4,095
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Merging Data from Genetic and Epigenetic Approaches to Better Understand Autistic Spectrum Disorder

&
Pages 85-104 | Published online: 09 Nov 2015

References

  • Frazier TW , GeorgiadesS , BishopSL , HardanAY . Behavioral and cognitive characteristics of females and males with autism in the Simons Simplex Collection . J. Am. Acad. Child Adolesc. Psychiatry53 ( 3 ), 329 – 340 e321–323 ( 2014 ).
  • Lane AE , MolloyCA , BishopSL . Classification of children with autism spectrum disorder by sensory subtype: a case for sensory-based phenotypes . Autism Res.7 ( 3 ), 322 – 333 ( 2014 ).
  • Lai MC , LombardoMV , Baron-CohenS . Autism . Lancet383 ( 9920 ), 896 – 910 ( 2014 ).
  • Gadke DL , MckinneyC , OliverosA . Autism spectrum disorder symptoms and comorbidity in emerging adults . Child. Psychiatry Hum. Dev. doi:10.1007/s10578-015-0556-9 ( 2015 ) ( Epub ahead of print ).
  • Zafeiriou DI , VerveriA , DafoulisV , KalyvaE , VargiamiE . Autism spectrum disorders: the quest for genetic syndromes . Am. J. Med. Genet. B162B ( 4 ), 327 – 366 ( 2013 ).
  • Croen LA , ZerboO , QianYet al. The health status of adults on the autism spectrum . Autism19 ( 7 ), 814 – 823 ( 2015 ).
  • Matson JL , ShoemakerM . Intellectual disability and its relationship to autism spectrum disorders . Res. Dev. Disabil.30 ( 6 ), 1107 – 1114 ( 2009 ).
  • Betancur C . Etiological heterogeneity in autism spectrum disorders: more than 100 genetic and genomic disorders and still counting . Brain Res.1380 , 42 – 77 ( 2011 ).
  • Bourgeron T . From the genetic architecture to synaptic plasticity in autism spectrum disorder . Nat. Rev. Neurosci.16 ( 9 ), 551 – 563 ( 2015 ).
  • Marshall CR , NoorA , VincentJBet al. Structural variation of chromosomes in autism spectrum disorder . Am. J. Hum. Genet.82 ( 2 ), 477 – 488 ( 2008 ).
  • Lambert N , WermenbolV , PichonBet al. A familial heterozygous null mutation of MET in autism spectrum disorder . Autism Res.7 ( 5 ), 617 – 622 ( 2014 ).
  • De Rubeis S , HeX , GoldbergAPet al. Synaptic, transcriptional and chromatin genes disrupted in autism . Nature515 ( 7526 ), 209 – 215 ( 2014 ).
  • Iossifov I , O’RoakBJ , SandersSJet al. The contribution of de novo coding mutations to autism spectrum disorder . Nature515 ( 7526 ), 216 – 221 ( 2014 ).
  • Woodbury-Smith M , PatersonAD , ThiruvahindrapduramBet al. Using extended pedigrees to identify novel autism spectrum disorder (ASD) candidate genes . Hum. Genet.134 ( 2 ), 191 – 201 ( 2015 ).
  • Krumm N , O’roakBJ , ShendureJ , EichlerEE . A de novo convergence of autism genetics and molecular neuroscience . Trends Neurosci.37 ( 2 ), 95 – 105 ( 2014 ).
  • Sandin S , LichtensteinP , Kuja-HalkolaR , LarssonH , HultmanCM , ReichenbergA . The familial risk of autism . JAMA3111770 – 1777 ( 2014 ).
  • Chaste P , KleiL , SandersSJet al. A genome-wide association study of autism using the Simons Simplex Collection: does reducing phenotypic heterogeneity in autism increase genetic homogeneity? Biol. Psychiatry 77 ( 9 ), 775 – 784 ( 2014 ).
  • Williams EL , CasanovaMF . Above genetics: lessons from cerebral development in autism . Transl. Neurosci.2 ( 2 ), 106 – 120 ( 2011 ).
  • Casanova MF . Autism as a sequence: from heterochronic germinal cell divisions to abnormalities of cell migration and cortical dysplasias . Med. Hypotheses83 ( 1 ), 32 – 38 ( 2014 ).
  • Gupta S , EllisSE , AsharFNet al. Transcriptome analysis reveals dysregulation of innate immune response genes and neuronal activity-dependent genes in autism . Nat. Commun.5 , 5748 ( 2014 ).
  • Zhang B , HorvathS . A general framework for weighted gene co-expression network analysis . Stat. Appl. Genet. Mol. Biol.4 , 17 ( 2005 ).
  • Winden KD , OldhamMC , MirnicsKet al. The organization of the transcriptional network in specific neuronal classes . Mol. Systems Biol.5 , 291 ( 2009 ).
  • Oldham MC , KonopkaG , IwamotoKet al. Functional organization of the transcriptome in human brain . Nat. Neurosci.11 ( 11 ), 1271 – 1282 ( 2008 ).
  • Konopka G , FriedrichT , Davis-TurakJet al. Human-specific transcriptional networks in the brain . Neuron75 , 601 – 617 ( 2012 ).
  • Voineagu I , WangX , JohnstonPet al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology . Nature474 ( 7351 ), 380 – 384 ( 2011 ).
  • Voineagu I , EapenV . Converging pathways in autism spectrum disorders: interplay between synaptic and immune responses . Front. Hum. Neurosci.7 , 738 ( 2013 ).
  • Paolicelli RC , BolascoG , PaganiFet al. Synaptic pruning by microglia is necessary for normal brain development . Science333 ( 6048 ), 1456 – 1458 ( 2011 ).
  • Schafer DP , StevensB . Phagocytic glial cells: sculpting synaptic circuits in the developing nervous system . Curr. Opin. Neurobiol.23 ( 6 ), 1034 – 1040 ( 2013 ).
  • Piochon C , KlothAD , GrasselliGet al. Cerebellar plasticity and motor learning deficits in a copy-number variation mouse model of autism . Nat. Commun.5 , 5586 ( 2014 ).
  • Levenson JM , RothTL , LubinFDet al. Evidence that DNA (cytosine-5) methyltransferase regulates synaptic plasticity in the hippocampus . J. Biol. Chem.281 ( 23 ), 15763 – 15773 ( 2006 ).
  • Zovkic IB , Guzman-KarlssonMC , SweattJD . Epigenetic regulation of memory formation and maintenance . Learn. Mem.20 ( 2 ), 61 – 74 ( 2013 ).
  • Oliveira AM , HemstedtTJ , BadingH . Rescue of aging-associated decline in Dnmt3a2 expression restores cognitive abilities . Nat. Neurosci.15 ( 8 ), 1111 – 1113 ( 2012 ).
  • Grayson DR , GuidottiA . The dynamics of DNA methylation in schizophrenia and related psychiatric disorders . Neuropsychopharmacology38 ( 1 ), 138 – 166 ( 2013 ).
  • Millan MJ . An epigenetic framework for neurodevelopmental disorders: from pathogenesis to potential therapy . Neuropharmacology68 , 2 – 82 ( 2013 ).
  • Robertson KD , JonesPA . DNA methylation: past, present and future directions . Carcinogenesis21 ( 3 ), 461 – 467 ( 2000 ).
  • Irizarry RA , Ladd-AcostaC , WenBet al. The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores . Nat. Genet.41 , 178 – 186 ( 2009 ).
  • Xie W , BarrCL , KimAet al. Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome . Cell148 ( 4 ), 816 – 831 ( 2012 ).
  • Varley KE , GertzJ , BowlingKMet al. Dynamic DNA methylation across diverse human cell lines and tissues . Genome Res.23 ( 3 ), 555 – 567 ( 2013 ).
  • Guo JU , SuY , ShinJHet al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain . Nat. Neurosci.17 ( 2 ), 215 – 222 ( 2014 ).
  • Lister R , MukamelEA , NeryJRet al. Global epigenomic reconfiguration during mammalian brain development . Science341 ( 6146 ), 1237905 ( 2013 ).
  • Jin B , ErnstJ , TiedemannRLet al. Linking DNA methyltransferases to epigenetic marks and nucleosome structure genome-wide in human tumor cells . Cell Rep.2 ( 5 ), 1411 – 1424 ( 2012 ).
  • Long HK , BlackledgeNP , KloseRJ . ZF-CxxC domain-containing proteins, CpG islands and the chromatin connection . Biochem. Soc. Trans.41 ( 3 ), 727 – 740 ( 2013 ).
  • Davies MN , VoltaM , PidsleyRet al. Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood . Genome Biol.13 , R43 ( 2012 ).
  • Mill J , TangT , KaminskyZet al. Epigenomic profiling reveals DNA-methylation changes associated with major psychosis . Am. J. Hum. Genet.82 ( 3 ), 696 – 711 ( 2008 ).
  • Illingworth RS , Gruenewald-SchneiderU , De SousaDet al. Inter-individual variability contrasts with regional homogeneity in the human brain DNA methylome . Nucleic Acids Res.43 ( 2 ), 732 – 744 ( 2015 ).
  • Amir RE , Van Den VeyverIB , WanM , TranCQ , FranckeU , ZoghbiHY . Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 . Nat. Genet.23 , 185 – 188 ( 1999 ).
  • Lewis JD , MeehanRR , HenzelWJet al. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA . Cell69 ( 6 ), 905 – 914 ( 1992 ).
  • Meehan RR , LewisJD , BirdAP . Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA . Nucleic Acids Res.20 ( 19 ), 5085 – 5092 ( 1992 ).
  • Nan X , MeehanRR , BirdA . Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2 . Nucleic Acids Res.21 ( 21 ), 4886 – 4892 ( 1993 ).
  • Nan X , NgHH , JohnsonCAet al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex . Nature393 ( 6683 ), 386 – 389 ( 1998 ).
  • Hendrich B , BirdA . Identification and characterization of a family of mammalian methyl-CpG binding proteins . Mol. Cell Biol.18 ( 11 ), 6538 – 6547 ( 1998 ).
  • Bird AP , WolffeAP . Methylation-induced repression – belts, braces, and chromatin . Cell99 ( 5 ), 451 – 454 ( 1999 ).
  • Gruenbaum Y , Naveh-ManyT , CedarH , RazinA . Sequence specificity of methylation in higher plant DNA . Nature292 ( 5826 ), 860 – 862 ( 1981 ).
  • Doerfler W . DNA methylation and gene activity . Annu. Rev. Biochem.52 , 93 – 124 ( 1983 ).
  • Bachman M , Uribe-LewisS , YangX , WilliamsM , MurrellA , BalasubramanianS . 5-Hydroxymethylcytosine is a predominantly stable DNA modification . Nat. Chem.6 ( 12 ), 1049 – 1055 ( 2014 ).
  • Gabel HW , KindeB , StroudHet al. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome . Nature522 ( 7554 ), 89 – 93 ( 2015 ).
  • Mellen M , AyataP , DewellS , KriaucionisS , HeintzN . MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system . Cell151 ( 7 ), 1417 – 1430 ( 2012 ).
  • Lasalle JM , YasuiDH . Evolving role of MeCP2 in Rett syndrome and autism . Epigenomics1 ( 1 ), 119 – 130 ( 2009 ).
  • Pickett J , LondonE . The neuropathology of autism: a review . J. Neuropathol. Exp. Neurol.64 ( 11 ), 925 – 935 ( 2005 ).
  • Armstrong DD . Neuropathology of Rett syndrome . J. Child Neurol.20 ( 9 ), 747 – 753 ( 2005 ).
  • Phillips M , Pozzo-MillerL . Dendritic spine dysgenesis in autism related disorders . Neurosci. Lett.601 , 30 – 40 ( 2015 ).
  • Yasui DH , XuH , DunawayKW , LasalleJM , JinLW , MaezawaI . MeCP2 modulates gene expression pathways in astrocytes . Mol. Autism4 ( 1 ), 3 ( 2013 ).
  • Olson CO , ZachariahRM , EzeonwukaCD , LiyanageVR , RastegarM . Brain region-specific expression of MeCP2 isoforms correlates with DNA methylation within Mecp2 regulatory elements . PLoS ONE9 ( 3 ), e90645 ( 2014 ).
  • Skene PJ , IllingworthRS , WebbSet al. Neuronal MeCP2 is expressed at near histone-octamer levels and globally alters the chromatin state . Mol. Cell37 ( 4 ), 457 – 468 ( 2010 ).
  • Chen WG , ChangQ , LinYet al. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2 . Science302 ( 5646 ), 885 – 889 ( 2003 ).
  • Martinowich K , HattoriD , WuHet al. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation . Science302 ( 5646 ), 890 – 893 ( 2003 ).
  • Gonzales ML , AdamsS , DunawayKW , LasalleJM . Phosphorylation of distinct sites in MeCP2 modifies cofactor associations and the dynamics of transcriptional regulation . Mol. Cell. Biol.32 ( 14 ), 2894 – 2903 ( 2012 ).
  • Cohen S , GabelHW , HembergMet al. Genome-wide activity-dependent MeCP2 phosphorylation regulates nervous system development and function . Neuron72 ( 1 ), 72 – 85 ( 2011 ).
  • Bellini E , PavesiG , BarbieroIet al. MeCP2 post-translational modifications: a mechanism to control its involvement in synaptic plasticity and homeostasis? Front. Cell. Neurosci. 8 , 236 ( 2014 ).
  • Chao HT , ChenH , SamacoRCet al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes . Nature468 ( 7321 ), 263 – 269 ( 2010 ).
  • Della Ragione F , FilosaS , ScalabriF , D’EspositoM . MeCP2 as a genome-wide modulator: the renewal of an old story . Front. Genet.3 , 181 ( 2012 ).
  • Kundakovic M , ChenY , GuidottiA , GraysonDR . The reelin and GAD67 promoters are activated by epigenetic drugs that facilitate the disruption of local repressor complexes . Mol. Pharmacol.75 ( 2 ), 342 – 354 ( 2009 ).
  • Chahrour M , JungSY , ShawCet al. MeCP2, a key contributor to neurological disease, activates and represses transcription . Science320 ( 5880 ), 1224 – 1229 ( 2008 ).
  • Zhubi A , CookEH , GuidottiA , GraysonDR . Epigenetic mechanisms in autism spectrum disorder . Int. Rev. Neurobiol.115 , 203 – 244 ( 2014 ).
  • Kriaucionis S , HeintzN . The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain . Science324 ( 5929 ), 929 – 930 ( 2009 ).
  • Tahiliani M , KohKP , ShenYet al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1 . Science324 ( 5929 ), 930 – 935 ( 2009 ).
  • Sun W , ZangL , ShuQ , LiX . From development to diseases: the role of 5hmC in brain . Genomics104 ( 5 ), 347 – 351 ( 2014 ).
  • Yu M , HonGC , SzulwachKEet al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome . Cell149 ( 6 ), 1368 – 1380 ( 2012 ).
  • Szulwach KE , JinP . Integrating DNA methylation dynamics into a framework for understanding epigenetic codes . Bioessays36 ( 1 ), 107 – 117 ( 2014 ).
  • Lu F , LiuY , JiangL , YamaguchiS , ZhangY . Role of Tet proteins in enhancer activity and telomere elongation . Genes Dev.28 ( 19 ), 2103 – 2119 ( 2014 ).
  • Wen L , TangF . Genomic distribution and possible functions of DNA hydroxymethylation in the brain . Genomics104 ( 5 ), 341 – 346 ( 2014 ).
  • Wen L , LiX , YanLet al. Whole-genome analysis of 5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the human brain . Genome Biol.15 ( 3 ), R49 ( 2014 ).
  • Lu X , HanD , ZhaoBSet al. Base-resolution maps of 5-formylcytosine and 5-carboxylcytosine reveal genome-wide DNA demethylation dynamics . Cell Res.25 ( 3 ), 386 – 389 ( 2015 ).
  • Ito S , ShenL , DaiQet al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine . Science333 ( 6047 ), 1300 – 1303 ( 2011 ).
  • Cadet J , WagnerJR . TET enzymatic oxidation of 5-methylcytosine, 5-hydroxymethylcytosine and 5-formylcytosine . Mutat. Res. Genet. Toxicol. Environ. Mutagen.764 – 765 18–35 ( 2014 ).
  • Spruijt CG , GnerlichF , SmitsAHet al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives . Cell152 ( 5 ), 1146 – 1159 ( 2013 ).
  • Iurlaro M , FiczG , OxleyDet al. A screen for hydroxymethylcytosine and formylcytosine binding proteins suggests functions in transcription and chromatin regulation . Genome Biol.14 ( 10 ), R119 ( 2013 ).
  • Hashimoto H , HongS , BhagwatAS , ZhangX , ChengX . Excision of 5-hydroxymethyluracil and 5-carboxylcytosine by the thymine DNA glycosylase domain: its structural basis and implications for active DNA demethylation . Nucleic Acids Res.40 ( 20 ), 10203 – 10214 ( 2012 ).
  • Shen L , WuH , DiepDet al. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics . Cell153 ( 3 ), 692 – 706 ( 2013 ).
  • Kohli RM , ZhangY . TET enzymes, TDG and the dynamics of DNA demethylation . Nature502 ( 7472 ), 472 – 479 ( 2013 ).
  • Guo JU , SuY , ZhongC , MingGL , SongH . Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain . Cell145 ( 3 ), 423 – 434 ( 2011 ).
  • Yu H , SuY , ShinJ , ZhongC , GuoJU . Tet3 regulates synaptic transmission and homeostatic plasticity via DNA oxidation and repair . Nat. Neurosci.18 ( 6 ), 836 – 843 ( 2015 ).
  • Nguyen A , RauchTA , PfeiferGP , HuVW . Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain . FASEB J.24 ( 8 ), 3036 – 3051 ( 2010 ).
  • James SJ , ShpylevaS , MelnykS , PavlivO , PogribnyIP . Complex epigenetic regulation of engrailed-2 (EN-2) homeobox gene in the autism cerebellum . Transl. Psychiatry3 , e232 ( 2013 ).
  • Nagarajan RP , HogartAR , GwyeY , MartinMR , LasalleJM . Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation . Epigenetics1 ( 4 ), e1 – e11 ( 2006 ).
  • Nagarajan RP , PatzelKA , MartinMet al. MECP2 promoter methylation and X chromosome inactivation in autism . Autism Res.1 ( 3 ), 169 – 178 ( 2008 ).
  • Gregory SG , ConnellyJJ , TowersAJet al. Genomic and epigenetic evidence for oxytocin receptor deficiency in autism . BMC Med.7 , 62 ( 2009 ).
  • Zhu L , WangX , LiXLet al. Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders . Hum. Mol. Genet.23 ( 6 ), 1563 – 1578 ( 2014 ).
  • Scoles HA , UrracaN , ChadwickSW , ReiterLT , LasalleJM . Increased copy number for methylated maternal 15q duplications leads to changes in gene and protein expression in human cortical samples . Mol. Autism2 ( 1 ), 19 ( 2011 ).
  • Ginsberg MR , RubinRA , FalconeT , TingAH , NatowiczMR . Brain transcriptional and epigenetic associations with autism . PLoS ONE7 ( 9 ), e44736 ( 2012 ).
  • Ladd-Acosta C , HansenKD , BriemE , FallinMD , KaufmannWE , FeinbergAP . Common DNA methylation alterations in multiple brain regions in autism . Mol. Psychiatry19 ( 8 ), 862 – 871 ( 2013 ).
  • Fukuoka Y , InaokaH , NoshiroM . Adaptive threshold for detecting differentially expressed genes in microarray data – a simulation study to investigate its performance . Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010 , 5516 – 5519 ( 2010 ).
  • Gartlan KH , BelzGT , TarrantJMet al. A complementary role for the tetraspanins CD37 and Tssc6 in cellular immunity . J. Immunol.185 ( 6 ), 3158 – 3166 ( 2010 ).
  • Goschnick MW , JacksonDE . Tetraspanins-structural and signalling scaffolds that regulate platelet function . Mini Rev. Med. Chem.7 ( 12 ), 1248 – 1254 ( 2007 ).
  • Li X , ItoM , ZhouFet al. A maternal-zygotic effect gene, Zfp57, maintains both maternal and paternal imprints . Dev. Cell15 ( 4 ), 547 – 557 ( 2008 ).
  • Strogantsev R , Ferguson-SmithAC . Proteins involved in establishment and maintenance of imprinted methylation marks . Brief Funct. Genomics11 ( 3 ), 227 – 239 ( 2012 ).
  • Zuo X , ShengJ , LauHTet al. Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain . J. Biol. Chem.287 ( 3 ), 2107 – 2118 ( 2012 ).
  • Wong CC , MeaburnEL , RonaldAet al. Methylomic analysis of monozygotic twins discordant for autism spectrum disorder and related behavioural traits . Mol. Psychiatry19 ( 4 ), 495 – 503 ( 2014 ).
  • Nardone S , SamsDS , ReuveniEet al. DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways . Transl. Psychiatry4 , e433 ( 2014 ).
  • Feng J , ZhouY , CampbellSLet al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons . Nat. Neurosci.13 ( 4 ), 423 – 430 ( 2010 ).
  • Atladottir HO , ThorsenP , OstergaardLet al. Maternal infection requiring hospitalization during pregnancy and autism spectrum disorders . J. Autism Disord.40 ( 12 ), 1423 – 1430 ( 2010 ).
  • Atladottir HO , ThorsenP , SchendelDE , OstergaardL , LemckeS , ParnerET . Association of hospitalization for infection in childhood with diagnosis of autism spectrum disorders: a Danish cohort study . Arch. Pediatr. Adolesc. Med.164470 – 477 ( 2010 ).
  • Lee BK , MagnussonC , GardnerRMet al. Maternal hospitalization with infection during pregnancy and risk of autism spectrum disorders . Brain Behav. Immun.44 , 100 – 105 ( 2015 ).
  • Lan X , AdamsC , LandersMet al. High resolution detection and analysis of CpG dinucleotides methylation using MBD-Seq technology . PLoS ONE6 ( 7 ), e22226 ( 2011 ).
  • Guintivano J , AryeeMJ , KaminskyZA . A cell epigenotype specific model for the correction of brain cellular heterogeneity bias and its application to age, brain region and major depression . Epigenetics8 ( 3 ), 290 – 302 ( 2013 ).
  • Wang T , PanQ , LinLet al. Genome-wide DNA hydroxymethylation changes are associated with neurodevelopmental genes in the developing human cerebellum . Hum Mol. Genet.21 , 5500 – 5510 ( 2012 ).
  • Zhubi A , ChenY , DongE , CookEH , GuidottiA , GraysonDR . Increased binding of MeCP2 to the GAD1 and RELN promoters may be mediated by an enrichment of 5-hmC in autism spectrum disorder (ASD) cerebellum . Transl. Psychiatry4 , e349 ( 2014 ).
  • James SJ , ShpylevaS , MelnykS , PavlivO , PogribneIP . Elevated 5-hydroxymethylcytosine in the Engrailed-2 (EN-2) promoter is associated with increased gene expression and decreased MeCP2 binding in autism cerebellum . Transl. Psychiatry4 , e460 ( 2014 ).
  • Zhubi A , ChenY , DongE , CookEH , GuidottiA , GraysonDR . Increased binding of MeCP2 and DNMT1 to RELN and GAD1 regulatory regions is associated with downregulation of mRNA expression of RELN and GAD1 in the postmoretem prefrontal cortex of autism spectrum disorder (ASD) brain samples. Program No. XXX.XX Neuroscience Meeting Planner . Presented at : Society for Neuroscience . Chicago, IL, USA , 17–21 October 2015 .
  • Kimura H , ShiotaK . Methyl-CpG binding protein, MeCP2, is a target molecule for maintenance DNA methyltransferase, Dnmt1 . J. Biol. Chem.278 , 4806 – 4812 ( 2003 ).
  • Blackledge NP , ThomsonJP , SkenePJ . CpG island chromatin is shaped by recruitment of ZF-CxxC proteins . Cold Spring Harb. Perspect. Biol.5 , a018648 ( 2010a ).
  • Georgel PT , Horowitz-SchererRA , AdkinsN , WoodcockCL , WadePA , HansenJC . Chromatin compaction by human MeCP2: assembly of novel secondary chromatin structures in the absence of DNA methylation . J. Biol. Chem.278 , 32181 – 32188 ( 2003 ).
  • Lyall K , SchmidtRJ , Hertz-PicciottoI . Maternal lifestyle and environmental risk factors for autism spectrum disorders . Int. J. Epidemiol.43 ( 2 ), 443 – 464 ( 2014 ).
  • Schaevitz LR , Berger-SweeneyJE . Gene–environment interactions and epigenetic pathways in autism: the importance of one-carbon metabolism . ILAR J.53 ( 3–4 ), 322 – 340 ( 2012 ).
  • Kofink D , BoksMP , TimmersHT , KasMJ . Epigenetic dynamics in psychiatric disorders: environmental programming of neurodevelopmental processes . Neurosci. Biobehav. Rev.37 ( 5 ), 831 – 845 ( 2013 ).
  • Lasalle JM . A genomic point-of-view on environmental factors influencing the human brain methylome . Epigenetics6 ( 7 ), 862 – 869 ( 2011 ).
  • Kiser DP , RiveroO , LeschKP . Annual research review: the (epi)genetics of neurodevelopmental disorders in the era of whole-genome sequencing--unveiling the dark matter . J. Child Psychol. Psychiatry56 ( 3 ), 278 – 295 ( 2015 ).
  • Koufaris C , SismaniC . Modulation of the genome and epigenome of individuals susceptible to autism by environmental risk factors . Int. J. Mol. Sci.16 ( 4 ), 8699 – 8718 ( 2015 ).
  • Ronald A , PennellCE , WhitehouseAJ . Prenatal maternal stress associated with ADHD and autistic traits in early childhood . Front. Psychol.1 , 223 ( 2010 ).
  • Fine R , ZhangJ , StevensHE . Prenatal stress and inhibitory neuron systems: implications for neuropsychiatric disorders . Mol. Psychiatry19 ( 6 ), 641 – 651 ( 2014 ).
  • Stevens HE , SuT , YanagawaY , VaccarinoFM . Prenatal stress delays inhibitory neuro progenitor migration in the developing neucortex . Psychoneuroendocrinology38 , 509 – 521 ( 2013 ).
  • Dong E , DzitoyevaSG , MatriscianoF , TuetingP , GraysonDR , GuidottiA . Brain-derived neurotrophic factor epigenetic modifications associated with schizophrenia-like phenotype induced by prenatal stress in mice . Biol. Psychiatry77 ( 6 ), 589 – 596 ( 2015 ).
  • Matrisciano F , TuetingP , DalalIet al. Epigenetic modifications of GABAergic interneurons are associated with the schizophrenia-like phenotype induced by prenatal stress in mice . Neuropharmacology68 , 184 – 194 ( 2013 ).
  • Bissonette GB , BaeMH , SureshT , JaffeDE , PowellEM . Prefrontal cognitive deficits in mice with altered cerebral cortical GABAergic interneurons . Behav. Brain Res.259 , 143 – 151 ( 2014 ).
  • Zikopoulos B , BarbasH . Altered neural connectivity in excitatory and inhibitory cortical circuits in autism . Front. Hum. Neurosci.7 , 609 ( 2013 ).
  • Wohr M , OrduzD , GregoryPet al. Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities . Transl. Psychiatry5 , e525 ( 2015 ).
  • Fukumoto K , MoritaT , MayanagiTet al. Detrimental effects of glucocorticoids on neuronal migration during brain development . Mol. Psychiatry14 ( 12 ), 1119 – 1131 ( 2009 ).
  • Mead J , AshwoodP . Evidence supporting an altered immune response in ASD . Immunol. Lett.163 ( 1 ), 49 – 55 ( 2015 ).
  • Goines PE , AshwoodP . Cytokine dysregulation in autism spectrum disorders (ASD): possible role of the environment . Neurotoxicol. Teratol.36 , 67 – 81 ( 2013 ).
  • Knuesel I , ChichaL , BritschgiMet al. Maternal immune activation and abnormal brain development across CNS disorders . Nat. Rev. Neurol.10 ( 11 ), 643 – 660 ( 2014 ).
  • Zerbo O , IosifAM , WalkerC , OzonoffS , HansenRL , Hertz-PicciottoI . Is maternal influenza or fever during pregnancy associated with autism or developmental delays? Results from the CHARGE (CHildhood Autism Risks from Genetics and Environment) study . J. Autism Dev. Disord.43 ( 1 ), 25 – 33 ( 2013 ).
  • Zerbo O , QianY , YoshidaC , GretherJK , Van De WaterJ , CroenLA . Maternal infection during pregnancy and autism spectrum disorders . J. Autism Dev. Disord. doi:10.1007/s10803-013-2016-3 ( 2013 ) ( Epub ahead of print ).
  • Rose D , AshwoodP . Potential cytokine biomarkers in autism spectrum disorders . Biomark. Med.8 ( 9 ), 1171 – 1181 ( 2014 ).
  • Lyall K , AshwoodP , Van De WaterJ , Hertz-PicciottoI . Maternal immune-mediated conditions, autism spectrum disorders, and developmental delay . J. Autism Dev. Disord.44 ( 7 ), 1546 – 1555 ( 2014 ).
  • Mcdougle CJ , LandinoSM , VahabzadehAet al. Toward an immune-mediated subtype of autism spectrum disorder . Brain Res.1617 , 72 – 92 ( 2014 ).
  • Pramparo T , PierceK , LombardoMVet al. Prediction of autism by translation and immune/inflammation coexpressed genes in toddlers from pediatric community practices . JAMA Psychiatry72 ( 4 ), 386 – 394 ( 2015 ).
  • McCarthy SE , GillisJ , KramerMet al. De novo mutations in schizophrenia implicate chromatin remodeling and support a genetic overlap with autism and intellectual disability . Mol. Psychiatry19 , 652 – 658 ( 2014 ).
  • Horvath S , MirnicsK . Immune system disturbances in schizophrenia . Biol. Psychiatry75 , 316 – 322 ( 2014 ).
  • Brown AS . Epidemiologic studies of exposure to prenatal infection and risk of schizophrenia and autism . Dev. Neurobiol.72 ( 10 ), 1272 – 1276 ( 2012 ).
  • Jimenez-Chillaron JC , DiazR , MartinezDet al. The role of nutrition on epigenetic modifications and their implications on health . Biochimie94 ( 11 ), 2242 – 2263 ( 2012 ).
  • Zeisel SH . The supply of choline is important for fetal progenitor cells . Semin. Cell Dev. Biol.22 ( 6 ), 624 – 628 ( 2011 ).
  • O’Dushlaine C , RossinL , LeePHet al. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways . Nat. Neurosci.18 ( 2 ), 199 – 209 ( 2015 ).
  • Schmidt RJ , HansenRL , HartialaJet al. Prenatal vitamins, one-carbon metabolism gene variants, and risk for autism . Epidemiology22 ( 4 ), 476 – 485 ( 2011 ).
  • Schmidt RJ , TancrediDJ , OzonoffSet al. Maternal periconceptional folic acid intake and risk of autism spectrum disorders and developmental delay in the CHARGE (CHildhood Autism Risks from Genetics and Environment) case-control study . Am. J. Clin. Nutr.96 ( 1 ), 80 – 89 ( 2012 ).
  • Suren P , RothC , BresnahanMet al. Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children . JAMA309 ( 6 ), 570 – 577 ( 2013 ).
  • Baccarelli A , BollatiV . Epigenetics and environmental chemicals . Curr. Opin. Pediatr.21 ( 2 ), 243 – 251 ( 2009 ).
  • Lee DH , JacobsDRJr , PortaM . Hypothesis: a unifying mechanism for nutrition and chemicals as lifelong modulators of DNA hypomethylation . Environ. Health. Perspect.117 ( 12 ), 1799 – 1802 ( 2009 ).
  • Lyall K , MungerKL , O’reillyEJ , SantangeloSL , AscherioA . Maternal dietary fat intake in association with autism spectrum disorders . Am. J. Epidemiol.178 ( 2 ), 209 – 220 ( 2013 ).
  • Patrick RP , AmesBN . Vitamin D hormone regulates serotonin synthesis. Part 1: relevance for autism . FASEB J.28 ( 6 ), 2398 – 2413 ( 2014 ).
  • Zafeiriou DI , VerveriA , VargiamiE . The serotonergic system: its role in pathogenesis and early developmental treatment of autism . Curr. Neuropharmacol.7 ( 2 ), 150 – 157 ( 2009 ).
  • Whitehouse AJ , HoltBJ , SerralhaM , HoltPG , KuselMM , HartPH . Maternal serum vitamin D levels during pregnancy and offspring neurocognitive development . Pediatrics129 ( 3 ), 485 – 493 ( 2012 ).
  • Fetahu IS , HobausJ , KallayE . Vitamin D and the epigenome . Front. Physiol.5 , 164 ( 2014 ).
  • Volk HE , LurmannF , PenfoldB , Hertz-PicciottoI , McconnellR . Traffic-related air pollution, particulate matter, and autism . JAMA Psychiatry70 ( 1 ), 71 – 77 ( 2013 ).
  • Rossignol DA , GenuisSJ , FryeRE . Environmental toxicants and autism spectrum disorders: a systematic review . Transl. Psychiatry4 , e360 ( 2014 ).
  • Larsson M , WeissB , JansonS , SundellJ , BornehagCG . Associations between indoor environmental factors and parental-reported autistic spectrum disorders in children 6–8 years of age . Neurotoxicology30 ( 5 ), 822 – 831 ( 2009 ).
  • Stein TP , SchluterMD , SteerRA , GuoL , MingX . Bisphenol A exposure in children with autism spectrum disorders . Autism Res.8 ( 3 ), 272 – 283 ( 2015 ).
  • Froehlich-Santino W , Londono TobonA , ClevelandSet al. Prenatal and perinatal risk factors in a twin study of autism spectrum disorders . J. Psychiatr. Res.54 , 100 – 108 ( 2014 ).
  • Schaafsma SM , PfaffDW . Etiologies underlying sex differences in autism spectrum disorders . Front. Neuroendocrinol.35 ( 3 ), 255 – 271 ( 2014 ).
  • Shelton JF , GeraghtyEM , TancrediDJet al. Neurodevelopmental disorders and prenatal residential proximity to agricultural pesticides: the CHARGE study . Environ. Health Perspect.122 ( 10 ), 1103 – 1109 ( 2014 ).
  • Christensen J , GronborgTK , SorensenMJet al. Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism . JAMA309 ( 16 ), 1696 – 1703 ( 2013 ).
  • Alsaeed I , Al-SomaliF , SakhniniLet al. Autism-relevant social abnormalities in mice exposed perinatally to extremely low frequency electromagnetic fields . Int. J. Dev. Neurosci37 , 58 – 64 ( 2014 ).
  • Hutsler JJ , CasanovaMF . Review: Cortical construction in autism spectrum disorder: columns, connectivity and the subplate . Neuropathol. Appl. Neurobiol. doi:10.1111/nan.12227 ( 2015 ) ( Epub ahead of print ).
  • Casanova EL , CasanovaMF . Genetics studies indicate that neural induction and early neuronal maturation are disturbed in autism . Front. Cell. Neurosci.8 , 397 ( 2014 ).
  • Barua S , JunaidMA . Lifestyle, pregnancy and epigenetic effects . Epigenomics7 ( 1 ), 85 – 102 ( 2015 ).
  • Mostafa GA , El-SherifDF , Al-AyadhiLY . Systemic auto-antibodies in children with autism . J. Neuroimmunol.272 ( 1–2 ), 94 – 98 ( 2014 ).
  • Mefford HC , BatshawML , HoffmanEP . Genomics, intellectual disability, and autism . N. Engl. J. Med.366 ( 8 ), 733 – 743 ( 2012 ).
  • Polyak A , KubinaRM , GirirajanS . Comorbidity of intellectual disability confounds ascertainment of autism: implications for genetic diagnosis . Am. J. Med. Genet. Part B Neuropsychiatr. Genet.168 ( 7 ), 600 – 608 ( 2015 ).
  • Ch’ng C , KwokW , RogicS , PavlidisP . Meta-analysis of gene expression in autism spectrum disorder . Autism Res. doi:10.1002/aur.1475 ( 2015 ) ( Epub ahead of print ).
  • Li J , ShiM , MaZet al. Integrated systems analysis reveals a molecular network underlying autism spectrum disorders . Mol. Syst. Biol.10 , 774 ( 2014 ).
  • Parikshak NN , LuoR , ZhangAet al. Integrative functional genomic analyses implicate specific molecular pathways and circuits in autism . Cell155 ( 5 ), 1008 – 1021 ( 2013 ).
  • Willsey AJ , SandersSJ , LiMet al. Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism . Cell155 ( 5 ), 997 – 1007 ( 2013 ).
  • Liu L , LeiJ , SandersSJet al. DAWN: a framework to identify autism genes and subnetworks using gene expression and genetics . Mol. Autism5 ( 1 ), 22 ( 2014 ).
  • Chang J , GilmanSR , ChiangAH , SandersSJ , VitkupD . Genotype to phenotype relationships in autism spectrum disorders . Nat. Neurosci.18 ( 2 ), 191 – 198 ( 2015 ).
  • Pinto D , DelabyE , MericoDet al. Convergence of genes and cellular pathways dysregulated in autism spectrum disorders . Am. J. Hum. Genet.94 ( 5 ), 677 – 694 ( 2014 ).
  • Blais A , DynlachtBD . Constructing transcriptional regulatory networks . Genes Dev.19 ( 13 ), 1499 – 1511 ( 2005 ).
  • Darnell JC , KlannE . The translation of translational control by FMRP: therapeutic targets for FXS . Nat. Neurosci.16 ( 11 ), 1530 – 1536 ( 2013 ).