9,116
Views
0
CrossRef citations to date
0
Altmetric
Review

DNA Methylation as a Diagnostic and Therapeutic Target in the Battle Against Type 2 Diabetes

&
Pages 451-460 | Published online: 16 Jun 2015

References

  • Hales CN , BarkerDJ . Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis . Diabetologia35 ( 7 ), 595 – 601 ( 1992 ).
  • Barker DJ , HalesCN , FallCH , OsmondC , PhippsK , ClarkPM . Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth . Diabetologia36 ( 1 ), 62 – 67 ( 1993 ).
  • Eriksson JG , ForsenT , TuomilehtoJ , JaddoeVW , OsmondC , BarkerDJ . Effects of size at birth and childhood growth on the insulin resistance syndrome in elderly individuals . Diabetologia45 ( 3 ), 342 – 348 ( 2002 ).
  • Hales CN , BarkerDJ , ClarkPMet al. Fetal and infant growth and impaired glucose tolerance at age 64 . BMJ303 ( 6809 ), 1019 – 1022 ( 1991 ).
  • Lithell HO , MckeiguePM , BerglundL , MohsenR , LithellUB , LeonDA . Relation of size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50–60 years . BMJ312 ( 7028 ), 406 – 410 ( 1996 ).
  • Wu Y , DingY , TanakaY , ZhangW . Risk factors contributing to Type 2 diabetes and recent advances in the treatment and prevention . Int. J. Med. Sci.11 ( 11 ), 1185 – 1200 ( 2014 ).
  • Ling C , GroopL . Epigenetics: a molecular link between environmental factors and Type 2 diabetes . Diabetes58 ( 12 ), 2718 – 2725 ( 2009 ).
  • Laird PW . Principles and challenges of genomewide DNA methylation analysis . Nat. Rev. Genet.11 ( 3 ), 191 – 203 ( 2010 ).
  • Jones PA . Functions of DNA methylation: islands, start sites, gene bodies and beyond . Nat. Rev. Genet.13 ( 7 ), 484 – 492 ( 2012 ).
  • Cheng X , BlumenthalRM . Coordinated chromatin control: structural and functional linkage of DNA and histone methylation . Biochemistry49 ( 14 ), 2999 – 3008 ( 2010 ).
  • Hashimoto H , VertinoPM , ChengX . Molecular coupling of DNA methylation and histone methylation . Epigenomics2 ( 5 ), 657 – 669 ( 2010 ).
  • Muhonen P , HolthoferH . Epigenetic and microRNA-mediated regulation in diabetes . Nephrol. Dial. Transplant.24 ( 4 ), 1088 – 1096 ( 2009 ).
  • Dayeh T , VolkovP , SaloSet al. Genome-wide DNA methylation analysis of human pancreatic islets from Type 2 diabetic and non-diabetic donors identifies candidate genes that influence insulin secretion . PLoS Genet.10 ( 3 ), e1004160 ( 2014 ).
  • Volkmar M , DedeurwaerderS , CunhaDAet al. DNA methylation profiling identifies epigenetic dysregulation in pancreatic islets from Type 2 diabetic patients . EMBO J.31 ( 6 ), 1405 – 1426 ( 2012 ).
  • Hall E , VolkovP , DayehTet al. Effects of palmitate on genome-wide mRNA expression and DNA methylation patterns in human pancreatic islets . BMC Med.12 , 103 ( 2014 ).
  • Grant SF , ThorleifssonG , ReynisdottirIet al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of Type 2 diabetes . Nat. Genet.38 ( 3 ), 320 – 323 ( 2006 ).
  • Nogueira TC , PaulaFM , VillateOet al. GLIS3, a susceptibility gene for Type 1 and Type 2 diabetes, modulates pancreatic beta cell apoptosis via regulation of a splice variant of the BH3-only protein Bim . PLoS Genet.9 ( 5 ), e1003532 ( 2013 ).
  • Ling C , Del GuerraS , LupiRet al. Epigenetic regulation of PPARGC1A in human Type 2 diabetic islets and effect on insulin secretion . Diabetologia51 ( 4 ), 615 – 622 ( 2008 ).
  • Lin J , HandschinC , SpiegelmanBM . Metabolic control through the PGC-1 family of transcription coactivators . Cell Metab.1 ( 6 ), 361 – 370 ( 2005 ).
  • Jonsson A , IsomaaB , TuomiTet al. A variant in the KCNQ1 gene predicts future Type 2 diabetes and mediates impaired insulin secretion . Diabetes58 ( 10 ), 2409 – 2413 ( 2009 ).
  • Unoki H , TakahashiA , KawaguchiTet al. SNPs in KCNQ1 are associated with susceptibility to Type 2 diabetes in East Asian and European populations . Nat. Genet.40 ( 9 ), 1098 – 1102 ( 2008 ).
  • Yasuda K , MiyakeK , HorikawaYet al. Variants in KCNQ1 are associated with susceptibility to Type 2 diabetes mellitus . Nat. Genet.40 ( 9 ), 1092 – 1097 ( 2008 ).
  • Travers ME , MackayDJ , Dekker NitertMet al. Insights into the molecular mechanism for Type 2 diabetes susceptibility at the KCNQ1 locus from temporal changes in imprinting status in human islets . Diabetes62 ( 3 ), 987 – 992 ( 2013 ).
  • Kuroda A , RauchTA , TodorovIet al. Insulin gene expression is regulated by DNA methylation . PLoS ONE4 ( 9 ), e6953 ( 2009 ).
  • Yang BT , DayehTA , KirkpatrickCLet al. Insulin promoter DNA methylation correlates negatively with insulin gene expression and positively with HbA(1c) levels in human pancreatic islets . Diabetologia54 ( 2 ), 360 – 367 ( 2011 ).
  • Yang BT , DayehTA , VolkovPAet al. Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with Type 2 diabetes . Mol. Endocrinol.26 ( 7 ), 1203 – 1212 ( 2012 ).
  • Kaneto H , MiyatsukaT , KawamoriDet al. PDX-1 and MafA play a crucial role in pancreatic beta-cell differentiation and maintenance of mature beta-cell function . Endocr. J.55 ( 2 ), 235 – 252 ( 2008 ).
  • Drucker DJ . The biology of incretin hormones . Cell Metab.3 ( 3 ), 153 – 165 ( 2006 ).
  • Tornehave D , KristensenP , RomerJ , KnudsenLB , HellerRS . Expression of the GLP-1 receptor in mouse, rat, and human pancreas . J. Histochem. Cytochem.56 ( 9 ), 841 – 851 ( 2008 ).
  • Hall E , DayehT , KirkpatrickCL , WollheimCB , Dekker NitertM , LingC . DNA methylation of the glucagon-like peptide 1 receptor (GLP1R) in human pancreatic islets . BMC Med. Genet.14 , 76 ( 2013 ).
  • Kameswaran V , BramswigNC , MckennaLBet al. Epigenetic regulation of the DLK1-MEG3 microRNA cluster in human Type 2 diabetic islets . Cell Metab.19 ( 1 ), 135 – 145 ( 2014 ).
  • Benetatos L , HatzimichaelE , LondinEet al. The microRNAs within the DLK1-DIO3 genomic region: involvement in disease pathogenesis . Cell Mol. Life Sci.70 ( 5 ), 795 – 814 ( 2013 ).
  • Correa-Medina M , Bravo-EganaV , RoseroSet al. MicroRNA miR-7 is preferentially expressed in endocrine cells of the developing and adult human pancreas . Gene Expr. Patterns9 ( 4 ), 193 – 199 ( 2009 ).
  • Wang Y , LiuJ , LiuC , NajiA , StoffersDA . MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic beta-cells . Diabetes62 ( 3 ), 887 – 895 ( 2013 ).
  • Canivell S , RuanoEG , Siso-AlmirallAet al. Differential methylation of TCF7L2 promoter in peripheral blood DNA in newly diagnosed, drug-naive patients with Type 2 diabetes . PLoS ONE9 ( 6 ), e99310 ( 2014 ).
  • Del Rosario MC , OssowskiV , KnowlerWC , BogardusC , BaierLJ , HansonRL . Potential epigenetic dysregulation of genes associated with MODY and Type 2 diabetes in humans exposed to a diabetic intrauterine environment: an analysis of genome-wide DNA methylation . Metabolism63 ( 5 ), 654 – 660 ( 2014 ).
  • Gu HF , GuT , HildingAet al. Evaluation of IGFBP-7 DNA methylation changes and serum protein variation in Swedish subjects with and without Type 2 diabetes . Clin. Epigenetics5 ( 1 ), 20 ( 2013 ).
  • Gu T , GuHF , HildingAet al. Increased DNA methylation levels of the insulin-like growth factor binding protein 1 gene are associated with Type 2 diabetes in Swedish men . Clin Epigenetics5 ( 1 ), 21 ( 2013 ).
  • Toperoff G , AranD , KarkJDet al. Genome-wide survey reveals predisposing diabetes type 2-related DNA methylation variations in human peripheral blood . Hum. Mol. Genet.21 ( 2 ), 371 – 383 ( 2012 ).
  • Isomaa B , ForsenB , LahtiKet al. A family history of diabetes is associated with reduced physical fitness in the Prevalence, Prediction and Prevention of Diabetes (PPP)-Botnia study . Diabetologia53 ( 8 ), 1709 – 1713 ( 2010 ).
  • Nitert MD , DayehT , VolkovPet al. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with Type 2 diabetes . Diabetes61 ( 12 ), 3322 – 3332 ( 2012 ).
  • Barres R , YanJ , EganBet al. Acute exercise remodels promoter methylation in human skeletal muscle . Cell Metab.15 ( 3 ), 405 – 411 ( 2012 ).
  • Barres R , OslerME , YanJet al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density . Cell Metab.10 ( 3 ), 189 – 198 ( 2009 ).
  • Ronti T , LupattelliG , MannarinoE . The endocrine function of adipose tissue: an update . Clin. Endocrinol. (Oxf)64 ( 4 ), 355 – 365 ( 2006 ).
  • Ronn T , VolkovP , DavegardhCet al. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue . PLoS Genet.9 ( 6 ), e1003572 ( 2013 ).
  • Ronn T , VolkovP , TornbergAet al. Extensive changes in the transcriptional profile of human adipose tissue including genes involved in oxidative phosphorylation after a 6-month exercise intervention . Acta Physiol. (Oxf)211 ( 1 ), 188 – 200 ( 2014 ).
  • Mccarthy MI . Genomics, Type 2 diabetes and obesity . N. Engl. J. Med.363 ( 24 ), 2339 – 2350 ( 2010 ).
  • Chen XW , LetoD , ChiangSH , WangQ , SaltielAR . Activation of RalA is required for insulin-stimulated Glut4 trafficking to the plasma membrane via the exocyst and the motor protein Myo1c . Dev. Cell.13 ( 3 ), 391 – 404 ( 2007 ).
  • Singhal J , NagaprashanthaL , VatsyayanR , AwasthiS , SinghalSS . RLIP76, a glutathione-conjugate transporter, plays a major role in the pathogenesis of metabolic syndrome . PLoS ONE6 ( 9 ), e24688 ( 2011 ).
  • Nilsson E , JanssonPA , PerfilyevAet al. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes . Diabetes63 ( 9 ), 2962 – 2976 ( 2014 ).
  • Grundberg E , MeduriE , SandlingJKet al. Global analysis of DNA methylation variation in adipose tissue from twins reveals links to disease-associated variants in distal regulatory elements . Am. J. Hum. Genet.93 ( 5 ), 876 – 890 ( 2013 ).
  • Ribel-Madsen R , FragaMF , JacobsenSet al. Genome-wide analysis of DNA methylation differences in muscle and fat from monozygotic twins discordant for Type 2 diabetes . PLoS ONE7 ( 12 ), e51302 ( 2012 ).
  • Zhao J , GoldbergJ , BremnerJD , VaccarinoV . Global DNA methylation is associated with insulin resistance: a monozygotic twin study . Diabetes61 ( 2 ), 542 – 546 ( 2012 ).
  • Simar D , VersteyheS , DonkinIet al. DNA methylation is altered in B and NK lymphocytes in obese and Type 2 diabetic human . Metabolism63 ( 9 ), 1188 – 1197 ( 2014 ).
  • Gokulakrishnan K , VelmuruganK , GanesanS , MohanV . Circulating levels of insulin-like growth factor binding protein-1 in relation to insulin resistance, Type 2 diabetes mellitus, and metabolic syndrome (Chennai Urban Rural Epidemiology Study 118) . Metabolism61 ( 1 ), 43 – 46 ( 2012 ).
  • Petersson U , OstgrenCJ , BrudinL , BrismarK , NilssonPM . Low levels of insulin-like growth-factor-binding protein-1 (IGFBP-1) are prospectively associated with the incidence of type 2 diabetes and impaired glucose tolerance (IGT): the Soderakra Cardiovascular Risk Factor Study . Diabetes Metab.35 ( 3 ), 198 – 205 ( 2009 ).
  • Kim JA , WeiY , SowersJR . Role of mitochondrial dysfunction in insulin resistance . Circ. Res.102 ( 4 ), 401 – 414 ( 2008 ).
  • Gemma C , SookoianS , DieuzeideGet al. Methylation of TFAM gene promoter in peripheral white blood cells is associated with insulin resistance in adolescents . Mol. Genet. Metab.100 ( 1 ), 83 – 87 ( 2010 ).
  • Ling C , PoulsenP , SimonssonSet al. Genetic and epigenetic factors are associated with expression of respiratory chain component NDUFB6 in human skeletal muscle . J. Clin. Invest.117 ( 11 ), 3427 – 3435 ( 2007 ).
  • Ronn T , PoulsenP , HanssonOet al. Age influences DNA methylation and gene expression of COX7A1 in human skeletal muscle . Diabetologia51 ( 7 ), 1159 – 1168 ( 2008 ).
  • Mootha VK , LindgrenCM , ErikssonKFet al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes . Nat. Genet.34 ( 3 ), 267 – 273 ( 2003 ).
  • Jacobsen SC , BronsC , Bork-JensenJet al. Effects of short-term high-fat overfeeding on genome-wide DNA methylation in the skeletal muscle of healthy young men . Diabetologia55 ( 12 ), 3341 – 3349 ( 2012 ).
  • Dayeh TA , OlssonAH , VolkovP , AlmgrenP , RonnT , LingC . Identification of CpG-SNPs associated with Type 2 diabetes and differential DNA methylation in human pancreatic islets . Diabetologia56 ( 5 ), 1036 – 1046 ( 2013 ).
  • Olsson AH , VolkovP , BacosKet al. Genome-wide associations between genetic and epigenetic variation influence mRNA expression and insulin secretion in human pancreatic islets . PLoS Genet.10 ( 11 ), e1004735 ( 2014 ).
  • Bell CG , FinerS , LindgrenCMet al. Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO Type 2 diabetes and obesity susceptibility locus . PLoS ONE5 ( 11 ), e14040 ( 2010 ).
  • Frayling TM , TimpsonNJ , WeedonMNet al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity . Science316 ( 5826 ), 889 – 894 ( 2007 ).
  • Bhandare R , SchugJ , Le LayJet al. Genome-wide analysis of histone modifications in human pancreatic islets . Genome Res.20 ( 4 ), 428 – 433 ( 2010 ).
  • Heintzman ND , HonGC , HawkinsRDet al. Histone modifications at human enhancers reflect global cell-type-specific gene expression . Nature459 ( 7243 ), 108 – 112 ( 2009 ).
  • Tobi EW , SlagboomPE , Van DongenJet al. Prenatal famine and genetic variation are independently and additively associated with DNA methylation at regulatory loci within IGF2/H19 . PLoS ONE7 ( 5 ), e37933 ( 2012 ).