1,688
Views
0
CrossRef citations to date
0
Altmetric
Review

Temporal Evolution of the Heart Failure Phenotype in Barth Syndrome and Treatment with Elamipretide

, & ORCID Icon
Pages 211-225 | Received 17 Jan 2023, Accepted 19 Apr 2023, Published online: 16 Jun 2023

References

  • Miller PC , RenM, SchlameM, TothMJ, PhoonCKL. A bayesian analysis to determine the prevalence of Barth syndrome in the pediatric population. J. Pediatr.217, 139–144 (2020).
  • Clarke SL , BowronA, GonzalezILet al. Barth syndrome. Orphanet. J. Rare Dis.8, 23 (2013).
  • Roberts AE , NixonC, StewardCGet al. The Barth Syndrome Registry: distinguishing disease characteristics and growth data from a longitudinal study. Am. J. Med. Genet. A158A(11), 2726–2732 (2012).
  • Rigaud C , LebreAS, TouraineRet al. Natural history of Barth syndrome: a national cohort study of 22 patients. Orphanet. J. Rare Dis.8, 70 (2013).
  • Taylor C , RaoES, PierreGet al. Clinical presentation and natural history of Barth Syndrome: an overview. J. Inherit. Metab. Dis.45(1), 7–16 (2022).
  • Thompson WR , HornbyB, ManuelRet al. A phase II/III randomized clinical trial followed by an open-label extension to evaluate the effectiveness of elamipretide in Barth syndrome, a genetic disorder of mitochondrial cardiolipin metabolism. Genet. Med.23(3), 471–478 (2021).
  • Hornby B , ThompsonWR, AlmuqbilMet al. Natural history comparison study to assess the efficacy of elamipretide in patients with Barth syndrome. Orphanet. J. Rare Dis.17(1), 336 (2022).
  • Sabbah HN . Elamipretide for Barth syndrome cardiomyopathy: gradual rebuilding of a failed power grid. Heart Fail. Rev.27(5), 1911–1923 (2022).
  • Johannsen DL , RavussinE. The role of mitochondria in health and disease. Curr. Opin. Pharmacol.9(6), 780–786 (2009).
  • Okonko DO , ShahAM. Heart failure: mitochondrial dysfunction and oxidative stress in CHF. Nat. Rev. Cardiol.12(1), 6–8 (2015).
  • Sabbah HN . Targeting mitochondrial dysfunction in the treatment of heart failure. Expert Rev. Cardiovasc. Ther.14(12), 1305–1313 (2016).
  • Birk AV , ChaoWM, BrackenC, WarrenJD, SzetoHH. Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. Br. J. Pharmacol.171(8), 2017–2028 (2014).
  • Bissler JJ , TsorasM, GoringHHet al. Infantile dilated X-linked cardiomyopathy, G4.5 mutations, altered lipids, and ultrastructural malformations of mitochondria in heart, liver, and skeletal muscle. Lab. Invest.82(3), 335–344 (2002).
  • Sabbah HN . Barth syndrome cardiomyopathy: targeting the mitochondria with elamipretide. Heart Fail. Rev.26(2), 237–253 (2021).
  • Xu Y , MalhotraA, RenM, SchlameM. The enzymatic function of tafazzin. J. Biol. Chem.281(51), 39217–39224 (2006).
  • Ikon N , RyanRO. Barth Syndrome: connecting cardiolipin to cardiomyopathy. Lipids52(2), 99–108 (2017).
  • Huang Y , PowersC, MadalaSKet al. Cardiac metabolic pathways affected in the mouse model of barth syndrome. PLOS ONE10(6), e0128561 (2015).
  • Shen Z , YeC, McCainK, GreenbergML. The role of cardiolipin in cardiovascular health. Biomed. Res. Int.2015, 891707 (2015).
  • Luevano-Martinez LA , ForniMF, DosSantos VT, Souza-PintoNC, KowaltowskiAJ. Cardiolipin is a key determinant for mtDNA stability and segregation during mitochondrial stress. Biochim. Biophys. Acta1847(6-7), 587–598 (2015).
  • Birk AV , LiuS, SoongYet al. The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. J. Am. Soc. Nephrol.24(8), 1250–1261 (2013).
  • Houtkooper RH , VazFM. Cardiolipin, the heart of mitochondrial metabolism. Cell. Mol. Life Sci.65(16), 2493–2506 (2008).
  • Schlame M . Formation of molecular species of mitochondrial cardiolipin 2. A mathematical model of pattern formation by phospholipid transacylation. Biochim. Biophys. Acta1791(4), 321–325 (2009).
  • Saric A , AndreauK, ArmandAS, MollerIM, PetitPX. Barth Syndrome: from mitochondrial dysfunctions associated with aberrant production of reactive oxygen species to pluripotent stem cell studies. Front. Genet.6, 359 (2015).
  • Gaspard GJ , McmasterCR. Cardiolipin metabolism and its causal role in the etiology of the inherited cardiomyopathy Barth syndrome. Chem. Phys. Lipids193, 1–10 (2015).
  • Cao J , LiuY, LockwoodJ, BurnP, ShiY. A novel cardiolipin-remodeling pathway revealed by a gene encoding an endoplasmic reticulum-associated acyl-CoA:lysocardiolipin acyltransferase (ALCAT1) in mouse. J. Biol. Chem.279(30), 31727–31734 (2004).
  • Taylor WA , HatchGM. Identification of the human mitochondrial linoleoyl-coenzyme A monolysocardiolipin acyltransferase (MLCL AT-1). J. Biol. Chem.284(44), 30360–30371 (2009).
  • Mejia EM , ColeLK, HatchGM. Cardiolipin metabolism and the role it plays in heart failure and mitochondrial supercomplex formation. Cardiovasc. Hematol. Disord. Drug. Targets14(2), 98–106 (2014).
  • Brown DA , PerryJB, AllenMEet al. Expert consensus document: mitochondrial function as a therapeutic target in heart failure. Nat. Rev. Cardiol.14(4), 238–250 (2017).
  • Neubauer S . The failing heart – an engine out of fuel. N. Engl. J. Med.356(11), 1140–1151 (2007).
  • Opie LH , HeuschG. Fuels: Aerobic and Anaerobic Metabolism. In: The Heart: Physiology, From Cell to Circulation.Lippincott, Williams and Wilkins, Philadelphia, PA, USA295–342 (1997).
  • Dudek J , MaackC. Barth syndrome cardiomyopathy. Cardiovasc. Res.113(4), 399–410 (2017).
  • Marin-Garcia J , GoldenthalMJ. Mitochondrial centrality in heart failure. Heart Fail. Rev.13(2), 137–150 (2008).
  • Zhou B , TianR. Mitochondrial dysfunction in pathophysiology of heart failure. J. Clin. Invest.128(9), 3716–3726 (2018).
  • Wang G , MccainML, YangLet al. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat. Med.20(6), 616–623 (2014).
  • Johnson JM , FerraraPJ, VerkerkeARPet al. Targeted overexpression of catalase to mitochondria does not prevent cardioskeletal myopathy in Barth syndrome. J. Mol. Cell. Cardiol.121, 94–102 (2018).
  • Bertero E , NickelA, KohlhaasMet al. Loss of mitochondrial Ca(2+) uniporter limits inotropic reserve and provides trigger and substrate for arrhythmias in Barth Syndrome cardiomyopathy. Circulation144(21), 1694–1713 (2021).
  • Spencer CT , ByrneBJ, BryantRMet al. Impaired cardiac reserve and severely diminished skeletal muscle O(2) utilization mediate exercise intolerance in Barth syndrome. Am. J. Physiol. Heart. Circ. Physiol.301(5), H2122–H2129 (2011).
  • Spencer CT , BryantRM, DayJet al. Cardiac and clinical phenotype in Barth syndrome. Pediatrics118(2), e337–e346 (2006).
  • Chowdhury S , JacksonL, ByrneBJet al. Longitudinal observational study of cardiac outcome risk factor prediction in children, adolescents, and adults with Barth Syndrome. Pediatr. Cardiol.43(6), 1251–1263 (2022).
  • Jefferies JL , TowbinJA. Dilated cardiomyopathy. Lancet375(9716), 752–762 (2010).
  • Mayo Clinic Staff . Dilated cardiomyopathy. (Accessed 10 November 2022). www.mayoclinic.org/diseases-conditions/dilated-cardiomyopathy/symptoms-causes/syc-20353149
  • Pignatelli RH , McMahonCJ, DreyerWJet al. Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation108(21), 2672–2678 (2003).
  • Ades LC , GedeonAK, WilsonMJet al. Barth syndrome: clinical features and confirmation of gene localisation to distal Xq28. Am. J. Med. Genet.45(3), 327–334 (1993).
  • Jefferies JL . Barth Syndrome. Am. J. Med. Genet. C. Semin. Med. Genet.163C(3), 198–205 (2013).
  • Mayo Clinic Staff . Hypertrophic cardiomyopathy. (Accessed 10 November 2022). www.mayoclinic.org/diseases-conditions/hypertrophic-cardiomyopathy/symptoms-causes/syc-20350198
  • Limongelli G , Tome-EstebanM, DejthevapornC, RahmanS, HannaMG, ElliottPM. Prevalence and natural history of heart disease in adults with primary mitochondrial respiratory chain disease. Eur. J. Heart. Fail.12(2), 114–121 (2010).
  • Majamaa-Voltti K , PeuhkurinenK, KortelainenML, HassinenIE, MajamaaK. Cardiac abnormalities in patients with mitochondrial DNA mutation 3243A>G. BMC Cardiovasc. Disord.2, 12 (2002).
  • Sorajja P , SweeneyMG, ChalmersRet al. Cardiac abnormalities in patients with Leber's hereditary optic neuropathy. Heart Fail. Rev.89(7), 791–792 (2003).
  • Vydt TC , DeCoo RF, SolimanOIet al. Cardiac involvement in adults with m.3243A>G MELAS gene mutation. Am. J. Cardiol.99(2), 264–269 (2007).
  • Barth PG , ValianpourF, BowenVMet al. X-linked cardioskeletal myopathy and neutropenia (Barth syndrome): an update. Am. J. Med. Genet. A126A(4), 349–354 (2004).
  • Yen TY , HwuWL, ChienYHet al. Acute metabolic decompensation and sudden death in Barth syndrome: report of a family and a literature review. Eur. J. Pediatr.167(8), 941–944 (2008).
  • Kang SL , ForseyJ, DudleyD, StewardCG, Tsai-GoodmanB. Clinical characteristics and outcomes of cardiomyopathy in Barth Syndrome: the UK experience. Pediatr. Cardiol.37(1), 167–176 (2016).
  • Ferreria C , PierreG, ReidThompson W, VernonH. Barth Syndrome. In: Gene Reviews.AdamMP, MirzaaGM, PagonRAet al.et al. ( Eds). 1993–2022University of Washington, WA, USA (2014).
  • Abudiab MM , RedfieldMM, MelenovskyVet al. Cardiac output response to exercise in relation to metabolic demand in heart failure with preserved ejection fraction. Eur. J. Heart. Fail.15(7), 776–785 (2013).
  • Borlaug BA , MelenovskyV, RussellSDet al. Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation114(20), 2138–2147 (2006).
  • Kraigher-Krainer E , ShahAM, GuptaDKet al. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J. Am. Coll. Cardiol.63(5), 447–456 (2014).
  • Jessup M , BrozenaSC. Guidelines for the management of heart failure: differences in guideline perspectives. Cardiol. Clin.25(4), 497–506 (2007).
  • Finsterer J . Barth syndrome: mechanisms and management. Appl. Clin. Genet.12, 95–106 (2019).
  • Thompson R , JefferiesJ, WangSet al. Current and future treatment approaches for Barth syndrome. J. Inherit. Metab. Dis.45(1), 17–28 (2022).
  • Jefferies JL , MoralesDL. Mechanical circulatory support in children: bridge to transplant versus recovery. Curr. Heart. Fail. Rep.9(3), 236–243 (2012).
  • Fraser CD Jr , JaquissRD, RosenthalDNet al. Prospective trial of a pediatric ventricular assist device. N. Engl. J. Med.367(6), 532–541 (2012).
  • Dedieu N , GiardiniA, StewardCGet al. Successful mechanical circulatory support for 251 days in a child with intermittent severe neutropenia due to Barth syndrome. Pediatr. Transplant.17(2), E46–E49 (2013).
  • Sabbah HN , GuptaRC, KohliS, WangM, HachemS, ZhangK. Chronic therapy with elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure. Circ. Heart Fail.9(2), e002206 (2016).
  • Sabbah HN , GuptaRC, Singh-GuptaV, ZhangK. Effects of elamipretide on skeletal muscle in dogs with experimentally induced heart failure. ESC Heart Fail.6(2), 328–335 (2019).
  • Yang L , ZhaoK, CalingasanNY, LuoG, SzetoHH, BealMF. Mitochondria targeted peptides protect against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Antioxid. Redox. Signal.11(9), 2095–2104 (2009).
  • Szeto HH , LiuS, SoongYet al. Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. J. Am. Soc. Nephrol.22(6), 1041–1052 (2011).
  • Dai DF , HsiehEJ, ChenTet al. Global proteomics and pathway analysis of pressure-overload-induced heart failure and its attenuation by mitochondrial-targeted peptides. Circ. Heart Fail.6(5), 1067–1076 (2013).
  • Talbert EE , SmuderAJ, MinK, KwonOS, SzetoHH, PowersSK. Immobilization-induced activation of key proteolytic systems in skeletal muscles is prevented by a mitochondria-targeted antioxidant. J. Appl. Physiol. (1985)115(4), 529–538 (2013).
  • Mitchell W , NgEA, TamucciJDet al. The mitochondria-targeted peptide SS-31 binds lipid bilayers and modulates surface electrostatics as a key component of its mechanism of action. J. Biol. Chem.295(21), 7452–7469 (2020).
  • Anzmann AF , SniezekOL, PadoAet al. Diverse mitochondrial abnormalities in a new cellular model of TAFFAZZIN deficiency are remediated by cardiolipin-interacting small molecules. J. Biol. Chem.297(3), 101005 (2021).
  • Eirin A , EbrahimiB, KwonSHet al. Restoration of mitochondrial cardiolipin attenuates cardiac damage in swine renovascular hypertension. J. Am. Heart Assoc.5(6), e003118 (2016).
  • Chatfield KC , SparagnaGC, ChauSet al. Elamipretide improves mitochondrial function in the failing human heart. JACC Basic Transl. Sci.4(2), 147–157 (2019).
  • Brown DA , MoukdarF, AllemanRJ, LarkDS, NeuferPD, ShaikhSR. Abstract 337: the cardiolipin-targeting peptide bendavia preserves postischemic mitochondrial energetics by sustaining respiratory supercomplexes. Circ. Res.115(Suppl. 1), A337–A337 (2014).
  • Russo S , DeRasmo D, SignorileA, CorcelliA, LobassoS. Beneficial effects of SS-31 peptide on cardiac mitochondrial dysfunction in tafazzin knockdown mice. Sci. Rep.12(1), 19847 (2022).
  • Sabbah HN , GuptaRC, Singh-GuptaV, ZhangK, LanfearDE. Abnormalities of mitochondrial dynamics in the failing heart: normalization following long-term therapy with elamipretide. Cardiovasc. Drugs Ther.32(4), 319–328 (2018).
  • Givvimani S , PushpakumarS, VeerankiS, TyagiSC. Dysregulation of Mfn2 and Drp-1 proteins in heart failure. Can. J. Physiol. Pharmacol.92(7), 583–591 (2014).
  • Sabbah H , GuptaRC, SzekelyKet al. Abstract 12903: bendavia (MTP-131), a mitochondria targeting peptide, normalizes dysregulation of mitochondria fission and fusion proteins in myocardium of dogs with chronic heart failure. Circulation130(Suppl. 2), A12903–A12903 (2014).
  • Allen ME , PenningtonER, PerryJBet al. The cardiolipin-binding peptide elamipretide mitigates fragmentation of cristae networks following cardiac ischemia reperfusion in rats. Commun. Biol.3(1), 389 (2020).
  • Rohani L , MachirajuP, SabounyRet al. Reversible mitochondrial fragmentation in iPSC-derived cardiomyocytes from children with DCMA, a mitochondrial cardiomyopathy. Can. J. Cardiol.36(4), 554–563 (2020).
  • Sabbah HN , ShimoyamaH, KonoTet al. Effects of long-term monotherapy with enalapril, metoprolol, and digoxin on the progression of left ventricular dysfunction and dilation in dogs with reduced ejection fraction. Circulation89(6), 2852–2859 (1994).
  • Dai DF , ChenT, SzetoHet al. Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J. Am. Coll. Cardiol.58(1), 73–82 (2011).
  • Chiao YA , ZhangH, SweetwyneMet al. Late-life restoration of mitochondrial function reverses cardiac dysfunction in old mice. Elife9, e55513 (2020).
  • Daubert MA , YowE, DunnGet al. Novel mitochondria-targeting peptide in heart failure treatment: a randomized, placebo-controlled trial of elamipretide. Circ. Heart Fail.10(12) (2017).
  • Thompson WR , ManuelR, AbbruscatoAet al. Elamipretide improves functional assessments when compared to the natural history progression of cardiomyopathy-related disease symptomatology in patients with Barth Syndrome: A TAZPOWER analysis. Presented at: American College of Cardiology (ACC) Scientific Session and Expo.DC, USA (2022).
  • Thompson WR , ManuelR, AbbruscatoAet al. Long-term efficacy and safety of elamipretide in patients with Barth syndrome: 192-week open-label extension results of TAZPOWER. Presented at: American Society of Human Genetics (ASHG).CA, USA (2022).
  • Thompson WR , ManuelR, AbbruscatoAet al. Long-term efficacy and safety of elamipretide in patients with Barth syndrome: open-label extension results of TAZPOWER through 192 weeks. Presented at: Barth Syndrome Foundation (BSF). Virtual (2022).
  • Thompson WR , ManuelR, AbbruscatoA, CarrJ, HornbyB, VernonHJ. Long-term efficacy and safety of Elamipretide in patients with Barth syndrome: 192-weeek open-label extension results of TAZPOWER. Presented at: United Mitochondrial Disease Foundation (UMDF) Annual Meeting.AZ, USA (2022).
  • Sabbah HN . Targeting the mitochondria in heart failure: a translational perspective. JACC Basic Transl. Sci.5(1), 88–106 (2020).
  • Pouleur H . Diastolic dysfunction and myocardial energetics. Eur. Heart J.11(Suppl. C), 30–34 (1990).