297
Views
0
CrossRef citations to date
0
Altmetric
Review

Telomere Length in Cardiovascular Disease: New Challenges in Measuring This Marker of Cardiovascular Aging

&
Pages 789-803 | Published online: 03 Nov 2011

Bibliography

  • Samani NJ , BoultbyR, ButlerR, ThompsonJR, GoodallAH. Telomere shortening in atherosclerosis. Lancet, 358, 472–473 (2001).
  • Cawthon RM , SmithKR, O‘BrienE, SivatchenkoA, KerberRA. Association between telomere length in blood and mortality in people aged 60 years or older. Lancet, 361, 393–395 (2003).
  • De Meyer T , RietzschelER, De Buyzere ML, Van Criekinge W, Bekaert S. Telomere length and cardiovascular aging: the means to the ends? Ageing Res. Rev., 10, 297–303 (2011).
  • Hansson GK , LibbyP. The immune response in atherosclerosis: a double-edged sword. Nat. Rev. Immunol., 6, 508–519 (2006).
  • Rossmann A , HendersonB, HeideckerBet al. T-cells from advanced atherosclerotic lesions recognize hHSP60 and have a restricted T-cell receptor repertoire. Exp. Gerontol. , 43, 229–237 (2008).
  • Caligiuri G , PaulssonG, NicolettiA, MaseriA, HanssonGK. Evidence for antigen-driven T-cell response in unstable angina. Circulation, 102, 1114–1119 (2000).
  • Sahin E , DepinhoRA. Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature, 464, 520–528 (2010).
  • Taleb S , TedguiA, MallatZ. Adaptive T cell immune responses and atherogenesis. Curr. Opin. Pharmacol., 10, 197–202 (2010).
  • Mallat Z , BesnardS, DuriezMet al. Protective role of interleukin-10 in atherosclerosis. Circ. Res. , 85, e17–e24 (1999).
  • Taleb S , TedguiA, MallatZ. Regulatory T-cell immunity and its relevance to atherosclerosis. J. Intern. Med., 263, 489–499 (2008).
  • Mallat Z , TalebS, Ait-OufellaH, TedguiA. The role of adaptive T cell immunity in atherosclerosis. J. Lipid Res., 50(Suppl.), S364–S369 (2009).
  • Ait-Oufella H , SalomonBL, PotteauxSet al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. , 12, 178–180 (2006).
  • Sasaki N , YamashitaT, TakedaMet al. Oral anti-CD3 antibody treatment induces regulatory T cells and inhibits the development of atherosclerosis in mice. Circulation , 120, 1996–2005 (2009).
  • Mor A , PlanerD, LuboshitsGet al. Role of naturally occurring CD4+ CD25+ regulatory T cells in experimental atherosclerosis. Arterioscler. Thromb. Vasc. Biol. , 27, 893–900 (2007).
  • Entin-Meer M , AfekA, GeorgeJ. Regulatory T-cells, FoxP3 and atherosclerosis. Adv. Exp. Med. Biol., 665, 106–114 (2009).
  • Lin J , LiM, WangZ, HeS, MaX, LiD. The role of CD4+ CD25+ regulatory T cells in macrophage-derived foam-cell formation. J. Lipid Res., 51, 1208–1217 (2010).
  • George J . Mechanisms of disease: the evolving role of regulatory T cells in atherosclerosis. Nat. Clin. Pract. Cardiovasc. Med., 5, 531–540 (2008).
  • Youssef S , StuveO, PatarroyoJCet al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature , 420, 78–84 (2002).
  • Swirski FK , NahrendorfM, EtzrodtMet al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science , 325, 612–616 (2009).
  • Nahrendorf M , PittetMJ, SwirskiFK. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation, 121, 2437–2445 (2010).
  • de Lange T . Shelterin: the protein complex that shapes and safeguards human telomeres. Genes Dev., 19, 2100–2110 (2005).
  • Blackburn EH . Structure and function of telomeres. Nature, 350, 569–573 (1991).
  • Moyzis RK , BuckinghamJM, CramLSet al. A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc. Natl Acad. Sci. USA , 85, 6622–6626 (1988).
  • Blasco MA . Telomeres and human disease: ageing, cancer and beyond. Nat. Rev. Genet., 6, 611–622 (2005).
  • Blasco MA . The epigenetic regulation of mammalian telomeres. Nat. Rev. Genet., 8, 299–309 (2007).
  • Martens UM , ZijlmansJM, PoonSet al. Short telomeres on human chromosome 17p. Nat. Genet. , 18, 76–80 (1998).
  • Blackburn EH . Switching and signaling at the telomere. Cell, 106, 661–673 (2001).
  • Griffith JD , ComeauL, RosenfieldSet al. Mammalian telomeres end in a large duplex loop. Cell , 97, 503–514 (1999).
  • Liu D , O‘ConnorMS, QinJ, SongyangZ. Telosome, a mammalian telomere-associated complex formed by multiple telomeric proteins. J. Biol. Chem., 279, 51338–51342 (2004).
  • Sandell LL , ZakianVA. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell, 75, 729–739 (1993).
  • de Lange T . Protection of mammalian telomeres. Oncogene, 21, 532–540 (2002).
  • Blackburn EH . Telomere states and cell fates. Nature, 408, 53–56 (2000).
  • Wright WE , PiatyszekMA, RaineyWE, ByrdW, ShayJW. Telomerase activity in human germline and embryonic tissues and cells. Dev. Genet., 18, 173–179 (1996).
  • Thomson JA , Itskovitz-EldorJ, ShapiroSSet al. Embryonic stem cell lines derived from human blastocysts. Science , 282, 1145–1147 (1998).
  • Kim NW , PiatyszekMA, ProwseKRet al. Specific association of human telomerase activity with immortal cells and cancer. Science , 266, 2011–2015 (1994).
  • Feng J , FunkWD, WangSSet al. The RNA component of human telomerase. Science , 269, 1236–1241 (1995).
  • Zhu J , WangH, BishopJM, BlackburnEH. Telomerase extends the lifespan of virus-transformed human cells without net telomere lengthening. Proc. Natl Acad. Sci. USA, 96, 3723–3728 (1999).
  • Vaziri H , DragowskaW, AllsoppRC, ThomasTE, HarleyCB, LansdorpPM. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc. Natl Acad. Sci. USA, 91, 9857–9860 (1994).
  • Bodnar AG , OuelletteM, FrolkisMet al. Extension of life-span by introduction of telomerase into normal human cells. Science , 279, 349–352 (1998).
  • Zimmermann S , GlaserS, KettelerR, WallerCF, KlingmullerU, MartensUM. Effects of telomerase modulation in human hematopoietic progenitor cells. Stem Cells, 22, 741–749 (2004).
  • Blasco MA , LeeHW, HandeMPet al. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell , 91, 25–34 (1997).
  • Rudolph KL , ChangS, LeeHWet al. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell , 96, 701–712 (1999).
  • Herrera E , SamperE, Martin-CaballeroJ, FloresJM, LeeHW, BlascoMA. Disease states associated with telomerase deficiency appear earlier in mice with short telomeres. EMBO J., 18, 2950–2960 (1999).
  • Flores I , CayuelaML, BlascoMA. Effects of telomerase and telomere length on epidermal stem cell behavior. Science, 309, 1253–1256 (2005).
  • Jaskelioff M , MullerFL, PaikJHet al. Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature , 469(7328), 102–106 (2011).
  • Wong LS , OeseburgH, de Boer RA, van Gilst WH, van Veldhuisen DJ, van der Harst P. Telomere biology in cardiovascular disease: the TERC-/- mouse as a model for heart failure and ageing. Cardiovasc. Res., 81, 244–252 (2009).
  • Samani NJ , ErdmannJ, HallASet al. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. , 357, 443–453 (2007).
  • Brouilette SW , WhittakerA, StevensSEet al. Telomere length is shorter in healthy offspring of subjects with coronary artery disease: support for the telomere hypothesis. Heart , 94, 422–425 (2008).
  • Brouilette S , SinghRK, ThompsonJR, GoodallAH, SamaniNJ. White cell telomere length and risk of premature myocardial infarction. Arterioscler. Thromb. Vasc. Biol., 23, 842–846 (2003).
  • Brouilette SW , MooreJS, McMahonADet al. Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet , 369, 107–114 (2007).
  • Farzaneh-Far R , CawthonRM, NaB, BrownerWS, SchillerNB, WhooleyMA. Prognostic value of leukocyte telomere length in patients with stable coronary artery disease. Data from the Heart and Soul Study. Arterioscler. Thromb. Vasc. Biol., 28(7), 1379–1384 (2008).
  • van der Harst P et al. , van der Steege G, de Boer RA Telomere length of circulating leukocytes is decreased in patients with chronic heart failure. J. Am. Coll. Cardiol., 49, 1459–1464 (2007).
  • Sarin KY , CheungP, GilisonDet al. Conditional telomerase induction causes proliferation of hair follicle stem cells. Nature , 436, 1048–1052 (2005).
  • Park JI , VenteicherAS, HongJYet al. Telomerase modulates Wnt signalling by association with target gene chromatin. Nature , 460, 66–72 (2009).
  • Kovalenko OA , CaronMJ, UlemaPet al. A mutant telomerase defective in nuclear-cytoplasmic shuttling fails to immortalize cells and is associated with mitochondrial dysfunction. Aging Cell , 9, 203–219 (2010).
  • Haendeler J , DroseS, BuchnerNet al. Mitochondrial telomerase reverse transcriptase binds to and protects mitochondrial DNA and function from damage. Arterioscler. Thromb. Vasc. Biol. , 29, 929–935 (2009).
  • Jakob S , SchroederP, LukoszMet al. Nuclear protein tyrosine phosphatase Shp-2 is one important negative regulator of nuclear export of telomerase reverse transcriptase. J. Biol. Chem. , 283, 33155–33161 (2008).
  • Haendeler J , HoffmannJ, DiehlJFet al. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ. Res. , 94, 768–775 (2004).
  • Ahmed S , PassosJF, BirketMJet al. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J. Cell Sci. , 121, 1046–1053 (2008).
  • Yang C , PrzyborskiS, CookeMJet al. A key role for telomerase reverse transcriptase unit in modulating human embryonic stem cell proliferation, cell cycle dynamics, and in vitro differentiation. Stem Cells , 26, 850–863 (2008).
  • Saretzki G , WalterT, AtkinsonSet al. Downregulation of multiple stress defense mechanisms during differentiation of human embryonic stem cells. Stem Cells , 26, 455–464 (2008).
  • Spyridopoulos I . Is telomerase a potential target for vascular rejuvenation? Atherosclerosis, 216(1), 19–20 (2011).
  • Allshire RC , GosdenJR, CrossSHet al. Telomeric repeat from T. thermophila cross hybridizes with human telomeres. Nature , 332, 656–659 (1988).
  • Harley CB , FutcherAB, GreiderCW. Telomeres shorten during ageing of human fibroblasts. Nature, 345, 458–460 (1990).
  • Southern EM . Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol., 98, 503–517 (1975).
  • de Lange T , ShiueL, MyersRMet al. Structure and variability of human chromosome ends. Mol. Cell. Biol. , 10, 518–527 (1990).
  • Baird DM , Britt-ComptonB, RowsonJ, AmsoNN, GregoryL, KiplingD. Telomere instability in the male germline. Hum. Mol. Genet., 15, 45–51 (2006).
  • Kimura M , StoneRC, HuntSCet al. Measurement of telomere length by the Southern blot analysis of terminal restriction fragment lengths. Nat. Protoc. , 5, 1596–1607 (2010).
  • Lansdorp PM , VerwoerdNPet al., van de Rijke FM Heterogeneity in telomere length of human chromosomes. Hum. Mol. Genet., 5, 685–691 (1996).
  • Canela A , VeraE, KlattP, BlascoMA. High-throughput telomere length quantification by FISH and its application to human population studies. Proc. Natl Acad. Sci. USA, 104, 5300–5305 (2007).
  • Rufer N , BrummendorfTH, KolvraaSet al. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J. Exp. Med. , 190, 157–167 (1999).
  • Baerlocher GM , VultoI, de Jong G, Lansdorp PM. Flow cytometry and FISH to measure the average length of telomeres (flow FISH). Nat. Protoc., 1, 2365–2376 (2006).
  • Baerlocher GM , LansdorpPM. Telomere length measurements in leukocyte subsets by automated multicolor flow-FISH. Cytometry, 55A, 1–6 (2003).
  • Spyridopoulos I , HoffmannJ, AicherAet al. Accelerated telomere shortening in leukocyte subpopulations of patients with coronary heart disease: role of cytomegalovirus seropositivity. Circulation , 120, 1364–1372 (2009).
  • Cawthon RM . Telomere measurement by quantitative PCR. Nucleic Acids Res., 30, e47 (2002).
  • Huzen J , PeetersWet al., de Boer RA Circulating leukocyte and carotid atherosclerotic plaque telomere length: interrelation, association with plaque characteristics, and restenosis after endarterectomy. Arterioscler. Thromb. Vasc. Biol., 31, 1219–1225 (2011).
  • Bendix L , HornPB, JensenUB, RubeljI, KolvraaS. The load of short telomeres, estimated by a new method, Universal STELA, correlates with number of senescent cells. Aging Cell, 9, 383–397 (2010).
  • Kimura M , AvivA. Measurement of telomere DNA content by dot blot analysis. Nucleic Acids Res., 39, e84 (2011).
  • Abbas AK , LohrJ, KnoechelB. Balancing autoaggressive and protective T cell responses. J. Autoimmun., 28, 59–61 (2007).
  • Weng N . Interplay between telomere length and telomerase in human leukocyte differentiation and aging. J. Leukoc. Biol., 70, 861–867 (2001).
  • Lansdorp PM . Self-renewal of stem cells. Biol. Blood Marrow Transplant., 3, 171–178 (1997).
  • Brummendorf TH , BalabanovS. Telomere length dynamics in normal hematopoiesis and in disease states characterized by increased stem cell turnover. Leukemia, 20, 1706–1716 (2006).
  • Broccoli D , YoungJW, de Lange T. Telomerase activity in normal and malignant hematopoietic cells. Proc. Natl Acad. Sci. USA, 92, 9082–9086 (1995).
  • Chiu CP , DragowskaW, KimNWet al. Differential expression of telomerase activity in hematopoietic progenitors from adult human bone marrow. Stem Cells , 14, 239–248 (1996).
  • Notaro R , CimminoA, TabariniD, RotoliB, LuzzattoL. In vivo telomere dynamics of human hematopoietic stem cells. Proc. Natl Acad. Sci. USA, 94, 13782–13785 (1997).
  • Narducci ML , GrasselliA, BiasucciLMet al. High telomerase activity in neutrophils from unstable coronary plaques. J. Am. Coll. Cardiol. , 50, 2369–2374 (2007).
  • Spyridopoulos I , ErbenY, BrummendorfTHet al. Telomere gap between granulocytes and lymphocytes is a determinant for hematopoetic progenitor cell impairment in patients with previous myocardial infarction. Arterioscler. Thromb. Vasc. Biol. , 28, 968–974 (2008).
  • Hoffmann J , ErbenY, ZeiherAM, DimmelerS, SpyridopoulosI. Telomere length-heterogeneity among myeloid cells is a predictor for chronological ageing. Exp. Gerontol., 44, 363–366 (2009).
  • Effros RB , PawelecG. Replicative senescence of T cells: does the Hayflick Limit lead to immune exhaustion? Immunol. Today, 18, 450–454 (1997).
  • Rufer N , DragowskaW, ThornburyG, RoosnekE, LansdorpPM. Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat. Biotechnol., 16, 743–747 (1998).
  • Akbar AN , BeverleyPC, SalmonM. Will telomere erosion lead to a loss of T-cell memory? Nat. Rev. Immunol., 4, 737–743 (2004).
  • Effros RB , DagaragM, SpauldingC, ManJ. The role of CD8+ T-cell replicative senescence in human aging. Immunol. Rev., 205, 147–157 (2005).
  • Guan JZ , MaedaT, SuganoM, OyamaJ, HiguchiY, MakinoN. Change in the telomere length distribution with age in the Japanese population. Mol. Cell. Biochem., 304, 353–360 (2007).
  • Hiyama K , HiraiY, KyoizumiSet al. Activation of telomerase in human lymphocytes and hematopoietic progenitor cells. J. Immunol. , 155, 3711–3715 (1995).
  • Bodnar AG , KimNW, EffrosRB, ChiuCP. Mechanism of telomerase induction during T cell activation. Exp. Cell Res., 228, 58–64 (1996).
  • Weng NP , LevineBL, JuneCH, HodesRJ. Regulated expression of telomerase activity in human T lymphocyte development and activation. J. Exp. Med., 183, 2471–2479 (1996).
  • Iancu EM , SpeiserDE, RuferN. Assessing ageing of individual T lymphocytes: mission impossible? Mech. Ageing Dev., 129, 67–78 (2008).
  • Rufer N , MigliaccioM, AntonchukJ, HumphriesRK, RoosnekE, LansdorpPM. Transfer of the human telomerase reverse transcriptase (TERT) gene into T lymphocytes results in extension of replicative potential. Blood, 98, 597–603 (2001).
  • Hooijberg E , RuizendaalJJ, SnijdersPJ, KueterEW, WalboomersJM, SpitsH. Immortalization of human CD8+ T cell clones by ectopic expression of telomerase reverse transcriptase. J. Immunol., 165, 4239–4245 (2000).
  • Dagarag M , NgH, LubongR, EffrosRB, YangOO. Differential impairment of lytic and cytokine functions in senescent human immunodeficiency virus type 1-specific cytotoxic T lymphocytes. J. Virol., 77, 3077–3083 (2003).
  • Valenzuela HF , EffrosRB. Divergent telomerase and CD28 expression patterns in human CD4 and CD8 T cells following repeated encounters with the same antigenic stimulus. Clin. Immunol., 105, 117–125 (2002).
  • von Zglinicki T . Oxidative stress shortens telomeres. Trends Biochem. Sci., 27, 339–344 (2002).
  • von Zglinicki T , PilgerR, SitteN. Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic. Biol. Med., 28, 64–74 (2000).
  • Saretzki G , MurphyMP, von Zglinicki T. MitoQ counteracts telomere shortening and elongates lifespan of fibroblasts under mild oxidative stress. Aging Cell, 2, 141–143 (2003).
  • Oikawa S , Tada-OikawaS, KawanishiS. Site-specific DNA damage at the GGG sequence by UVA involves acceleration of telomere shortening. Biochemistry, 40, 4763–4768 (2001).
  • Petersen S , SaretzkiG, von Zglinicki T. Preferential accumulation of single-stranded regions in telomeres of human fibroblasts. Exp. Cell Res., 239, 152–160 (1998).
  • Epel ES , BlackburnEH, LinJet al. Accelerated telomere shortening in response to life stress. Proc. Natl Acad. Sci. USA , 101, 17312–17315 (2004).
  • Valdes AM , AndrewT, GardnerJPet al. Obesity, cigarette smoking, and telomere length in women. Lancet , 366, 662–664 (2005).
  • O‘Donovan A , PantellMS, PutermanEet al. Cumulative inflammatory load is associated with short leukocyte telomere length in the health, aging and body composition study. PLoS ONE , 6, e19687 (2011).
  • Njajou OT , HsuehWC, BlackburnEH. Association between telomere length, specific causes of death, and years of healthy life in health, aging, and body composition, a population-based cohort study. J. Gerontol. A. Biol. Sci. Med. Sci., 64, 860–864 (2009).
  • Gorenne I , KavurmaM, ScottS, BennettM. Vascular smooth muscle cell senescence in atherosclerosis. Cardiovasc. Res., 72, 9–17 (2006).
  • Ogami M , IkuraY, OhsawaMet al. Telomere shortening in human coronary artery diseases. Arterioscler. Thromb. Vasc. Biol. , 24, 546–550 (2004).
  • Matthews C , GorenneI, ScottSet al. Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ. Res. , 99, 156–164 (2006).
  • Aviv A . Telomeres, sex, reactive oxygen species, and human cardiovascular aging. J. Mol. Med., 80, 689–695 (2002).
  • Slagboom PE , DroogS, BoomsmaDI. Genetic determination of telomere size in humans: a twin study of three age groups. Am. J. Hum. Genet., 55, 876–882 (1994).
  • Wilson WR , HerbertKE, MistryYet al. Blood leucocyte telomere DNA content predicts vascular telomere DNA content in humans with and without vascular disease. Eur. Heart J. , 29, 2689–2694 (2008).
  • Salpea KD , NicaudV, TiretL, TalmudPJ, HumphriesSE. The association of telomere length with paternal history of premature myocardial infarction in the European Atherosclerosis Research Study II. J. Mol. Med. (Berl.), 86, 815–824 (2008).
  • Eisenberg DT , SalpeaKD, KuzawaCW, HayesMG, HumphriesSE. Substantial variation in qPCR measured mean blood telomere lengths in young men from eleven European countries. Am. J. Hum. Biol., 23, 228–231 (2011).
  • Codd V , ManginoMet al., van der Harst P Common variants near TERC are associated with mean telomere length. Nat. Genet., 42, 197–199 (2010).
  • Njajou OT , BlackburnEH, PawlikowskaLet al. A common variant in the telomerase RNA component is associated with short telomere length. PLoS ONE , 5, e13048 (2010).
  • Farzaneh-Far R , LinJ, EpelE, LaphamK, BlackburnE, WhooleyMA. Telomere length trajectory and its determinants in persons with coronary artery disease: longitudinal findings from the heart and soul study. PLoS ONE, 5, e8612 (2010).
  • Aviv A , ChenW, GardnerJPet al. Leukocyte telomere dynamics: longitudinal findings among young adults in the Bogalusa Heart Study. Am. J. Epidemiol. , 169, 323–329 (2009).
  • Epel ES , MerkinSS, CawthonRet al. The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men. Aging (Albany NY) , 1, 81–88 (2009).
  • Spyridopoulos I , HaendelerJ, UrbichCet al. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation , 110, 3136–3142 (2004).
  • Chen W , KimuraM, KimSet al. Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: age-dependent telomere shortening is the rule. J. Gerontol. A. Biol. Sci. Med. Sci. , 66, 312–319 (2011).
  • Svenson U , NordfjallK, BairdDet al. Blood cell telomere length is a dynamic feature. PLoS ONE , 6, e21485 (2011).
  • Pawelec G , DerhovanessianE, LarbiA, StrindhallJ, WikbyA. Cytomegalovirus and human immunosenescence. Rev. Med. Virol., 19, 47–56 (2009).
  • van de Berg PJ , GriffithsSJ, YongSLet al. Cytomegalovirus infection reduces telomere length of the circulating T cell pool. J. Immunol. , 184, 3417–3423 (2010).
  • Cawthon RM . Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res., 37, e21 (2009).
  • Benetos A , GardnerJP, ZureikMet al. Short telomeres are associated with increased carotid atherosclerosis in hypertensive subjects. Hypertension , 43, 182–185 (2004).
  • Fitzpatrick AL , KronmalRA, GardnerJPet al. Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am. J. Epidemiol. , 165, 14–21 (2006).
  • Kurz DJ , Kloeckener-GruissemB, AkhmedovAet al. Degenerative aortic valve stenosis, but not coronary disease, is associated with shorter telomere length in the elderly. Arterioscler. Thromb. Vasc. Biol. , 26, e114–e117 (2006).
  • Collerton J , Martin-RuizC, KennyAet al. Telomere length is associated with left ventricular function in the oldest old: the Newcastle 85+ study. Eur. Heart J. , 28, 172–176 (2007).
  • Cherkas LF , HunkinJL, KatoBSet al. The association between physical activity in leisure time and leukocyte telomere length. Arch. Intern. Med. , 168, 154–158 (2008).
  • De Meyer T , RietzschelERet al., De Buyzere ML Systemic telomere length and preclinical atherosclerosis: the Asklepios Study. Eur. Heart J., 30, 3074–3081 (2009).
  • Vasan RS , DemissieS, KimuraMet al. Association of leukocyte telomere length with echocardiographic left ventricular mass: the Framingham heart study. Circulation , 120, 1195–1202 (2009).
  • Kuznetsova T , CoddV, BrouiletteSet al. Association between left ventricular mass and telomere length in a population study. Am. J. Epidemiol. , 172, 440–450 (2010).
  • Panayiotou AG , NicolaidesAN, GriffinMet al. Leukocyte telomere length is associated with measures of subclinical atherosclerosis. Atherosclerosis , 211, 176–181 (2010).
  • Atturu G , BrouiletteS, SamaniNJ, LondonNJ, SayersRD, BownMJ. Short leukocyte telomere length is associated with abdominal aortic aneurysm (AAA). Eur. J. Vasc. Endovasc. Surg., 39, 559–564 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.