279
Views
0
CrossRef citations to date
0
Altmetric
Review

miRNA Profiling in Gastrointestinal Stromal Tumors: Implication as Diagnostic and Prognostic Markers

, , , , &
Pages 1033-1049 | Published online: 08 Oct 2015

References

  • Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function . Cell116 ( 2 ), 281 – 297 ( 2004 ).
  • Croce CM . Causes and consequences of microRNA dysregulation in cancer . Nat. Rev. Genet.10 ( 10 ), 704 – 714 ( 2009 ).
  • Di Leva G , GarofaloM , CroceCM . MicroRNAs in cancer . Annu. Rev. Pathol.9 , 287 – 314 ( 2014 ).
  • Dixon-McIver A , EastP , MeinCAet al. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia . PLoS ONE 33 ( 5 ), e2141 ( 2008 ).
  • Calin GA , DumitruCD , ShimizuMet al. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia . Proc. Natl Acad. Sci. USA99 ( 24 ), 15524 – 15529 ( 2002 ).
  • Calin GA , SevignaniC , DumitruCDet al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers . Proc. Natl Acad. Sci. USA101 ( 9 ), 2999 – 3004 ( 2004 ).
  • Corless CL , FletcherJA , HeinrichMC . Biology of gastrointestinal stromal tumors . J. Clin. Oncol.22 , 3813 – 3825 ( 2004 ).
  • Demetri GD , von MehrenM , BlankeCDet al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors . N. Engl. J. Med.347 ( 7 ), 472 – 480 ( 2002 ).
  • Demetri GD , van OosteromAT , GarrettCRet al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomised controlled trial . Lancet.368 ( 9544 ), 1329 – 1338 ( 2006 ).
  • Demetri GD , ReichardtP , KangYKet al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): an international, multicentre, randomised, placebo-controlled, Phase 3 trial . Lancet381 ( 9863 ), 295 – 302 ( 2013 ).
  • Yang J , DuX , LazarAJet al. Genetic aberrations of gastrointestinal stromal tumors . Cancer113 ( 7 ), 1532 – 1543 ( 2008 ).
  • Astolfi A , NanniniM , PantaleoMAet al. A molecular portrait of gastrointestinal stromal tumors: an integrative analysis of gene expression profiling and high-resolution genomic copy number . Lab. Invest.90 ( 9 ), 1285 – 1294 ( 2010 ).
  • Angelini S , RavegniniG , FletcherJA , MaffeiF , HreliaP . Clinical relevance of pharmacogenetics in gastrointestinal stromal tumor treatment in the era of personalized therapy . Pharmacogenomics14 ( 8 ), 941 – 956 ( 2013 ).
  • Nannini M , BiascoG , AstolfiA , PantaleoMA . An overview on molecular biology of KIT/PDGFRA wild type (WT) gastrointestinal stromal tumours (GIST) . J. Med. Genet.50 ( 10 ), 653 – 661 ( 2013 ).
  • Sioulas AD , VasilatouD , PappaV , DimitriadisG , TriantafyllouK . Epigenetics in gastrointestinal stromal tumors: clinical implications and potential therapeutic perspectives . Dig. Dis. Sci.58 ( 11 ), 3094 – 3102 ( 2013 ).
  • Subramanian S , LuiWO , LeeCHet al. MicroRNA expression signature of human sarcomas . Oncogene.27 ( 14 ), 2015 – 2026 ( 2008 ).
  • Koelz M , LenseJ , WrbaF , SchefflerM , DienesHP , OdenthalM . Down-regulation of miR-221 and miR-222 correlates with pronounced Kit expression in gastrointestinal stromal tumors . Int. J. Oncol.38 ( 2 ), 503 – 511 ( 2011 ).
  • Haller F , von HeydebreckA , ZhangJDet al. Localization- and mutation-dependent microRNA (miRNA) expression signatures in gastrointestinal stromal tumours (GISTs), with a cluster of co-expressed miRNAs located at 14q32.31 . J. Pathol.220 ( 1 ), 71 – 86 ( 2010 ).
  • Ihle MA , TrautmannM , KuenstlingerHet al. miRNA-221 and miRNA-222 induce apoptosis via the KIT/AKT signaling pathway in gastrointestinal stromal tumours . Mol. Oncol. doi:10.1016/j.molonc.2015.03.013 ( 2015 ) ( Epub ahead of print ).
  • Gits CM , van KuijkPF , JonkersMBet al. MiR-17-92 and miR-221/222 cluster members target KIT and ETV1 in human gastrointestinal stromal tumours . Br. J. Cancer109 ( 6 ), 1625 – 1635 ( 2013 ).
  • Choi HJ , LeeH , KimHet al. MicroRNA expression profile of gastrointestinal stromal tumors is distinguished by 14q loss and anatomic site . Int. J. Cancer126 ( 7 ), 1640 – 1650 ( 2010 ).
  • Kim WK , ParkM , KimYKet al. MicroRNA-494 downregulates KIT and inhibits gastrointestinal stromal tumor cell proliferation . Clin. Cancer Res.17 ( 24 ), 7584 – 7594 ( 2011 ).
  • Fan R , ZhongJ , ZhengSet al. MicroRNA-218 inhibits gastrointestinal stromal tumor cell and invasion by targeting KIT . Tumour Biol.35 ( 5 ), 4209 – 4217 ( 2014 ).
  • Niinuma T , SuzukiH , NojimaMet al. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors . Cancer Res.72 ( 5 ), 1126 – 1136 ( 2012 ).
  • Yamamoto H , KohashiK , FujitaA , OdaY . Fascin-1 overexpression and miR-133b downregulation in the progression of gastrointestinal stromal tumor . Mod. Pathol.26 ( 4 ), 563 – 571 ( 2013 ).
  • Formica S , AstolfiA , NanniniMet al. MicroRNA profile in gastrointestinal stromal tumors (GISTs) and correlation with KIT/PDGFRA kinase genotype . J. Clin. Oncol.29 , 2011 ( suppl; abstr 10056 ).
  • Kelly L , BryanK , KimSYet al. Post-transcriptional dysregulation by miRNAs is implicated in the pathogenesis of gastrointestinal stromal tumor [GIST] . PLoS ONE8 ( 5 ), e64102 ( 2013 ).
  • Fan R , ZhongJ , ZhengSet al. microRNA-218 increase the sensitivity of gastrointestinal stromal tumor to imatinib through PI3K/AKT pathway . Clin. Exp. Med. doi:10.1007/s10238-014-0280-y ( 2014 ) ( Epub ahead of print ).
  • Akçakaya P , CaramutaS , AhlenJet al. microRNA expression signatures of gastrointestinal stromal tumours: associations with imatinib resistance and patient outcome . Br. J. Cancer111 ( 11 ), 2091 – 2102 ( 2014 ).
  • Liu T , QinW , HouL , HuangY . MicroRNA-17 promotes normal ovarian cancer cells to cancer stem cells development via suppression of the LKB1-p53-p21/WAF1 pathway . Tumour. Biol. doi:10.1007/s13277-014-2790-3 ( 2014 ) ( Epub ahead of print ).
  • Li X , YangH , TianQ , LiuY , WengY . Upregulation of microRNA-17–92 cluster associates with tumor progression and prognosis in osteosarcoma . Neoplasma61 ( 4 ), 453 – 460 ( 2014 ).
  • Park D , LeeSC , ParkJW , ChoSY , KimHK . Overexpression of miR-17 in gastric cancer is correlated with proliferation-associated oncogene amplification . Pathol. Int.64 ( 7 ), 309 – 314 ( 2014 ).
  • Dei Tos AP , LaurinoL , BearziI , MesseriniL , FarinatiF . Gruppo Italiano Patologi Apparato Digerente (GIPAD); Società Italiana di Anatomia Patologica e Citopatologia Diagnostica/International Academy of Pathology, Italian division (SIAPEC/IAP). Gastrointestinal stromal tumors: the histology report . Dig. Liver. Dis.43Suppl 4 , S304 – S309 ( 2011 )
  • Felli N , FontanaL , PelosiEet al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation . Proc. Natl Acad. Sci. USA102 ( 50 ), 18081 – 18086 ( 2005 ).
  • Volinia S , CalinGA , LiuCGet al. A microRNA expression signature of human solid tumors defines cancer gene targets . Proc. Natl Acad. Sci. USA103 ( 7 ), 2257 – 2261 ( 2006 ).
  • Garofalo M , QuintavalleC , RomanoG , CroceCM , CondorelliG . miR221/222 in cancer: their role in tumor progression and response to therapy . Curr. Mol. Med.12 ( 1 ), 27 – 33 ( 2012 ).
  • Zhang Y , GuML , ZhouXX , MaH , YaoHP , JiF . Altered expression of ETV1 and its contribution to tumorigenic phenotypes in gastrointestinal stromal tumors . Oncol. Rep.32 ( 3 ), 927 – 934 ( 2014 ).
  • Ran L , SirotaI , CaoZet al. Combined inhibition of MAP kinase and KIT signaling effectively destabilizes the ETV1 protein and synergistically suppresses GIST tumorigenesis . Cancer Discov. doi:10.1158/2159-8290 . ( 2015 ) ( Epub ahead of print ).
  • Chen C , ZhangY , ZhangL , WeakleySM , YaoQ . MicroRNA-196: critical roles and clinical applications in development and cancer . J. Cell. Mol. Med.15 ( 1 ), 14 – 23 ( 2011 ).
  • Liu XH , LuKH , WangKMet al. MicroRNA-196a promotes non-small cell lung cancer cell proliferation and invasion through targeting HOXA5 . BMC Cancer.12 , 348 ( 2012 ).
  • Huang F , TangJ , ZhuangXet al. MiR-196a promotes pancreatic cancer progression by targeting nuclear factor kappa-B-inhibitor alpha . PLoS ONE9 ( 2 ), e87897 ( 2014 ).
  • Hou T , OuJ , ZhaoX , HuangX , HuangY , ZhangY . MicroRNA-196a promotes cervical cancer proliferation through the regulation of FOXO1 and p27Kip1 . Br. J. Cancer110 ( 5 ), 1260 – 1268 ( 2014 ).
  • Liu Y , ZhengW , SongY , MaW , YinH . Low expression of miR-196b enhances the expression of BCR-ABL1 and HOXA9 oncogenes in chronic myeloid leukemogenesis . PLoS ONE8 ( 7 ), e68442 ( 2013 ).
  • How C , HuiAB , AlajezNMet al. MicroRNA-196b regulates the homeobox B7-vascular endothelial growth factor axis in cervical cancer . PLoS ONE8 ( 7 ), e67846 ( 2013 ).
  • Guan Y , MizoguchiM , YoshimotoKet al. MiRNA-196 is upregulated in glioblastoma but not in anaplastic astrocytoma and has prognostic significance . Clin. Cancer Res.16 ( 16 ), 4289 – 4297 ( 2010 ).
  • Liu CJ , TsaiMM , TuHF , LuiMT , ChengHW , LinSC . miR-196a overexpression and miR-196a2 gene polymorphism are prognostic predictors of oral carcinomas . Ann. Surg. Oncol.20 ( Suppl. 3 ), S406 – S414 ( 2013 ).
  • Ge J , ChenZ , LiR , LuT , XiaoG . Upregulation of microRNA-196a and microRNA-196b cooperatively correlate with aggressive progression and unfavorable prognosis in patients with colorectal cancer . Cancer Cell. Int.14 ( 1 ), 128 ( 2014 ).
  • Zhang C , YaoC , LiH , WangG , HeX . Combined elevation of microRNA-196a and microRNA-196b in sera predicts unfavorable prognosis in patients with osteosarcomas . Int. J. Mol. Sci.15 ( 4 ), 6544 – 6555 ( 2014 ).
  • Akcakaya P , EkelundS , KolosenkoIet al. miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer . Int. J. Oncol.39 ( 2 ), 311 – 318 ( 2011 ).
  • Liu L , ShaoX , GaoWet al. MicroRNA-133b inhibits the growth of non-small-cell lung cancer by targeting the epidermal growth factor receptor . FEBS J.279 ( 20 ), 3800 – 3812 ( 2012 ).
  • Hu G , ChenD , LiX , YangK , WangH , WuW . miR-133b regulates the MET proto-oncogene and inhibits the growth of colorectal cancer cells in vitro and in vivo . Cancer Biol. Ther.10 ( 2 ), 190 – 197 ( 2010 ).
  • Crawford M , BatteK , YuLet al. MicroRNA 133B targets pro-survival molecules MCL-1 and BCL2L2 in lung cancer . Biochem. Biophys. Res. Commun.388 ( 3 ), 483 – 489 ( 2009 ).
  • Kano M , SekiN , KikkawaNet al. miR-145, miR-133a and miR-133b: tumor-suppressive miRNAs target FSCN1 in esophageal squamous cell carcinoma . Int. J. Cancer.127 ( 12 ), 2804 – 2814 ( 2010 ).
  • Li X , WanX , ChenHet al. Identification of miR-133b and RB1CC1 as independent predictors for biochemical recurrence and potential therapeutic targets for prostate cancer . Clin. Cancer Res.20 ( 9 ), 2312 – 2325 ( 2014 ).
  • Zhao Y , HuangJ , ZhangLet al. MiR-133b is frequently decreased in gastric cancer and its overexpression reduces the metastatic potential of gastric cancer cells . BMC. Cancer14 , 34 ( 2014 )
  • Duan FT , QianF , FangK , LinKY , WangWT , ChenYQ . miR-133b, a muscle-specific microRNA, is a novel prognostic marker that participates in the progression of human colorectal cancer via regulation of CXCR4 expression . Mol. Cancer.12 , 164 ( 2013 ).
  • Tan VY , LewisSJ , AdamsJC , MartinRM . Association of fascin-1 with mortality, disease progression and metastasis in carcinomas: a systematic review and meta-analysis . BMC. Med.11 , 52 ( 2013 ).
  • Pantaleo MA , AstolfiA , Di BattistaMet al. Insulin-like growth factor 1 receptor (IGF1r) expression in wild-type GIST: a potential novel therapeutic target . Int. J. Cancer125 ( 12 ), 2991 – 2994 ( 2009 ).
  • Janeway KA , ZhuMJ , BarretinaJ , Perez-AtaydeA , DemetriGD , FletcherJA . Strong expression of IGF1R in pediatric gastrointestinal stromal tumors without IGF1R genomic amplification . Int. J. Cancer127 ( 11 ), 2718 – 2722 ( 2010 ).
  • Tarn C , RinkL , MerkelEet al. Insulin-like growth factor 1 receptor is a potential therapeutic target for gastrointestinal stromal tumors . Proc. Natl Acad. Sci. USA105 ( 24 ), 8387 – 8392 ( 2008 ).
  • Johnson SM , GrosshansH , ShingaraJet al. RAS is regulated by the let-7 microRNA family . Cell120 ( 5 ), 635 – 647 ( 2005 ).
  • Johnson CD , Esquela-KerscherA , StefaniGet al. The let-7 microRNA represses cell proliferation pathways in human cells . Cancer Res.67 ( 16 ), 7713 – 7722 ( 2007 ).
  • Sampson VB , RongNH , HanJet al. MicroRNA let-7a downregulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells . Cancer Res.67 ( 20 ), 9762 – 9770 ( 2007 ).
  • Kumar MS , LuJ , MercerKL , GolubTR , JacksT . Impaired microRNA processing enhances cellular transformation and tumorigenesis . Nat. Genet.39 ( 5 ), 673 – 677 ( 2007 ).
  • Mayr C , HemannMT , BartelDP . Disrupting the pairing between let-7 and Hmga2 enhances oncogenic transformation . Science315 ( 5818 ), 1576 – 1579 ( 2007 ).
  • Lee YS , DuttaA . The tumor suppressor microRNA let-7 represses the HMGA2 oncogene . Genes. Dev.21 ( 9 ), 1025 – 1030 ( 2007 ).
  • Shell S , ParkSM , RadjabiARet al. Let-7 expression defines two differentiation stages of cancer . Proc. Natl Acad. Sci. USA104 ( 27 ), 11400 – 11405 ( 2007 ).
  • Boyerinas B , ParkSM , ShomronNet al. Identification of Let-7-regulated oncofetal genes . Cancer Res.68 ( 8 ), 2587 – 2591 ( 2008 ).
  • Maller Schulman BR , LiangX , StahlhutC , DelconteC , StefaniG , SlackFJ . The let-7 microRNA target gene, Mlin41/Trim71 is required for mouse embryonic survival and neural tube closure . Cell. Cycle.7 ( 24 ), 3935 – 3942 ( 2008 ).
  • Lasota J , XiL , CoatesTet al. No KRAS mutations found in gastrointestinal stromal tumors (GISTs): molecular genetic study of 514 cases . Mod. Pathol.26 ( 11 ), 1488 – 1491 ( 2013 ).
  • Cleynen I , Van de VenWJ . The HMGA proteins: a myriad of functions (Review) . Int. J. Oncol.32 ( 2 ), 289 – 305 ( 2008 ).
  • Peter ME . Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression . Cell. Cycle8 ( 6 ), 843 – 852 ( 2009 ).
  • Pantaleo MA , AstolfiA , NanniniMet al. Differential expression of neural markers in KIT and PDGFRA wild-type gastrointestinal stromal tumours . Histopathology59 ( 6 ), 1071 – 1080 ( 2011 ).
  • Killian JK , MiettinenM , WalkerRLet al. Recurrent epimutation of SDHC in gastrointestinal stromal tumors . Sci. Transl. Med.6 ( 268 ), 268ra177 ( 2014 ).
  • Wozniak A , SciotR , GuillouLet al. Array CGH analysis in primary gastrointestinal stromal tumors: cytogenetic profile correlates with anatomic site and tumor aggressiveness, irrespective of mutational status . Genes Chromosome Cancer46 ( 3 ), 261 – 276 ( 2007 ).
  • Verweij J , CasaliPG , ZalcbergJet al. Progression-free survival in gastrointestinal stromal tumours with high-dose imatinib: randomised trial . Lancet.364 ( 9440 ), 1127 – 1134 ( 2004 ).
  • Maleddu A , PantaleoMA , NanniniMet al. Mechanisms of secondary resistance to tyrosine kinase inhibitors in gastrointestinal stromal tumours (Review) . Oncol. Rep.21 ( 6 ), 1359 – 1366 ( 2009 ).
  • Angelini S , PantaleoMA , RavegniniGet al. Polymorphisms in OCTN1 and OCTN2 transporters genes are associated with prolonged time to progression in unresectable gstrointestinal stromal tumours treated with imatinib therapy . Pharmacol. Res.68 ( 1 ), 1 – 6 ( 2013 ).
  • Angelini S , RavegniniG , NanniniMet al. Folate-related polymorphisms in gastrointestinal stromal tumours: susceptibility and correlation with tumour characteristics and clinical outcome . Eur. J. Hum. Genet. doi:10.1038/ejhg.2014 ( 2014 ) ( Epub ahead of print ).
  • Koo DH , RyuMH , RyooBYet al. Association of ABCG2 polymorphism with clinical efficacy of imatinib in patients with gastrointestinal stromal tumor . Cancer Chemother. Pharmacol.75 ( 1 ), 173 – 182 ( 2015 ).
  • Li F , AmbrosiniG , ChuEYet al. Control of apoptosis and mitotic spindle checkpoint by survivin . Nature.396 ( 6711 ), 580 – 584 ( 1998 ).
  • Kanwar JR , KamalapuramSK , KanwarRK . Survivin signaling in clinical oncology: a multifaceted dragon . Med. Res. Rev.33 ( 4 ), 765 – 789 ( 2013 ).
  • Cheung CH , HuangCC , TsaiFYet al. Survivin - biology and potential as a therapeutic target in oncology . Onco. Targets. Ther.6 , 1453 – 1462 ( 2013 ).
  • Huang J , LyuH , WangJ , LiuB . MicroRNA regulation and therapeutic targeting of survivin in cancer . Am. J. Cancer Res.5 ( 1 ), 20 – 31 ( 2014 ).
  • Gensler M , BuschbeckM , UllrichA . Negative regulation of HER2 signaling by the PEST-type protein-tyrosine phosphatase BDP1 . J. Biol. Chem.279 ( 13 ), 12110 – 12116 ( 2004 ).
  • Wang HM , XuYF , NingSLet al. The catalytic region and PEST domain of PTPN18 distinctly regulate the HER2 phosphorylation and ubiquitination barcodes . Cell. Res.24 ( 9 ), 1067 – 1090 ( 2014 ).
  • Takahashi T , SeradaS , AkoMet al. New findings of kinase switching in gastrointestinal stromal tumor under imatinib using phosphoproteomic analysis . Int. J. Cancer133 ( 11 ), 2737 – 2743 ( 2013 ).
  • Saponara M , PantaleoMA , NanniniM , BiascoG . Treatments for gastrointestinal stromal tumors that are resistant to standard therapies . Future Oncol.10 ( 13 ), 2045 – 2059 ( 2014 ).
  • Cheng G . Circulating miRNAs: roles in cancer diagnosis, prognosis and therapy . Adv. Drug. Deliv. Rev.81 , 75 – 93 ( 2015 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.