181
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Pediatric Cancer Epigenome and the Influence of Folate

&
Pages 961-973 | Published online: 07 May 2015

Reference

  • American Cancer Society . Cancer Facts & Figures 2014 . American Cancer SocietyGA, USA ( 2014 ).
  • National Center for Health Statistics . National Vital Statistics Reports62 ( 6 ) ( 2013 ).
  • Howlader N NA , KrapchoM , GarshellJet al. Eds ). SEER Cancer Statistics Review, 1975–2011 . National Cancer Institute , MD, USA ( 2014 ).
  • Pui CH , GajjarAJ , KaneJR , QaddoumiIA , PappoAS . Challenging issues in pediatric oncology . Nat. Rev. Clin. Oncol.8 ( 9 ), 540 – 549 ( 2011 ).
  • Hamish Wallace DG . Late Effects of Childhood Cancer . Arnold , London, UK ( 2004 ).
  • Oeffinger KC , MertensAC , SklarCAet al. Chronic health conditions in adult survivors of childhood cancer . N. Engl. J. Med.355 ( 15 ), 1572 – 1582 ( 2006 ).
  • Downing JR , WilsonRK , ZhangJet al. The Pediatric Cancer Genome Project . Nat. Genet.44 ( 6 ), 619 – 622 ( 2012 ).
  • Gurney JG , DavisS , SeversonRK , FangJY , RossJA , RobisonLL . Trends in cancer incidence among children in the U.S . Cancer78 ( 3 ), 532 – 541 ( 1996 ).
  • Linabery AM , RossJA . Trends in childhood cancer incidence in the U.S. (1992–2004) . Cancer112 ( 2 ), 416 – 432 ( 2008 ).
  • Greaves M . Molecular genetics, natural history and the demise of childhood leukaemia . Eur. J. Cancer35 ( 14 ), 1941 – 1953 ( 1999 ).
  • Stiller CA . Epidemiology and genetics of childhood cancer . Oncogene23 ( 38 ), 6429 – 6444 ( 2004 ).
  • Pugh TJ , MorozovaO , AttiyehEFet al. The genetic landscape of high-risk neuroblastoma . Nat. Genet.45 ( 3 ), 279 – 284 ( 2013 ).
  • Parsons DW , LiM , ZhangXet al. The genetic landscape of the childhood cancer medulloblastoma . Science331 ( 6016 ), 435 – 439 ( 2011 ).
  • Mack SC , WittH , PiroRMet al. Epigenomic alterations define lethal CIMP-positive ependymomas of infancy . Nature506 ( 7489 ), 445 – 450 ( 2014 ).
  • Suzuki MM , BirdA . DNA methylation landscapes: provocative insights from epigenomics . Nat. Rev. Genet.9 ( 6 ), 465 – 476 ( 2008 ).
  • Smith E , LinC , ShilatifardA . The super elongation complex (SEC) and MLL in development and disease . Genes Dev.25 ( 7 ), 661 – 672 ( 2011 ).
  • Schuettengruber B , MartinezAM , IovinoN , CavalliG . Trithorax group proteins: switching genes on and keeping them active . Nat. Rev. Mol. Cell Biol.12 ( 12 ), 799 – 814 ( 2011 ).
  • Goo YH , SohnYC , KimDHet al. Activating signal cointegrator 2 belongs to a novel steady-state complex that contains a subset of trithorax group proteins . Mol. Cell Biol.23 ( 1 ), 140 – 149 ( 2003 ).
  • Ramirez J , HagmanJ . The Mi-2/NuRD complex: a critical epigenetic regulator of hematopoietic development, differentiation and cancer . Epigenetics4 ( 8 ), 532 – 536 ( 2009 ).
  • Richly H , AloiaL , Di CroceL . Roles of the Polycomb group proteins in stem cells and cancer . Cell Death Dis.2 , e204 ( 2011 ).
  • Reisman D , GlarosS , ThompsonEA . The SWI/SNF complex and cancer . Oncogene28 ( 14 ), 1653 – 1668 ( 2009 ).
  • Wu RC , QinJ , HashimotoYet al. Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) Coactivator activity by I kappa B kinase . Mol. Cell Biol.22 ( 10 ), 3549 – 3561 ( 2002 ).
  • Felle M , JoppienS , NemethAet al. The USP7/Dnmt1 complex stimulates the DNA methylation activity of Dnmt1 and regulates the stability of UHRF1 . Nucleic Acids Res.39 ( 19 ), 8355 – 8365 ( 2011 ).
  • Huether R , DongL , ChenXet al. The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes . Nat. Commun.5 , 3630 ( 2014 ).
  • Schwartzentruber J , KorshunovA , LiuXYet al. Driver mutations in histone H3.3 and chromatin remodelling genes in paediatric glioblastoma . Nature482 ( 7384 ), 226 – 231 ( 2012 ).
  • Wu G , BroniscerA , MceachronTAet al. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas . Nat. Genet.44 ( 3 ), 251 – 253 ( 2012 ).
  • Mullighan CG , ZhangJ , KasperLHet al. CREBBP mutations in relapsed acute lymphoblastic leukaemia . Nature471 ( 7337 ), 235 – 239 ( 2011 ).
  • Mar BG , BullingerLB , McleanKMet al. Mutations in epigenetic regulators including SETD2 are gained during relapse in paediatric acute lymphoblastic leukaemia . Nat. Commun.5 , 3469 ( 2014 ).
  • Holmfeldt L , WeiL , Diaz-FloresEet al. The genomic landscape of hypodiploid acute lymphoblastic leukemia . Nat. Genet.45 ( 3 ), 242 – 252 ( 2013 ).
  • Zhang J , DingL , HolmfeldtLet al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia . Nature481 ( 7380 ), 157 – 163 ( 2012 ).
  • Lu C , ZhangJ , NagahawattePet al. The genomic landscape of childhood and adolescent melanoma . J. Invest. Dermatol.135 , 816 – 823 ( 2015 ).
  • Liang DC , LiuHC , YangCPet al. Cooperating gene mutations in childhood acute myeloid leukemia with special reference on mutations of ASXL1, TET2, IDH1, IDH2, and DNMT3A . Blood121 ( 15 ), 2988 – 2995 ( 2013 ).
  • Robinson G , ParkerM , KranenburgTAet al. Novel mutations target distinct subgroups of medulloblastoma . Nature488 ( 7409 ), 43 – 48 ( 2012 ).
  • Fontebasso AM , GaydenT , NikbakhtHet al. Epigenetic dysregulation: a novel pathway of oncogenesis in pediatric brain tumors . Acta Neuropathol.128 ( 5 ), 615 – 627 ( 2014 ).
  • Cheung NK , ZhangJ , LuCet al. Association of age at diagnosis and genetic mutations in patients with neuroblastoma . JAMA307 ( 10 ), 1062 – 1071 ( 2012 ).
  • Sausen M , LearyRJ , JonesSet al. Integrated genomic analyses identify ARID1A and ARID1B alterations in the childhood cancer neuroblastoma . Nat. Genet.45 ( 1 ), 12 – 17 ( 2013 ).
  • Pui CH , RellingMV , DowningJR . Acute lymphoblastic leukemia . N. Engl. J. Med.350 ( 15 ), 1535 – 1548 ( 2004 ).
  • Chatterton Z , MorenosL , SafferyR , CraigJM , AshleyD , WongNC . DNA methylation and miRNA expression profiling in childhood B-cell acute lymphoblastic leukemia . Epigenomics2 ( 5 ), 697 – 708 ( 2010 ).
  • Burke MJ , BhatlaT . Epigenetic modifications in pediatric acute lymphoblastic leukemia . Front. Pediatr.2 , 42 ( 2014 ).
  • Borssen M , PalmqvistL , KarrmanKet al. Promoter DNA methylation pattern identifies prognostic subgroups in childhood T-cell acute lymphoblastic leukemia . PLoS ONE8 ( 6 ), e65373 ( 2013 ).
  • Sandoval J , HeynH , Mendez-GonzalezJet al. Genome-wide DNA methylation profiling predicts relapse in childhood B-cell acute lymphoblastic leukaemia . Br. J. Haematol.160 ( 3 ), 406 – 409 ( 2013 ).
  • Nordlund J , BacklinCL , WahlbergPet al. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia . Genome Biol.14 ( 9 ), r105 ( 2013 ).
  • Hogan LE , MeyerJA , YangJet al. Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies . Blood118 ( 19 ), 5218 – 5226 ( 2011 ).
  • Chan KM , FangD , GanHet al. The histone H3.3K27M mutation in pediatric glioma reprograms H3K27 methylation and gene expression . Genes Dev.27 ( 9 ), 985 – 990 ( 2013 ).
  • Lewis PW , MullerMM , KoletskyMSet al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma . Science340 ( 6134 ), 857 – 861 ( 2013 ).
  • De Bont JM , PackerRJ , MichielsEM , Den BoerML , PietersR . Biological background of pediatric medulloblastoma and ependymoma: a review from a translational research perspective . Neuro Oncol.10 ( 6 ), 1040 – 1060 ( 2008 ).
  • Korshunov A , SturmD , RyzhovaMet al. Embryonal tumor with abundant neuropil and true rosettes (ETANTR), ependymoblastoma, and medulloepithelioma share molecular similarity and comprise a single clinicopathological entity . Acta Neuropathol.128 ( 2 ), 279 – 289 ( 2014 ).
  • Louis DN , OhgakiH , WiestlerODet al. The 2007 WHO classification of tumours of the central nervous system . Acta Neuropathol.114 ( 2 ), 97 – 109 ( 2007 ).
  • Kleinman CL , GergesN , Papillon-CavanaghSet al. Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR . Nat. Genet.46 ( 1 ), 39 – 44 ( 2014 ).
  • Wang C , LiuZ , WooCWet al. EZH2 mediates epigenetic silencing of neuroblastoma suppressor genes CASZ1, CLU, RUNX3, and NGFR . Cancer Res.72 ( 1 ), 315 – 324 ( 2012 ).
  • Schulte JH , LimS , SchrammAet al. Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy . Cancer Res.69 ( 5 ), 2065 – 2071 ( 2009 ).
  • Fujita T , IgarashiJ , OkawaERet al. CHD5, a tumor suppressor gene deleted from 1p36.31 in neuroblastomas . J. Natl. Cancer Inst.100 ( 13 ), 940 – 949 ( 2008 ).
  • Caren H , DjosA , NethanderMet al. Identification of epigenetically regulated genes that predict patient outcome in neuroblastoma . BMC Cancer11 , 66 ( 2011 ).
  • Alaminos M , DavalosV , CheungNK , GeraldWL , EstellerM . Clustering of gene hypermethylation associated with clinical risk groups in neuroblastoma . J. Natl Cancer Inst.96 ( 16 ), 1208 – 1219 ( 2004 ).
  • Yang Q , KiernanCM , TianYet al. Methylation of CASP8, DCR2, and HIN-1 in neuroblastoma is associated with poor outcome . Clin. Cancer Res.13 ( 11 ), 3191 – 3197 ( 2007 ).
  • Hoebeeck J , MichelsE , PattynFet al. Aberrant methylation of candidate tumor suppressor genes in neuroblastoma . Cancer Lett.273 ( 2 ), 336 – 346 ( 2009 ).
  • Grau E , MartinezF , OrellanaCet al. Hypermethylation of apoptotic genes as independent prognostic factor in neuroblastoma disease . Mol. Carcinog.50 ( 3 ), 153 – 162 ( 2011 ).
  • Buckley PG , DasS , BryanKet al. Genome-wideDNA methylation analysis of neuroblastic tumors reveals clinically relevant epigenetic events and large-scale epigenomic alterations localized to telomeric regions . Int. J. Cancer128 ( 10 ), 2296 – 2305 ( 2011 ).
  • Mastrangelo D , Di LeonardoA , LentiniL , De FrancescoS , HadjistilianouT . Missing evidences in cancer genetics: the retinoblastoma paradigm . Cell Oncol.30 ( 6 ), 509 – 510 ( 2008 ).
  • Zhang J , BenaventeCA , McevoyJet al. A novel retinoblastoma therapy from genomic and epigenetic analyses . Nature481 ( 7381 ), 329 – 334 ( 2012 ).
  • Shigematsu H , SuzukiM , TakahashiTet al. Aberrant methylation of HIN-1 (high in normal-1) is a frequent event in many human malignancies . Int. J. Cancer113 ( 4 ), 600 – 604 ( 2005 ).
  • Rathi A , VirmaniAK , HaradaKet al. Aberrant methylation of the HIC1 promoter is a frequent event in specific pediatric neoplasms . Clin. Cancer Res9 ( 10 Pt 1 ), 3674 – 3678 ( 2003 ).
  • Harada K , ToyookaS , ShivapurkarNet al. Deregulation of caspase 8 and 10 expression in pediatric tumors and cell lines . Cancer Res.62 ( 20 ), 5897 – 5901 ( 2002 ).
  • Harada K , ToyookaS , MaitraAet al. Aberrant promoter methylation and silencing of the RASSF1A gene in pediatric tumors and cell lines . Oncogene21 ( 27 ), 4345 – 4349 ( 2002 ).
  • Grundy P , WilsonB , TelzerowP , ZhouW , PatersonMC . Uniparental disomy occurs infrequently in Wilms’ tumor patients . Am. J. Hum. Genet.54 ( 2 ), 282 – 289 ( 1994 ).
  • Dao D , WalshCP , YuanLet al. Multipoint analysis of human chromosome 11p15/mouse distal chromosome 7: inclusion of H19/IGF2 in the minimal WT2 region, gene specificity of H19 silencing in Wilms’ tumorigenesis and methylation hyper-dependence of H19 imprinting . Hum. Mol. Genet.8 ( 7 ), 1337 – 1352 ( 1999 ).
  • Grundy P , TelzerowP , MoksnessJ , BreslowNE . Clinicopathologic correlates of loss of heterozygosity in Wilm’s tumor: a preliminary analysis . Med. Pediatr. Oncol.27 ( 5 ), 429 – 433 ( 1996 ).
  • Schroeder WT , ChaoLY , DaoDDet al. Nonrandom loss of maternal chromosome 11 alleles in Wilms’ tumors . Am. J. Hum. Genet.40 ( 5 ), 413 – 420 ( 1987 ).
  • Zemel S , BartolomeiMS , TilghmanSM . Physical linkage of two mammalian imprinted genes, H19 and insulin-like growth factor 2 . Nat. Genet.2 ( 1 ), 61 – 65 ( 1992 ).
  • Frevel MA , SowerbySJ , PetersenGB , ReeveAE . Methylation sequencing analysis refines the region of H19 epimutation in Wilms’ tumor . J. Biol. Chem.274 ( 41 ), 29331 – 29340 ( 1999 ).
  • Hark AT , SchoenherrCJ , KatzDJ , IngramRS , LevorseJM , TilghmanSM . CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus . Nature405 ( 6785 ), 486 – 489 ( 2000 ).
  • Bell AC , FelsenfeldG . Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene . Nature405 ( 6785 ), 482 – 485 ( 2000 ).
  • Aiden AP , RiveraMN , RheinbayEet al. Wilms’ tumor chromatin profiles highlight stem cell properties and a renal developmental network . Cell Stem Cell6 ( 6 ), 591 – 602 ( 2010 ).
  • Voigt P , TeeWW , ReinbergD . A double take on bivalent promoters . Genes Dev.27 ( 12 ), 1318 – 1338 ( 2013 ).
  • Wegert J , IshaqueN , VardapourRet al. Mutations in the SIX1/2 pathway and the DROSHA/DGCR8 miRNA microprocessor complex underlie high-risk blastemal type Wilms’ tumors . Cancer Cell27 ( 2 ), 298 – 311 ( 2015 ).
  • Walz AL , OomsA , GaddSet al. Recurrent DGCR8, DROSHA, and SIX homeodomain mutations in favorable histology Wilms’ tumors . Cancer Cell27 ( 2 ), 286 – 297 ( 2015 ).
  • Balamuth NJ , WomerRB . Ewing’s sarcoma . Lancet Oncol.11 ( 2 ), 184 – 192 ( 2010 ).
  • Kovar H . Downstream EWS/FLI1 – upstream Ewing’s sarcoma . Genome Med.2 ( 1 ), 8 ( 2010 ).
  • Smith R , OwenLA , TremDJet al. Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing’s sarcoma . Cancer Cell9 ( 5 ), 405 – 416 ( 2006 ).
  • Kinsey M , SmithR , LessnickSL . NR0B1 is required for the oncogenic phenotype mediated by EWS/FLI in Ewing’s sarcoma . Mol. Cancer Res.4 ( 11 ), 851 – 859 ( 2006 ).
  • Richter GH , PlehmS , FasanAet al. EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation . Proc. Natl Acad. Sci. USA106 ( 13 ), 5324 – 5329 ( 2009 ).
  • Thiel U , PirsonS , Muller-SpahnCet al. Specific recognition and inhibition of Ewing tumour growth by antigen-specific allo-restricted cytotoxic T cells . Br. J. Cancer104 ( 6 ), 948 – 956 ( 2011 ).
  • Lee DW , BarrettDM , MackallC , OrentasR , GruppSA . The future is now: chimeric antigen receptors as new targeted therapies for childhood cancer . Clin. Cancer Res.18 ( 10 ), 2780 – 2790 ( 2012 ).
  • Patel N , BlackJ , ChenXet al. DNA methylation and gene expression profiling of ewing sarcoma primary tumors reveal genes that are potential targets of epigenetic inactivation . Sarcoma2012 , 498472 ( 2012 ).
  • Ban J , JugG , MestdaghPet al. Hsa-mir-145 is the top EWS-FLI1-repressed microRNA involved in a positive feedback loop in Ewing’s sarcoma . Oncogene30 ( 18 ), 2173 – 2180 ( 2011 ).
  • Bajaj SV , WaiDH , BuckleyJD , KapranovP , LawlorER , TricheTJ . A large non-coding RNA that is characteristic of Ewing sarcoma family of tumors . Presented at : American Association for Cancer Research 102nd Annual Meeting . Orlando, FL, USA , 2–6 April 2011 .
  • Patino-Garcia A , PineiroES , DiezMZ , IturriagagoitiaLG , KlussmannFA , AriznabarretaLS . Genetic and epigenetic alterations of the cell cycle regulators and tumor suppressor genes in pediatric osteosarcomas . J Pediatr. Hematol. Oncol.25 ( 5 ), 362 – 367 ( 2003 ).
  • Cheng MF , LeeCH , HsiaKT , HuangGS , LeeHS . Methylation of histone H3 lysine 27 associated with apoptosis in osteosarcoma cells induced by staurosporine . Histol. Histopathol.24 ( 9 ), 1105 – 1111 ( 2009 ).
  • Macquarrie KL , YaoZ , FongAPet al. Comparison of genome-wide binding of MyoD in normal human myogenic cells and rhabdomyosarcomas identifies regional and local suppression of promyogenic transcription factors . Mol. Cell Biol.33 ( 4 ), 773 – 784 ( 2013 ).
  • Cao Y , YaoZ , SarkarDet al. Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming . Dev. Cell18 ( 4 ), 662 – 674 ( 2010 ).
  • Ciesla M , DulakJ , JozkowiczA . MicroRNAs and epigenetic mechanisms of rhabdomyosarcoma development . Int. J. Biochem. Cell Biol.53 , 482 – 492 ( 2014 ).
  • Taulli R , BersaniF , FoglizzoVet al. The muscle-specific microRNA miR-206 blocks human rhabdomyosarcoma growth in xenotransplanted mice by promoting myogenic differentiation . J. Clin. Invest.119 ( 8 ), 2366 – 2378 ( 2009 ).
  • Yan D , DongXdaE , ChenXet al. MicroRNA-1/206 targets c-Met and inhibits rhabdomyosarcoma development . J. Biol. Chem.284 ( 43 ), 29596 – 29604 ( 2009 ).
  • Johnson KJ , SpringerNM , BielinskyAK , LargaespadaDA , RossJA . Developmental origins of cancer . Cancer Res.69 ( 16 ), 6375 – 6377 ( 2009 ).
  • Marshall GM , CarterDR , CheungBBet al. The prenatal origins of cancer . Nat. Rev. Cancer14 ( 4 ), 277 – 289 ( 2014 ).
  • Perera F , HerbstmanJ . Prenatal environmental exposures, epigenetics, and disease . Reprod. Toxicol.31 ( 3 ), 363 – 373 ( 2011 ).
  • Breton CV , ByunHM , WentenM , PanF , YangA , GillilandFD . Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation . Am. J. Respir. Crit. Care Med.180 ( 5 ), 462 – 467 ( 2009 ).
  • Rodriguez-Paredes M , EstellerM . Cancer epigenetics reaches mainstream oncology . Nat. Med.17 ( 3 ), 330 – 339 ( 2011 ).
  • Herbstman JB , TangD , ZhuDet al. Prenatal exposure to polycyclic aromatic hydrocarbons, benzo[a]pyrene-DNA adducts, and genomic DNA methylation in cord blood . Environ. Health Perspect.120 ( 5 ), 733 – 738 ( 2012 ).
  • Singh S , LiSS . Epigenetic effects of environmental chemicals bisphenol a and phthalates . Int. J. Mol. Sci.13 ( 8 ), 10143 – 10153 ( 2012 ).
  • Ikeda S , KoyamaH , SugimotoM , KumeS . Roles of one-carbon metabolism in preimplantation period – effects on short-term development and long-term programming . J. Reprod. Dev.58 ( 1 ), 38 – 43 ( 2012 ).
  • Stover PJ . One-carbon metabolism-genome interactions in folate-associated pathologies . J. Nutr.139 ( 12 ), 2402 – 2405 ( 2009 ).
  • Amarasekera M , MartinoD , AshleySet al. Genome-wideDNA methylation profiling identifies a folate-sensitive region of differential methylation upstream of ZFP57-imprinting regulator in humans . FASEB J. DOI:10.1096/fj.13-249029 ( 2014 ) ( Epub ahead of print ).
  • Steegers-Theunissen RP , Obermann-BorstSA , KremerDet al. Periconceptional maternal folic acid use of 400 microg per day is related to increased methylation of the IGF2 gene in the very young child . PLoS ONE4 ( 11 ), e7845 ( 2009 ).
  • Chang H , ZhangT , ZhangZet al. Tissue-specific distribution of aberrant DNA methylation associated with maternal low-folate status in human neural tube defects . J. Nutr. Biochem.22 ( 12 ), 1172 – 1177 ( 2011 ).
  • Fryer AA , EmesRD , IsmailKMet al. Quantitative, high-resolution epigenetic profiling of CpG loci identifies associations with cord blood plasma homocysteine and birth weight in humans . Epigenetics6 ( 1 ), 86 – 94 ( 2011 ).
  • Ba Y , YuH , LiuFet al. Relationship of folate, vitamin B12 and methylation of insulin-like growth factor-II in maternal and cord blood . Eur. J. Clin. Nutr.65 ( 4 ), 480 – 485 ( 2011 ).
  • Hoyo C , MurthaAP , SchildkrautJMet al. Methylation variation at IGF2 differentially methylated regions and maternal folic acid use before and during pregnancy . Epigenetics6 ( 7 ), 928 – 936 ( 2011 ).
  • Fryer AA , NafeeTM , IsmailKM , CarrollWD , EmesRD , FarrellWE . LINE-1 DNA methylation is inversely correlated with cord plasma homocysteine in man: a preliminary study . Epigenetics4 ( 6 ), 394 – 398 ( 2009 ).
  • Cravo ML , PintoAG , ChavesPet al. Effect of folate supplementation on DNA methylation of rectal mucosa in patients with colonic adenomas: correlation with nutrient intake . Clin. Nutr.17 ( 2 ), 45 – 49 ( 1998 ).
  • Cravo M , PintoR , FidalgoPet al. GlobalDNA hypomethylation occurs in the early stages of intestinal type gastric carcinoma . Gut39 ( 3 ), 434 – 438 ( 1996 ).
  • Wallace K , GrauMV , LevineAJet al. Association between folate levels and CpG Island hypermethylation in normal colorectal mucosa . Cancer Prev. Res. (Phila.)3 ( 12 ), 1552 – 1564 ( 2010 ).
  • Christensen BC , KelseyKT , ZhengSet al. Breast cancer DNA methylation profiles are associated with tumor size and alcohol and folate intake . PLoS Genet.6 ( 7 ), e1001043 ( 2010 ).
  • Kim JW , ParkHM , ChoiYK , ChongSY , OhD , KimNK . Polymorphisms in genes involved in folate metabolism and plasma DNA methylation in colorectal cancer patients . Oncol. Rep.25 ( 1 ), 167 – 172 ( 2011 ).
  • Pufulete M , Al-GhnaniemR , LeatherAJet al. Folate status, genomic DNA hypomethylation, and risk of colorectal adenoma and cancer: a case control study . Gastroenterology124 ( 5 ), 1240 – 1248 ( 2003 ).
  • Hsiung DT , MarsitCJ , HousemanEAet al. GlobalDNA methylation level in whole blood as a biomarker in head and neck squamous cell carcinoma . Cancer Epidemiol. Biomarkers Prev.16 ( 1 ), 108 – 114 ( 2007 ).
  • Piyathilake CJ , AzradM , JhalaDet al. Mandatory fortification with folic acid in the United States is not associated with changes in the degree or the pattern of global DNA methylation in cells involved in cervical carcinogenesis . Cancer Biomark.2 ( 6 ), 259 – 266 ( 2006 ).
  • Moore LE , PfeifferRM , PoscabloCet al. GenomicDNA hypomethylation as a biomarker for bladder cancer susceptibility in the Spanish Bladder Cancer Study: a case–control study . Lancet Oncol.9 ( 4 ), 359 – 366 ( 2008 ).
  • Piyathilake CJ , MacalusoM , AlvarezRDet al. A higher degree of LINE-1 methylation in peripheral blood mononuclear cells, a one-carbon nutrient related epigenetic alteration, is associated with a lower risk of developing cervical intraepithelial neoplasia . Nutrition27 ( 5 ), 513 – 519 ( 2011 ).
  • Crider KS , YangTP , BerryRJ , BaileyLB . Folate and DNA methylation: a review of molecular mechanisms and the evidence for folate’s role . Adv. Nutr.3 ( 1 ), 21 – 38 ( 2012 ).
  • Wang H , WangJ , ZhaoL , LiuX , MiW . Methylenetetrahydrofolate reductase polymorphisms and risk of acute lymphoblastic leukemia–evidence from an updated meta-analysis including 35 studies . BMC Med. Genet.13 , 77 ( 2012 ).
  • Lupo PJ , NousomeD , KamdarKY , OkcuMF , ScheurerME . A case-parent triad assessment of folate metabolic genes and the risk of childhood acute lymphoblastic leukemia . Cancer Causes Control23 ( 11 ), 1797 – 1803 ( 2012 ).
  • French AE , GrantR , WeitzmanSet al. Folic acid food fortification is associated with a decline in neuroblastoma . Clin. Pharmacol. Ther.74 ( 3 ), 288 – 294 ( 2003 ).
  • Linabery AM , JohnsonKJ , RossJA . Childhood cancer incidence trends in association with US folic acid fortification (1986–2008) . Pediatrics129 ( 6 ), 1125 – 1133 ( 2012 ).
  • Grupp SG , GreenbergML , RayJGet al. Pediatric cancer rates after universal folic acid flour fortification in Ontario . J. Clin. Pharmacol.51 ( 1 ), 60 – 65 ( 2011 ).
  • Ulrich CM , PotterJD . Folate supplementation: too much of a good thing?Cancer Epidemiol. Biomarkers Prev.15 ( 2 ), 189 – 193 ( 2006 ).
  • Kim YI . Folate: a magic bullet or a double edged sword for colorectal cancer prevention?Gut55 ( 10 ), 1387 – 1389 ( 2006 ).
  • Cole BF , BaronJA , SandlerRSet al. Folic acid for the prevention of colorectal adenomas: a randomized clinical trial . JAMA297 ( 21 ), 2351 – 2359 ( 2007 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.