microsatellite instability . Oncogene26 ( 40 ), 5919 – 5926 ( 2007 ).
  • Khrapunov S , WarrenC , ChengH , BerkoER , GreallyJM , BrenowitzM . Unusual characteristics of the DNA binding domain of epigenetic regulatory protein MeCP2 determine its binding specificity . Biochemistry (Mosc.)53 ( 21 ), 3379 – 3391 ( 2014 ).
  • Landau DA , ClementK , ZillerMJet al. Locally disordered methylation forms the basis of intratumor methylome variation in chronic lymphocytic leukemia . Cancer Cell26 ( 6 ), 813 – 825 ( 2014 ).