346
Views
0
CrossRef citations to date
0
Altmetric
Review

DNA Methylation of Tumor Suppressor Protein-Coding and Non-Coding Genes in Multiple Myeloma

&
Pages 985-1001 | Published online: 29 Sep 2015

References

  • Rajkumar SV , DimopoulosMA , PalumboAet al. International myeloma working group updated criteria for the diagnosis of multiple myeloma . Lancet Oncol.15 ( 12 ), e538 – e548 ( 2014 ).
  • Kyle RA , DurieBGM , RajkumarSVet al. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering (asymptomatic) multiple myeloma: IMWG consensus perspectives risk factors for progression and guidelines for monitoring and management . Leukemia24 ( 6 ), 1121 – 1127 ( 2010 ).
  • Kyle RA , TherneauTM , RajkumarSVet al. A long-term study of prognosis in monoclonal gammopathy of undetermined significance . N. Engl. J. Med.346 ( 8 ), 564 – 569 ( 2002 ).
  • Rajkumar SV , LarsonD , KyleRA . Diagnosis of smoldering multiple myeloma . N. Engl. J. Med.365 ( 5 ), 474 – 475 ( 2011 ).
  • Kyle RA , RemsteinED , TherneauTMet al. Clinical course and prognosis of smoldering (asymptomatic) multiple myeloma . N. Engl. J. Med.356 ( 25 ), 2582 – 2590 ( 2007 ).
  • Podar K , ChauhanD , AndersonKC . Bone marrow microenvironment and the identification of new targets for myeloma therapy . Leukemia23 ( 1 ), 10 – 24 ( 2008 ).
  • Fonseca R , BergsagelPL , DrachJet al. International myeloma working group molecular classification of multiple myeloma: spotlight review . Leukemia23 ( 12 ), 2210 – 2221 ( 2009 ).
  • Bergsagel PL , KuehlWM , ZhanF , SawyerJ , BarlogieB , ShaughnessyJ . Cyclin D dysregulation: an early and unifying pathogenic event in multiple myeloma . Blood106 ( 1 ), 296 – 303 ( 2005 ).
  • Smadja NV , FruchartC , IsnardFet al. Chromosomal analysis in multiple myeloma: cytogenetic evidence of two different diseases . Leukemia12 ( 6 ), 960 ( 1998 ).
  • Fonseca R , BarlogieB , BatailleRet al. Genetics and cytogenetics of multiple myeloma . Cancer Res.64 ( 4 ), 1546 – 1558 ( 2004 ).
  • Chng WJ , KumarS , VanwierSet al. Molecular dissection of hyperdiploid multiple myeloma by gene expression profiling . Cancer Res.67 ( 7 ), 2982 – 2989 ( 2007 ).
  • Debes-Marun CS , DewaldGW , BryantSet al. Chromosome abnormalities clustering and its implications for pathogenesis and prognosis in myeloma . Leukemia17 ( 2 ), 427 – 436 ( 2003 ).
  • Shaffer LG , Mcgowan-JordanJ , SchmidM . ISCN 2013: an international system for human cytogenetic nomenclature (2013) . Karger Medical and Scientific Publishers , Basel, Switzerland ( 2013 ).
  • Fonseca R , Debes-MarunCS , PickenEBet al. The recurrent IGH translocations are highly associated with nonhyperdiploid variant multiple myeloma . Blood102 ( 7 ), 2562 – 2567 ( 2003 ).
  • Bergsagel PL , KuehlWM . Chromosome translocations in multiple myeloma . Oncogene20 ( 40 ), 5611 – 5622 ( 2001 ).
  • Van Wier S , BraggioE , BakerAet al. Hypodiploid multiple myeloma is characterized by more aggressive molecular markers than non-hyperdiploid multiple myeloma . Haematologica98 ( 10 ), 1586 – 1592 ( 2013 ).
  • Chng WJ , Santana-DavilaR , Van WierSAet al. Prognostic factors for hyperdiploid-myeloma: effects of chromosome 13 deletions and IGH translocations . Leukemia20 ( 5 ), 807 – 813 ( 2006 ).
  • Smadja NV , BastardC , BrigaudeauC , LerouxD , FruchartC . Hypodiploidy is a major prognostic factor in multiple myeloma . Blood98 ( 7 ), 2229 – 2238 ( 2001 ).
  • Kuehl WM , BergsagelPL . Multiple myeloma: evolving genetic events and host interactions . Nat. Rev. Cancer2 ( 3 ), 175 – 187 ( 2002 ).
  • Walker B , WardellC , BrioliAet al. Translocations at 8q24 juxtapose MYC with genes that harbor superenhancers resulting in overexpression and poor prognosis in myeloma patients . Blood Cancer J.4 ( 3 ), e191 ( 2014 ).
  • Avet-Loiseau H , GersonF , MagrangeasF , MinvielleS , HarousseauJ-L , BatailleR . Rearrangements of the c-myc oncogene are present in 15% of primary human multiple myeloma tumors . Blood98 ( 10 ), 3082 – 3086 ( 2001 ).
  • Hanamura I , StewartJP , HuangYet al. Frequent gain of chromosome band 1q21 in plasma-cell dyscrasias detected by fluorescence in situ hybridization: incidence increases from MGUS to relapsed myeloma and is related to prognosis and disease progression following tandem stem-cell transplantation . Blood108 ( 5 ), 1724 – 1732 ( 2006 ).
  • Walker BA , LeonePE , ChiecchioLet al. A compendium of myeloma-associated chromosomal copy number abnormalities and their prognostic value . Blood116 ( 15 ), e56 – e65 ( 2010 ).
  • Chng W , DispenzieriA , ChimCet al. IMWG consensus on risk stratification in multiple myeloma . Leukemia28 ( 2 ), 269 – 277 ( 2014 ).
  • Boyd K , RossF , ChiecchioLet al. A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS: analysis of patients treated in the MRC Myeloma IX trial . Leukemia26 ( 2 ), 349 – 355 ( 2011 ).
  • Chng WJ , Gonzalez-PazN , Price-TroskaTet al. Clinical and biological significance of RAS mutations in multiple myeloma . Leukemia22 ( 12 ), 2280 – 2284 ( 2008 ).
  • Grossmann V , BacherU , ArtusiVet al. Molecular analysis of RAS-RAF tyrosine-kinase signaling pathway alterations in patients with plasma cell myeloma . Blood Cancer J.2 ( 8 ), e85 ( 2012 ).
  • Ocio EM , RichardsonPG , RajkumarSVet al. New drugs and novel mechanisms of action in multiple myeloma in 2013: a report from the international myeloma working group (IMWG) . Leukemia28 ( 3 ), 525 – 542 ( 2014 ).
  • Robertson KD . DNA methylation and human disease . Nat. Rev. Genet.6 ( 8 ), 597 – 610 ( 2005 ).
  • Herman JG , BaylinSB . Gene silencing in cancer in association with promoter hypermethylation . N. Engl. J. Med.349 ( 21 ), 2042 – 2054 ( 2003 ).
  • Bashtrykov P , JankeviciusG , SmarandacheA , Jurkowska Renataz , RagozinS , JeltschA . Specificity of DNMT1 for methylation of hemimethylated CpG sites resides in its catalytic domain . Chem. Biol.19 ( 5 ), 572 – 578 ( 2012 ).
  • Robert M-F , MorinS , BeaulieuNet al. DNMT1 is required to maintain CpG methylation and aberrant gene silencing in human cancer cells . Nat. Genet.33 ( 1 ), 61 – 65 ( 2003 ).
  • Okano M , BellDW , HaberDA , LiE . DNA methyltransferases DNMT3a and DNMT3b are essential for de novo methylation and mammalian development . Cell99 ( 3 ), 247 – 257 ( 1999 ).
  • Rhee I , BachmanKE , ParkBHet al. DNMT1 and DNMT3B cooperate to silence genes in human cancer cells . Nature416 ( 6880 ), 552 – 556 ( 2002 ).
  • Schulz WA , SteinhoffC , FlorlAR . Methylation of endogenous human retroelements in health and disease . In : DNA Methylation: Development, Genetic Disease and Cancer . DoerflerW , BöhmP ( Eds ). Springer Berlin Heidelberg , NY, USA , 211 – 250 ( 2006 ).
  • Bird A . DNA methylation patterns and epigenetic memory . Genes Dev.16 ( 1 ), 6 – 21 ( 2002 ).
  • Das PM , SingalR . DNA methylation and cancer . J. Clin. Oncol.22 ( 22 ), 4632 – 4642 ( 2004 ).
  • Saxonov S , BergP , BrutlagDL . A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters . Proc. Natl Acad. Sci. USA103 ( 5 ), 1412 – 1417 ( 2006 ).
  • Chim CS , LiangR , KwongYL . Hypermethylation of gene promoters in hematological neoplasia . Hematol. Oncol.20 ( 4 ), 167 – 176 ( 2002 ).
  • Gardiner-Garden M , FrommerM . CpG islands in vertebrate genomes . J. Mol. Biol.196 ( 2 ), 261 – 282 ( 1987 ).
  • Illingworth RS , Gruenewald-SchneiderU , WebbSet al. Orphan CpG islands identify numerous conserved promoters in the mammalian genome . PLoS Genet.6 ( 9 ), e1001134 ( 2010 ).
  • Ioshikhes IP , ZhangMQ . Large-scale human promoter mapping using CpG islands . Nat. Genet.26 ( 1 ), 61 – 63 ( 2000 ).
  • Jones PA . Functions of DNA methylation: islands, start sites, gene bodies and beyond . Nat. Rev. Genet.13 ( 7 ), 484 – 492 ( 2012 ).
  • Esteller M . Cancer epigenomics: DNA methylomes and histone-modification maps . Nat. Rev. Genet.8 ( 4 ), 286 – 298 ( 2007 ).
  • Rountree MR , BachmanKE , HermanJG , BaylinSB . DNA methylation, chromatin inheritance, and cancer . Oncogene20 ( 24 ), 3156 – 3165 ( 2001 ).
  • Knudson AG . Karnofsky memorial lecture. Hereditary cancer: theme and variations . J. Clin. Oncol15 ( 10 ), 3280 – 3287 ( 1997 ).
  • Jones PA , LairdPW . Cancer-epigenetics comes of age . Nat. Genet.21 ( 2 ), 163 – 167 ( 1999 ).
  • Sharma A , HeuckCJ , FazzariMJet al. DNA methylation alterations in multiple myeloma as a model for epigenetic changes in cancer . Wiley Interdiscip. Rev. Syst. Biol. Med.2 ( 6 ), 654 – 669 ( 2010 ).
  • Chim CS , FungTK , LiangR . Disruption of INK4/CDK/RB cell cycle pathway by gene hypermethylation in multiple myeloma and MGUS . Leukemia17 ( 12 ), 2533 – 2535 ( 2003 ).
  • Ng M , ChungY , LoK , WickhamN , LeeJ , HuangD . Frequent hypermethylation of p16 and p15 genes in multiple myeloma . Blood89 ( 7 ), 2500 – 2506 ( 1997 ).
  • Chim CS , KwongYL , LiangR . Gene hypermethylation in multiple myeloma: lessons from a cancer pathway approach . Clin. Lymphoma Myeloma8 ( 6 ), 331 – 339 ( 2008 ).
  • Dimopoulos K , GimsingP , Gr⊘nbækK . The role of epigenetics in the biology of multiple myeloma . Blood Cancer J.4 ( 5 ), e207 ( 2014 ).
  • Martin S , DiamondP , GronthosS , PeetD , ZannettinoA . The emerging role of hypoxia, HIF-1 and HIF-2 in multiple myeloma . Leukemia25 ( 10 ), 1533 – 1542 ( 2011 ).
  • Musgrove EA , CaldonCE , BarracloughJ , StoneA , SutherlandRL . Cyclin D as a therapeutic target in cancer . Nat. Rev. Cancer11 ( 8 ), 558 – 572 ( 2011 ).
  • Choi YJ , AndersL . Signaling through cyclin D-dependent kinases . Oncogene33 ( 15 ), 1890 – 1903 ( 2014 ).
  • Braggio E , MaiolinoA , GouveiaMEet al. Methylation status of nine tumor suppressor genes in multiple myeloma . Int. J. Hematol.91 ( 1 ), 87 – 96 ( 2010 ).
  • Chim CS , LiangR , LeungMH , KwongYL . Aberrant gene methylation implicated in the progression of monoclonal gammopathy of undetermined significance to multiple myeloma . J. Clin. Pathol.60 ( 1 ), 104 – 106 ( 2007 ).
  • Chim CS , KwongYL , FungTK , LiangR . Methylation profiling in multiple myeloma . Leuk. Res.28 ( 4 ), 379 – 385 ( 2004 ).
  • Galm O , WilopS , ReicheltJet al. DNA methylation changes in multiple myeloma . Leukemia18 ( 10 ), 1687 – 1692 ( 2004 ).
  • Seidl S , AckermannJ , KaufmannHet al. DNA-methylation analysis identifies the E-cadherin gene as a potential marker of disease progression in patients with monoclonal gammopathies . Cancer100 ( 12 ), 2598 – 2606 ( 2004 ).
  • Guillerm G , DepilS , WolowiecD , QuesnelB . Different prognostic values of p15 (INK4B) and p16 (INK4A) gene methylations in multiple myeloma . Haematologica88 ( 4 ), 476 – 478 ( 2003 ).
  • Mateos MV , García‐SanzR , López‐PérezRet al. Methylation is an inactivating mechanism of the p16 gene in multiple myeloma associated with high plasma cell proliferation and short survival . Br. J. Haematol.118 ( 4 ), 1034 – 1040 ( 2002 ).
  • Guillerm G , GyanE , WolowiecDet al. p16 INK4A and p15 INK4B gene methylations in plasma cells from monoclonal gammopathy of undetermined significance . Blood98 ( 1 ), 244 – 246 ( 2001 ).
  • Avet-Loiseau H , AttalM , MoreauPet al. Genetic abnormalities and survival in multiple myeloma: the experience of the intergroupe francophone du myélome . Blood109 ( 8 ), 3489 – 3495 ( 2007 ).
  • Chng WJ , Price-TroskaT , Gonzalez-PazNet al. Clinical significance of TP53 mutation in myeloma . Leukemia21 ( 3 ), 582 – 584 ( 2007 ).
  • Imamura J , MiyoshiI , KoefflerHP . p53 in hematologic malignancies . Blood84 ( 8 ), 2412 – 2421 ( 1994 ).
  • Rajkumar V , KetterlingRP , DispenzieriAet al. 17p deleted multiple myeloma: clinical outcomes and predictive factors for acquisition of 17p deletion . Blood122 ( 21 ), 1846 – 1846 ( 2013 ).
  • Shiloh R , BialikS , KimchiA . The DAPK family: a structure–function analysis . Apoptosis19 ( 2 ), 286 – 297 ( 2014 ).
  • Gozuacik D , KimchiA . DAPk protein family and cancer . Autophagy2 ( 2 ), 74 – 79 ( 2006 ).
  • Ng MH , ToK , LoKet al. Frequent death-associated protein kinase promoter hypermethylation in multiple myeloma . Clin. Cancer Res.7 ( 6 ), 1724 – 1729 ( 2001 ).
  • Chim CS , LiangR , FungTK , ChoiCL , KwongYL . Epigenetic dysregulation of the death-associated protein kinase/p14/HDM2/p53/APAF-1 apoptosis pathway in multiple myeloma . J. Clin. Pathol.60 ( 6 ), 664 – 669 ( 2007 ).
  • Chim CS . Updated survivals and prognostic factor analysis in myeloma treated by a staged approach use of bortezomib/thalidomide/dexamethasone in transplant eligible patients . J. Transl. Med.8 ( 1 ), 124 ( 2010 ).
  • Sansone P , BrombergJ . Targeting the interleukin-6/JAK/STAT pathway in human malignancies . J. Clin. Oncol.30 ( 9 ), 1005 – 1014 ( 2012 ).
  • Rawlings JS , RoslerKM , HarrisonDA . The JAK/STAT signaling pathway . J. Cell Sci.117 ( 8 ), 1281 – 1283 ( 2004 ).
  • Chim CS , FungTK , CheungWC , LiangR , KwongYL . SOCS1 and SHP1 hypermethylation in multiple myeloma: implications for epigenetic activation of the JAK/STAT pathway . Blood103 ( 12 ), 4630 – 4635 ( 2004 ).
  • Reddy J , ShivapurkarN , TakahashiTet al. Differential methylation of genes that regulate cytokine signaling in lymphoid and hematopoietic tumors . Oncogene24 ( 4 ), 732 – 736 ( 2004 ).
  • Galm O , YoshikawaH , EstellerM , OsiekaR , HermanJG . SOCS-1, a negative regulator of cytokine signaling, is frequently silenced by methylation in multiple myeloma . Blood101 ( 7 ), 2784 – 2788 ( 2003 ).
  • Depil S , SaudemontA , QuesnelB . SOCS-1 gene methylation is frequent but does not appear to have prognostic value in patients with multiple myeloma . Leukemia17 ( 8 ), 1678 – 1679 ( 2003 ).
  • Derksen PW , TjinE , MeijerHPet al. Illegitimate WNT signaling promotes proliferation of multiple myeloma cells . Proc. Natl Acad. Sci. USA101 ( 16 ), 6122 – 6127 ( 2004 ).
  • Tian E , ZhanF , WalkerRet al. The role of the WNT-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma . N. Engl. J. Med.349 ( 26 ), 2483 – 2494 ( 2003 ).
  • Anastas JN , MoonRT . WNT signalling pathways as therapeutic targets in cancer . Nat. Rev. Cancer13 ( 1 ), 11 – 26 ( 2012 ).
  • Clevers H , NusseR . WNT/β-catenin signaling and disease . Cell149 ( 6 ), 1192 – 1205 ( 2012 ).
  • Chim CS , PangR , FungTK , ChoiCL , LiangR . Epigenetic dysregulation of WNT signaling pathway in multiple myeloma . Leukemia21 ( 12 ), 2527 – 2536 ( 2007 ).
  • Jost E , GezerD , WilopSet al. Epigenetic dysregulation of secreted frizzled-related proteins in multiple myeloma . Cancer Lett.281 ( 1 ), 24 – 31 ( 2009 ).
  • Giatromanolaki A , BaiM , MargaritisDet al. Hypoxia and activated VEGF/receptor pathway in multiple myeloma . Anticancer Res.30 ( 7 ), 2831 – 2836 ( 2010 ).
  • Hatzimichael E , DranitsarisG , DasoulaAet al. Von Hippel–Lindau methylation status in patients with multiple myeloma: a potential predictive factor for the development of bone disease . Clin. Lymphoma Myeloma9 ( 3 ), 239 – 242 ( 2009 ).
  • Hatzimichael E , DasoulaA , ShahRet al. The prolyl‐hydroxylase EGLN3 and not EGLN1 is inactivated by methylation in plasma cell neoplasia . Eur. J. Haematol.84 ( 1 ), 47 – 51 ( 2010 ).
  • Walker BA , WardellCP , ChiecchioLet al. Aberrant global methylation patterns affect the molecular pathogenesis and prognosis of multiple myeloma . Blood117 ( 2 ), 553 – 562 ( 2011 ).
  • Kaiser MF , JohnsonDC , WuPet al. Global methylation analysis identifies prognostically important epigenetically inactivated tumor suppressor genes in multiple myeloma . Blood122 ( 2 ), 219 – 226 ( 2013 ).
  • Heuck CJ , MehtaJ , BhagatTet al. Myeloma is characterized by stage-specific alterations in DNA methylation that occur early during myelomagenesis . J. Immunol.190 ( 6 ), 2966 – 2975 ( 2013 ).
  • Agirre X , CastellanoG , PascualMet al. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B-cell-specific enhancers . Genome Res.25 ( 4 ), 478 – 487 ( 2015 ).
  • Cedar H , BergmanY . Linking DNA methylation and histone modification: patterns and paradigms . Nat. Rev. Genet.10 ( 5 ), 295 – 304 ( 2009 ).
  • Jones PA , BaylinSB . The fundamental role of epigenetic events in cancer . Nat. Rev. Genet.3 ( 6 ), 415 – 428 ( 2002 ).
  • Yan PY , YuG , TsengGet al. Glutathione peroxidase 3, deleted or methylated in prostate cancer, suppresses prostate cancer growth and metastasis . Cancer Res.67 ( 17 ), 8043 – 8050 ( 2007 ).
  • Esteller M , GuoM , MorenoVet al. Hypermethylation-associated inactivation of the cellular retinol-binding-protein 1 gene in human cancer . Cancer Res.62 ( 20 ), 5902 – 5905 ( 2002 ).
  • Cheetham S , TangM , MesakF , KenneckeH , OwenD , TaiI . Sparc promoter hypermethylation in colorectal cancers can be reversed by 5-aza-2′ deoxycytidine to increase SPARC expression and improve therapy response . Br. J. Cancer98 ( 11 ), 1810 – 1819 ( 2008 ).
  • Ahmed AA , MillsAD , IbrahimAEet al. The extracellular matrix protein TGFBI induces microtubule stabilization and sensitizes ovarian cancers to paclitaxel . Cancer Cell12 ( 6 ), 514 – 527 ( 2007 ).
  • Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function . Cell116 ( 2 ), 281 – 297 ( 2004 ).
  • Alvarez-Garcia I , MiskaEA . MicroRNA functions in animal development and human disease . Development132 ( 21 ), 4653 – 4662 ( 2005 ).
  • Xiao C , RajewskyK . MicroRNA control in the immune system: basic principles . Cell136 ( 1 ), 26 – 36 ( 2009 ).
  • Zeng Y , YiR , CullenBR . MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms . Proc. Natl Acad. Sci. USA100 ( 17 ), 9779 – 9784 ( 2003 ).
  • Filipowicz W , BhattacharyyaSN , SonenbergN . Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?Nat. Rev. Genet.9 ( 2 ), 102 – 114 ( 2008 ).
  • Calin GA , CroceCM . MicroRNA signatures in human cancers . Nat. Rev. Cancer6 ( 11 ), 857 – 866 ( 2006 ).
  • Croce CM . Causes and consequences of microRNA dysregulation in cancer . Nat. Rev. Genet.10 ( 10 ), 704 – 714 ( 2009 ).
  • Esquela-Kerscher A , SlackFJ . Oncomirs - microRNAs with a role in cancer . Nat. Rev. Cancer6 ( 4 ), 259 – 269 ( 2006 ).
  • Chen C-Z . MicroRNAs as oncogenes and tumor suppressors . N. Engl. J. Med.353 ( 17 ), 1768 – 1771 ( 2005 ).
  • Lujambio A , RoperoS , BallestarEet al. Genetic unmasking of an epigenetically silenced microRNA in human cancer cells . Cancer Res.67 ( 4 ), 1424 – 1429 ( 2007 ).
  • Saito Y , LiangG , EggerGet al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells . Cancer Cell9 ( 6 ), 435 – 443 ( 2006 ).
  • Wong KY , HuangX , ChimCS . DNA methylation of microRNA genes in multiple myeloma . Carcinogenesis33 ( 9 ), 1629 – 1638 ( 2012 ).
  • Bommer GT , GerinI , FengYet al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes . Curr. Biol.17 ( 15 ), 1298 – 1307 ( 2007 ).
  • Chang TC , WentzelEA , KentOAet al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis . Mol. Cell26 ( 5 ), 745 – 752 ( 2007 ).
  • Corney DC , Flesken-NikitinA , GodwinAK , WangW , NikitinAY . MicroRNA-34b and microRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion-independent growth . Cancer Res.67 ( 18 ), 8433 – 8438 ( 2007 ).
  • Raver-Shapira N , MarcianoE , MeiriEet al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis . Mol. Cell26 ( 5 ), 731 – 743 ( 2007 ).
  • Tarasov V , JungP , VerdoodtBet al. Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest . Cell Cycle6 ( 13 ), 1586 – 1593 ( 2007 ).
  • Hermeking H . P53 enters the microRNA world . Cancer Cell12 ( 5 ), 414 – 418 ( 2007 ).
  • Dijkstra MK , Van LomK , TielemansDet al. 17p13/TP53 deletion in B-CLL patients is associated with microRNA-34a downregulation . Leukemia23 ( 3 ), 625 – 627 ( 2008 ).
  • Dufour A , PalermoG , ZellmeierEet al. Inactivation of TP53 correlates with disease progression and low miR-34a expression in previously treated chronic lymphocytic leukemia patients . Blood121 ( 18 ), 3650 – 3657 ( 2013 ).
  • Mraz M , MalinovaK , KotaskovaJet al. miR-34a, miR-29c and miR-17–5p are downregulated in CLL patients with TP53 abnormalities . Leukemia23 ( 6 ), 1159 – 1163 ( 2009 ).
  • Zenz T , HabeS , DenzelTet al. Detailed analysis of p53 pathway defects in fludarabine-refractory chronic lymphocytic leukemia (CLL): dissecting the contribution of 17p deletion, TP53 mutation, p53-p21 dysfunction, and miR34a in a prospective clinical trial . Blood114 ( 13 ), 2589 – 2597 ( 2009 ).
  • Yamakuchi M , FerlitoM , LowensteinCJ . miR-34a repression of SIRT1 regulates apoptosis . Proc. Natl Acad. Sci. USA105 ( 36 ), 13421 – 13426 ( 2008 ).
  • Wong KY , YuL , ChimCS . DNA methylation of tumor suppressor miRNA genes: a lesson from the miR-34 family . Epigenomics3 ( 1 ), 83 – 92 ( 2011 ).
  • Corney DC , HwangC-I , MatosoAet al. Frequent downregulation of miR-34 family in human ovarian cancers . Clin. Cancer Res.16 ( 4 ), 1119 – 1128 ( 2010 ).
  • Toyota M , SuzukiH , SasakiYet al. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer . Cancer Res.68 ( 11 ), 4123 – 4132 ( 2008 ).
  • Lujambio A , CalinGA , VillanuevaAet al. A microRNA DNA methylation signature for human cancer metastasis . Proc. Natl Acad. Sci. USA105 ( 36 ), 13556 – 13561 ( 2008 ).
  • Gallardo E , NavarroA , VinolasNet al. miR-34a as a prognostic marker of relapse in surgically resected non-small-cell lung cancer . Carcinogenesis30 ( 11 ), 1903 – 1909 ( 2009 ).
  • Tanaka N , ToyookaS , SohJet al. Frequent methylation and oncogenic role of microRNA-34b/c in small-cell lung cancer . Lung Cancer76 ( 1 ), 32 – 38 ( 2012 ).
  • Chim CS , WongKY , QiYet al. Epigenetic inactivation of the miR-34a in hematological malignancies . Carcinogenesis31 ( 4 ), 745 – 750 ( 2010 ).
  • Wong KY , YimRLH , SoCC , JinD-Y , LiangR , ChimCS . Epigenetic inactivation of the miR34b/c in multiple myeloma . Blood118 ( 22 ), 5901 – 5904 ( 2011 ).
  • Pichiorri F , SuhS-S , RocciAet al. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development . Cancer Cell18 ( 4 ), 367 – 381 ( 2010 ).
  • Corthals S , SunS , KuiperRet al. MicroRNA signatures characterize multiple myeloma patients . Leukemia25 ( 11 ), 1784 – 1789 ( 2011 ).
  • Avet-Loiseau H , FaconT , GrosboisBet al. Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation . Blood99 ( 6 ), 2185 – 2191 ( 2002 ).
  • Gonzalez D , Van Der BurgM , Garcia-SanzRet al. Immunoglobulin gene rearrangements and the pathogenesis of multiple myeloma . Blood110 ( 9 ), 3112 – 3121 ( 2007 ).
  • Van Gent DC , HoeijmakersJHJ , KanaarR . Chromosomal stability and the DNA double-stranded break connection . Nat. Rev. Genet.2 ( 3 ), 196 – 206 ( 2001 ).
  • Bueno MJ , Perez De CastroI , Gomez De CedronMet al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression . Cancer Cell13 ( 6 ), 496 – 506 ( 2008 ).
  • Chim CS , WanTS , WongKY , FungTK , DrexlerHG , WongKF . Methylation of miR-34a, miR-34b/c, miR-124–1 and miR-203 in Ph-negative myeloproliferative neoplasms . J. Transl. Med.9 ( 1 ), 197 ( 2011 ).
  • Chim CS , WongKY , LeungCYet al. Epigenetic inactivation of the hsa-miR-203 in haematological malignancies . J. Cell. Mol. Med.15 ( 12 ), 2760 – 2767 ( 2011 ).
  • Craig VJ , CogliattiSB , RehrauerH , WündischT , MüllerA . Epigenetic silencing of microRNA-203 dysregulates ABL1 expression and drives helicobacter-associated gastric lymphomagenesis . Cancer Res.71 ( 10 ), 3616 – 3624 ( 2011 ).
  • Wong KY , LiangR , SoCC , JinDY , CostelloJF , ChimCS . Epigenetic silencing of miR203 in multiple myeloma . Br. J. Haematol.154 ( 5 ), 569 – 578 ( 2011 ).
  • Bandres E , AgirreX , BitarteNet al. Epigenetic regulation of microRNA expression in colorectal cancer . Int. J. Cancer125 ( 11 ), 2737 – 2743 ( 2009 ).
  • Huang Y-W , LiuJC , DeatherageDEet al. Epigenetic repression of microRNA-129–2 leads to overexpression of SOX4 oncogene in endometrial cancer . Cancer Res.69 ( 23 ), 9038 – 9046 ( 2009 ).
  • Shen R , PanS , QiS , LinX , ChengS . Epigenetic repression of microRNA-129–2 leads to overexpression of SOX4 in gastric cancer . Biochem. Biophys. Res. Commun.394 ( 4 ), 1047 – 1052 ( 2010 ).
  • Chen X , ZhangL , ZhangTet al. Methylation‐mediated repression of microRNA 129‐2 enhances oncogenic SOX4 expression in HCC . Liver Int.33 ( 3 ), 476 – 486 ( 2013 ).
  • Lu CY , LinKY , TienMT , WuCT , UenYH , TsengTL . Frequent DNA methylation of miR‐129‐2 and its potential clinical implication in hepatocellular carcinoma . Genes Chromosomes Cancer52 ( 7 ), 636 – 643 ( 2013 ).
  • Chen X , HuH , GuanXet al. CpG island methylation status of miRNAs in esophageal squamous cell carcinoma . Int. J. Cancer130 ( 7 ), 1607 – 1613 ( 2012 ).
  • Dyrskjot L , OstenfeldMS , BramsenJBet al. Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro . Cancer Res.69 ( 11 ), 4851 ( 2009 ).
  • Wu J , QianJ , LiCet al. MiR-129 regulates cell proliferation by downregulating CDK6 expression . Cell Cycle9 ( 9 ), 1809 – 1818 ( 2010 ).
  • Wong KY , YimRLH , KwongYLet al. Epigenetic inactivation of the miR129–2 in hematological malignancies . Int. J. Hematol.6 ( 1 ), 16 ( 2013 ).
  • Agirre X , Vilas-ZornozaA , Jimenez-VelascoAet al. Epigenetic silencing of the tumor suppressor microRNA hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia . Cancer Res.69 ( 10 ), 4443 – 4453 ( 2009 ).
  • Furuta M , KozakiKI , TanakaS , AriiS , ImotoI , InazawaJ . miR-124 and miR-203 are epigenetically silenced tumor-suppressive microRNAs in hepatocellular carcinoma . Carcinogenesis31 ( 5 ), 766 – 776 ( 2010 ).
  • Silber J , LimD , PetritschCet al. miR-124 and miR-137 inhibit proliferation of glioblastoma multiforme cells and induce differentiation of brain tumor stem cells . BMC Med.6 ( 1 ), 14 ( 2008 ).
  • Wilting S , Van BoerdonkR , HenkenFet al. Methylation-mediated silencing and tumour suppressive function of hsa-miR-124 in cervical cancer . Mol. Cancer9 ( 1 ), 167 ( 2010 ).
  • Wang P , ChenL , ZhangJet al. Methylation-mediated silencing of the miR-124 genes facilitates pancreatic cancer progression and metastasis by targeting RAC1 . Oncogene33 ( 4 ), 514 – 524 ( 2014 ).
  • Wong KY , SoCC , LoongFet al. Epigenetic inactivation of the miR-124–1 in haematological malignancies . PLoS ONE6 ( 4 ), e19027 ( 2011 ).
  • Zhang W , WangYE , ZhangYet al. Global epigenetic regulation of microRNAs in multiple myeloma . PLoS ONE9 ( 10 ), e110973 ( 2014 ).
  • Walker BA , MorganGJ . Could DNA methylation become a useful measure for multiple myeloma prognoses?Expert Rev. Hematol.4 ( 2 ), 125 – 127 ( 2011 ).
  • Fabbri M , GarzonR , CimminoAet al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B . Proc. Natl Acad. Sci. USA104 ( 40 ), 15805 – 15810 ( 2007 ).
  • Garzon R , LiuS , FabbriMet al. MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1 . Blood113 ( 25 ), 6411 – 6418 ( 2009 ).
  • Iorio MV , PiovanC , CroceCM . Interplay between microRNAs and the epigenetic machinery: an intricate network . Biochim. Biophys. Acta.1799 ( 10 ), 694 – 701 ( 2010 ).
  • Huang J , WangY , GuoY , SunS . Down‐regulated microRNA‐152 induces aberrant DNA methylation in hepatitis B virus–related hepatocellular carcinoma by targeting DNA methyltransferase 1 . Hepatology52 ( 1 ), 60 – 70 ( 2010 ).
  • Fernandez De Larrea C , KyleRA , DurieBGMet al. Plasma cell leukemia: consensus statement on diagnostic requirements, response criteria and treatment recommendations by the international myeloma working group . Leukemia27 ( 4 ), 780 – 791 ( 2013 ).
  • Bladé J , RosiñolL , CibeiraMT , RoviraM , CarrerasE . Hematopoietic stem cell transplantation for multiple myeloma beyond 2010 . Blood115 ( 18 ), 3655 – 3663 ( 2010 ).
  • Derissen EJ , BeijnenJH , SchellensJH . Concise drug review: azacitidine and decitabine . Oncologist18 ( 5 ), 619 – 624 ( 2013 ).
  • Yoo CB , JonesPA . Epigenetic therapy of cancer: past, present and future . Nat. Rev. Drug Discov.5 ( 1 ), 37 – 50 ( 2006 ).
  • Mercer TR , DingerME , MattickJS . Long non-coding RNAs: insights into functions . Nat. Rev. Genet.10 ( 3 ), 155 – 159 ( 2009 ).
  • Spizzo R , AlmeidaMI , ColombattiA , CalinGA . Long non-coding RNAs and cancer: a new frontier of translational research . Oncogene31 ( 43 ), 4577 – 4587 ( 2012 ).
  • Benetatos L , DasoulaA , HatzimichaelE , GeorgiouI , SyrrouM , BourantasKL . Promoter hypermethylation of the MEG3 (DLK1/MEG3) imprinted gene in multiple myeloma . Clin. Lymphoma Myeloma Leuk.8 ( 3 ), 171 – 175 ( 2008 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.