579
Views
0
CrossRef citations to date
0
Altmetric
Review

How the Study of Listeria Monocytogenes has Led to New Concepts in Biology

&
Pages 621-638 | Received 02 Dec 2016, Accepted 13 Feb 2017, Published online: 12 Jun 2017

References

  • Murray EGD , WebbRA, SwannMBR. A disease of rabbits characterised by a large mononuclear leucocytosis, caused by a hitherto undescribed bacillus Bacterium monocytogenes.J. Pathol.29, 407–439 (1926).
  • Burn CG . Characteristics of a new species of the genus Listerella obtained from human sources.J. Bacteriol.30, 573–591 (1935).
  • Gray ML , KillingerAH. Listeria monocytogenes and listeric infections.Bacteriol. Rev.30 (2), 309–382 (1966).
  • Lamont RF , SobelJ, Mazaki-ToviSet al. Listeriosis in human pregnancy: a systematic review. J. Perinat. Med. 39 (3), 227–236 (2011).
  • CDC: Multistate Outbreak of Listerosis Linked to Whole Cantaloupes from Jensen Farms, Colorado (FINAL UPDATE). www.cdc.gov/Listeria/outbreaks/cantaloupes-jensen-farms.
  • CDC: Information for Health Professionals and Laboratories. www.cdc.gov/Listeria/statistics.html.
  • European Food Safety Authority: Listeria. www.efsa.europa.eu/fr/topics/topic/Listeria.
  • Gahan CG , HillC. Gastrointestinal phase of Listeria monocytogenes infection.J. Appl. Microbiol.98 (6), 1345–1353 (2005).
  • Cossart P . Illuminating the landscape of host–pathogen interactions with the bacterium Listeria monocytogenes.Proc. Natl Acad. Sci. USA108 (49), 19484–19491 (2011).
  • Cossart P , LebretonA. A trip in the “New Microbiology” with the bacterial pathogen Listeria monocytogenes.FEBS Lett.588 (15), 2437–2445 (2014).
  • Chakraborty T , Leimeister-WachterM, DomannEet al. Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J. Bacteriol. 174 (2), 568–574 (1992).
  • Freitag NE , PortGC, MinerMD. Listeria monocytogenes – from saprophyte to intracellular pathogen.Nat. Rev. Microbiol.7 (9), 623–628 (2009).
  • Xayarath B , FreitagNE. Optimizing the balance between host and environmental survival skills: lessons learned from Listeria monocytogenes.Future Microbiol.7 (7), 839–852 (2012).
  • Eiting M , HagelukenG, SchubertWD, HeinzDW. The mutation G145S in PrfA, a key virulence regulator of Listeria monocytogenes, increases DNA-binding affinity by stabilizing the HTH motif.Mol. Microbiol.56 (2), 433–446 (2005).
  • Xayarath B , VolzKW, SmartJI, FreitagNE. Probing the role of protein surface charge in the activation of PrfA, the central regulator of Listeria monocytogenes pathogenesis.PLoS ONE6 (8), e23502 (2011).
  • Reniere ML , WhiteleyAT, HamiltonKLet al. Glutathione activates virulence gene expression of an intracellular pathogen. Nature 517 (7533), 170–173 (2015).
  • Wong J , ChenY, GanYH. Host cytosolic glutathione sensing by a membrane histidine kinase activates the type VI secretion system in an intracellular bacterium.Cell Host Microbe18 (1), 38–48 (2015).
  • Caldelari I , ChaoY, RombyP, VogelJ. RNA-mediated regulation in pathogenic bacteria.Cold Spring Harb. Perspect. Med.3 (9), a010298 (2013).
  • Gripenland J , NetterlingS, LohE, TiensuuT, Toledo-AranaA, JohanssonJ. RNAs: regulators of bacterial virulence.Nat. Rev. Microbiol.8 (12), 857–866 (2010).
  • Storz G , VogelJ, WassarmanKM. Regulation by small RNAs in bacteria: expanding frontiers.Mol. Cell43 (6), 880–891 (2011).
  • Christiansen JK , NielsenJS, EbersbachT, Valentin-HansenP, Sogaard-AndersenL, KallipolitisBH. Identification of small Hfq-binding RNAs in Listeria monocytogenes.RNA12 (7), 1383–1396 (2006).
  • Mandin P , RepoilaF, VergassolaM, GeissmannT, CossartP. Identification of new noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets.Nucleic Acids Res.35 (3), 962–974 (2007).
  • Behrens S , WidderS, MannalaGKet al. Ultra deep sequencing of Listeria monocytogenes sRNA transcriptome revealed new antisense RNAs. PLoS ONE 9 (2), e83979 (2014).
  • Dar D , ShamirM, MellinJRet al. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria. Science 352 (6282), aad9822 (2016).
  • Mraheil MA , BillionA, MohamedWet al. The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages. Nucleic Acids Res. 39 (10), 4235–4248 (2011).
  • Oliver HF , OrsiRH, PonnalaLet al. Deep RNA sequencing of L. monocytogenes reveals overlapping and extensive stationary phase and sigma B-dependent transcriptomes, including multiple highly transcribed noncoding RNAs. BMC Genomics 10, 641 (2009).
  • Toledo-Arana A , DussurgetO, NikitasGet al. The Listeria transcriptional landscape from saprophytism to virulence. Nature 459 (7249), 950–956 (2009).
  • Wurtzel O , SestoN, MellinJRet al. Comparative transcriptomics of pathogenic and non-pathogenic Listeria species. Mol. Syst. Biol. 8, 583 (2012).
  • Sesto N , KouteroM, CossartP. Bacterial and cellular RNAs at work during Listeria infection.Future Microbiol.9 (9), 1025–1037 (2014).
  • Comparative transcriptomics of pathogenic and non-pathogenic Listeria species. www.weizmann.ac.il/molgen/Sorek/Listeria_browser/.
  • Listeriomics . http://listeriomics.pasteur.fr.
  • Bécavin C , KouteroM, TchitchekNet al. Listeriomics: an Interactive Web Platform for Systems Biology of Listeria. mSystems 2 (2), e00186–16 (2017).
  • Becavin C , BouchierC, LechatPet al. Comparison of widely used Listeria monocytogenes strains EGD, 10403S, and EGD-e highlights genomic variations underlying differences in pathogenicity. MBio 5 (2), e00969–14 (2014).
  • Lebreton A , CossartP. RNA- and protein-mediated control of Listeria monocytogenes virulence gene expression.RNA Biol. doi:10.1080/15476286.2016.1189069, 1–11 (2016) ( Epub ahead of print).
  • Leimeister-Wachter M , DomannE, ChakrabortyT. The expression of virulence genes in Listeria monocytogenes is thermoregulated.J. Bacteriol.174 (3), 947–952 (1992).
  • Renzoni A , KlarsfeldA, DramsiS, CossartP. Evidence that PrfA, the pleiotropic activator of virulence genes in Listeria monocytogenes, can be present but inactive.Infect. Immun.65 (4), 1515–1518 (1997).
  • Johansson J , MandinP, RenzoniA, ChiaruttiniC, SpringerM, CossartP. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes.Cell110 (5), 551–561 (2002).
  • Giuliodori AM , Di PietroF, MarziSet al. The cspA mRNA is a thermosensor that modulates translation of the cold-shock protein CspA. Mol. Cell 37 (1), 21–33 (2010).
  • Johansson J . RNA thermosensors in bacterial pathogens.Contrib. Microbiol.16, 150–160 (2009).
  • Bohme K , SteinmannR, KortmannJet al. Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PLoS Pathog. 8 (2), e1002518 (2012).
  • Serganov A , NudlerE. A decade of riboswitches.Cell152 (1–2), 17–24 (2013).
  • Loh E , DussurgetO, GripenlandJet al. A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 139 (4), 770–779 (2009).
  • Mellin JR , TiensuuT, BecavinC, GouinE, JohanssonJ, CossartP. A riboswitch-regulated antisense RNA in Listeria monocytogenes.Proc. Natl Acad. Sci. USA110 (32), 13132–13137 (2013).
  • Mellin JR , KouteroM, DarD, NahoriMA, SorekR, CossartP. Riboswitches. Sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA.Science345 (6199), 940–943 (2014).
  • Debroy S , GebbieM, RameshAet al. Riboswitches. A riboswitch-containing sRNA controls gene expression by sequestration of a response regulator. Science 345 (6199), 937–940 (2014).
  • Horvath P , BarrangouR. CRISPR/Cas, the immune system of bacteria and archaea.Science327 (5962), 167–170 (2010).
  • Sesto N , TouchonM, AndradeJMet al. A PNPase dependent CRISPR system in Listeria. PLoS Genet. 10 (1), e1004065 (2014).
  • Rajabian T , GavicherlaB, HeisigMet al. The bacterial virulence factor InlC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria. Nat. Cell Biol. 11 (10), 1212–1218 (2009).
  • Dabiri GA , SangerJM, PortnoyDA, SouthwickFS. Listeria monocytogenes moves rapidly through the host-cell cytoplasm by inducing directional actin assembly.Proc. Natl Acad. Sci. USA87 (16), 6068–6072 (1990).
  • Tilney LG , PortnoyDA. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes.J. Cell Biol.109 (4 Pt 1), 1597–1608 (1989).
  • Domann E , WehlandJ, RohdeMet al. A novel bacterial virulence gene in Listeria monocytogenes required for host-cell microfilament interaction with homology to the proline-rich region of vinculin. EMBO J. 11 (5), 1981–1990 (1992).
  • Kocks C , GouinE, TabouretM, BercheP, OhayonH, CossartP. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein.Cell68 (3), 521–531 (1992).
  • Welch MD , IwamatsuA, MitchisonTJ. Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes.Nature385 (6613), 265–269 (1997).
  • Abella JV , GalloniC, PernierJet al. Isoform diversity in the Arp2/3 complex determines actin filament dynamics. Nat. Cell Biol. 18 (1), 76–86 (2016).
  • Chorev DS , MoscovitzO, GeigerB, SharonM. Regulation of focal adhesion formation by a vinculin-Arp2/3 hybrid complex.Nat. Commun.5, 3758 (2014).
  • Kuhbacher A , EmmenlauerM, RamoPet al. Genome-wide siRNA screen identifies complementary signaling pathways involved in Listeria infection and reveals different actin nucleation mechanisms during Listeria cell invasion and actin comet tail formation. MBio 6 (3), e00598–15 (2015).
  • Pizarro-Cerda J , ChorevDS, GeigerB, CossartP. The diverse family of Arp2/3 complexes.Trends Cell Biol.27 (2), 93–100 (2016).
  • Cossart P . Actin-based motility of pathogens: the Arp2/3 complex is a central player.Cell Microbiol.2 (3), 195–205 (2000).
  • Egile C , LoiselTP, LaurentVet al. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol. 146 (6), 1319–1332 (1999).
  • Gouin E , EgileC, DehouxPet al. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427 (6973), 457–461 (2004).
  • Reed SC , SerioAW, WelchMD. Rickettsia parkeri invasion of diverse host cells involves an Arp2/3 complex, WAVE complex and Rho-family GTPase-dependent pathway.Cell Microbiol.14 (4), 529–545 (2012).
  • Benanti EL , NguyenCM, WelchMD. Virulent Burkholderia species mimic host actin polymerases to drive actin-based motility.Cell161 (2), 348–360 (2015).
  • Cudmore S , CossartP, GriffithsG, WayM. Actin-based motility of vaccinia virus.Nature378 (6557), 636–638 (1995).
  • Sitthidet C , StevensJM, FieldTR, LaytonAN, KorbsrisateS, StevensMP. Actin-based motility of Burkholderia thailandensis requires a central acidic domain of BimA that recruits and activates the cellular Arp2/3 complex.J. Bacteriol.192 (19), 5249–5252 (2010).
  • Stamm LM , MorisakiJH, GaoLYet al. Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. J. Exp. Med. 198 (9), 1361–1368 (2003).
  • Gouin E , QueredaJJ, CossartP. Intracellular bacteria find the right motion.Cell161 (2), 199–200 (2015).
  • Pizarro-Cerda J , KuhbacherA, CossartP. Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view.Cold Spring Harb. Perspect. Med.2 (11), doi:10.1101/cshperspect.a010009 (2012) ( Epub ahead of print).
  • Veiga E , CossartP. Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells.Nat. Cell Biol.7 (9), 894–900 (2005).
  • Conner SD , SchmidSL. Regulated portals of entry into the cell.Nature422 (6927), 37–44 (2003).
  • Pizarro-Cerda J , BonazziM, CossartP. Clathrin-mediated endocytosis: what works for small, also works for big.Bioessays32 (6), 496–504 (2010).
  • Cossart P , HeleniusA. Endocytosis of viruses and bacteria.Cold Spring Harb. Perspect. Biol.6 (8), doi:10.1101/cshperspect.a016972 (2014) ( Epub ahead of print).
  • Ehrlich M , BollW, Van OijenAet al. Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118 (5), 591–605 (2004).
  • Veiga E , CossartP. The role of clathrin-dependent endocytosis in bacterial internalization.Trends Cell Biol.16 (10), 499–504 (2006).
  • Bonazzi M , VasudevanL, MalletAet al. Clathrin phosphorylation is required for actin recruitment at sites of bacterial adhesion and internalization. J. Cell Biol. 195 (3), 525–536 (2011).
  • Bonazzi M , KuhbacherA, Toledo-AranaAet al. A common clathrin-mediated machinery co-ordinates cell-cell adhesion and bacterial internalization. Traffic 13 (12), 1653–1666 (2012).
  • Sousa S , CabanesD, El-AmraouiA, PetitC, LecuitM, CossartP. Unconventional myosin VIIa and vezatin, two proteins crucial for Listeria entry into epithelial cells.J. Cell Sci117 (Pt 10), 2121–2130 (2004).
  • Mostowy S , CossartP. Septins: the fourth component of the cytoskeleton.Nat. Rev. Mol. Cell Biol.13 (3), 183–194 (2012).
  • Pizarro-Cerda J , JonquieresR, GouinE, VandekerckhoveJ, GarinJ, CossartP. Distinct protein patterns associated with Listeria monocytogenes InlA- or InlB-phagosomes.Cell Microbiol.4 (2), 101–115 (2002).
  • Mostowy S , DanckaertA, ThamTNet al. Septin 11 restricts InlB-mediated invasion by Listeria. J. Biol. Chem. 284 (17), 11613–11621 (2009).
  • Mostowy S , Nam ThamT, DanckaertAet al. Septins regulate bacterial entry into host cells. PLoS ONE 4 (1), e4196 (2009).
  • Huang YW , YanM, CollinsRF, DiciccioJE, GrinsteinS, TrimbleWS. Mammalian septins are required for phagosome formation.Mol. Biol. Cell19 (4), 1717–1726 (2008).
  • Mostowy S , BonazziM, HamonMAet al. Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 8 (5), 433–444 (2010).
  • Escoll P , MondinoS, RolandoM, BuchrieserC. Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy.Nat. Rev. Microbiol.14 (1), 5–19 (2016).
  • Lebreton A , StavruF, CossartP. Organelle targeting during bacterial infection: insights from Listeria.Trends Cell Biol.25 (6), 330–338 (2015).
  • Stavru F , BouillaudF, SartoriA, RicquierD, CossartP. Listeria monocytogenes transiently alters mitochondrial dynamics during infection.Proc. Natl Acad. Sci. USA108 (9), 3612–3617 (2011).
  • Stavru F , PalmerAE, WangC, YouleRJ, CossartP. Atypical mitochondrial fission upon bacterial infection.Proc. Natl Acad. Sci. USA110 (40), 16003–16008 (2013).
  • Pagliuso A , ThamTN, StevensJKet al. A role for septin 2 in Drp1-mediated mitochondrial fission. EMBO Rep. 17 (6), 858–873 (2016).
  • Sirianni A , KrokowskiS, Lobato-MarquezDet al. Mitochondria mediate septin cage assembly to promote autophagy of Shigella. EMBO Rep. 17 (7), 1029–1043 (2016).
  • Suzuki M , DanilchankaO, MekalanosJJ. Vibrio cholerae T3SS effector VopE modulates mitochondrial dynamics and innate immune signalling by targeting Miro GTPases.Cell Host Microbe16 (5), 581–591 (2014).
  • Fielden LF , KangY, NewtonHJ, StojanovskiD. Targeting mitochondria: how intravacuolar bacterial pathogens manipulate mitochondria.Cell Tissue Res.367 (1), 141–154 (2016).
  • Malet JK , CossartP, RibetD. Alteration of epithelial cell lysosomal integrity induced by bacterial cholesterol-dependent cytolysins.Cell Microbiol.19 (4), doi:10.1111/cmi.12682 (2016) ( Epub ahead of print).
  • Bewley MA , NaughtonM, PrestonJet al. Pneumolysin activates macrophage lysosomal membrane permeabilization and executes apoptosis by distinct mechanisms without membrane pore formation. MBio 5 (5), e01710–e01714 (2014).
  • Bewley MA , PhamTK, MarriottHMet al. Proteomic evaluation and validation of cathepsin D regulated proteins in macrophages exposed to Streptococcus pneumoniae. Mol. Cell Proteomics 10 (6), M111.008193 (2011).
  • Kennedy CL , SmithDJ, LyrasD, ChakravortyA, RoodJI. Programmed cellular necrosis mediated by the pore-forming α-toxin from Clostridium septicum.PLoS Pathog.5 (7), e1000516 (2009).
  • Matsuda S , OkadaN, KodamaT, HondaT, IidaT. A cytotoxic type III secretion effector of Vibrio parahaemolyticus targets vacuolar H+-ATPase subunit c and ruptures host cell lysosomes.PLoS Pathog.8 (7), e1002803 (2012).
  • Prince LR , BianchiSM, VaughanKMet al. Subversion of a lysosomal pathway regulating neutrophil apoptosis by a major bacterial toxin, pyocyanin. J. Immunol. 180 (5), 3502–3511 (2008).
  • Bierne H , HamonM, CossartP. Epigenetics and bacterial infections.Cold Spring Harb. Perspect. Med.2 (12), a010272 (2012).
  • Minarovits J . Microbe-induced epigenetic alterations in host cells: the coming era of patho-epigenetics of microbial infections. A review.Acta Microbiol. Immunol. Hung.56 (1), 1–19 (2009).
  • Hamon MA , BatscheE, RegnaultBet al. Histone modifications induced by a family of bacterial toxins. Proc. Natl Acad. Sci. USA 104 (33), 13467–13472 (2007).
  • Eskandarian HA , ImpensF, NahoriMAet al. A role for SIRT2-dependent histone H3K18 deacetylation in bacterial infection. Science 341 (6145), 1238858 (2013).
  • Houtkooper RH , PirinenE, AuwerxJ. Sirtuins as regulators of metabolism and healthspan.Nat. Rev Mol. Cell Biol.13 (4), 225–238 (2012).
  • Bierne H , CossartP. When bacteria target the nucleus: the emerging family of nucleomodulins.Cell Microbiol.14 (5), 622–633 (2012).
  • Lebreton A , LakisicG, JobVet al. A bacterial protein targets the BAHD1 chromatin complex to stimulate type III interferon response. Science 331 (6022), 1319–1321 (2011).
  • Lebreton A , JobV, RagonMet al. Structural basis for the inhibition of the chromatin repressor BAHD1 by the bacterial nucleomodulin LntA. MBio 5 (1), e00775–e00713 (2014).
  • Bierne H , ThamTN, BatscheEet al. Human BAHD1 promotes heterochromatic gene silencing. Proc. Natl Acad. Sci. USA 106 (33), 13826–13831 (2009).
  • Ribet D , HamonM, GouinEet al. Listeria monocytogenes impairs SUMOylation for efficient infection. Nature 464 (7292), 1192–1195 (2010).
  • Beyer AR , TruchanHK, MayLJ, WalkerNJ, BorjessonDL, CarlyonJA. The Anaplasma phagocytophilum effector AmpA hijacks host cell SUMOylation.Cell Microbiol.17 (4), 504–519 (2015).
  • Dunphy PS , LuoT, McbrideJW. Ehrlichia chaffeensis exploits host SUMOylation pathways to mediate effector-host interactions and promote intracellular survival.Infect. Immun.82 (10), 4154–4168 (2014).
  • Fritah S , LhocineN, GolebiowskiFet al. SUMOylation controls host anti-bacterial response to the gut invasive pathogen Shigella flexneri. EMBO Rep. 15 (9), 965–972 (2014).
  • Kim JG , StorkW, MudgettMB. Xanthomonas type III effector XopD deylates tomato transcription factor SlERF4 to suppress ethylene responses and promote pathogen growth.Cell Host Microbe13 (2), 143–154 (2013).
  • Impens F , RadoshevichL, CossartP, RibetD. Mapping of sites and analysis of SUMOylation changes induced by external stimuli.Proc. Natl Acad. Sci. USA111 (34), 12432–12437 (2014).
  • Radoshevich L , ImpensF, RibetDet al. ISG15 counteracts Listeria monocytogenes infection. eLife doi:10.7554/eLife.06848 (2015) ( Epub ahead of print).
  • Mackaness GB . Cellular resistance to infection.J. Exp. Med.116, 381–406 (1962).
  • Ladel CH , FleschIE, ArnoldiJ, KaufmannSH. Studies with MHC-deficient knock-out mice reveal impact of both MHC I- and MHC II-dependent T cell responses on Listeria monocytogenes infection.J. Immunol153 (7), 3116–3122 (1994).
  • Khan SH , BadovinacVP. Listeria monocytogenes: a model pathogen to study antigen-specific memory CD8 T cell responses.Semin. Immunopathol.37 (3), 301–310 (2015).
  • Lara-Tejero M , PamerEG. T-cell responses to Listeria monocytogenes.Curr Opin Microbiol.7 (1), 45–50 (2004).
  • Stavru F , ArchambaudC, CossartP. Cell biology and immunology of Listeria monocytogenes infections: novel insights.Immunol. Rev.240 (1), 160–184 (2011).
  • Lecuit M , DramsiS, GottardiC, Fedor-ChaikenM, GumbinerB, CossartP. A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes.EMBO J.18 (14), 3956–3963 (1999).
  • Lecuit M , Vandormael-PourninS, LefortJet al. A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292 (5522), 1722–1725 (2001).
  • Disson O , GrayoS, HuilletEet al. Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature 455 (7216), 1114–1118 (2008).
  • Wollert T , PascheB, RochonMet al. Extending the host range of Listeria monocytogenes by rational protein design. Cell 129 (5), 891–902 (2007).
  • Tsai YH , DissonO, BierneH, LecuitM. Murinization of internalin extends its receptor repertoire, altering Listeria monocytogenes cell tropism and host responses.PLoS Pathog.9 (5), e1003381 (2013).
  • Hoelzer K , PouillotR, DennisS. Animal models of listeriosis: a comparative review of the current state of the art and lessons learned.Vet. Res.43, 18 (2012).
  • Disson O , LecuitM. In vitro and in vivo models to study human listeriosis: mind the gap.Microbes Infect.15 (14–15), 971–980 (2013).
  • Baumler AJ , SperandioV. Interactions between the microbiota and pathogenic bacteria in the gut.Nature535 (7610), 85–93 (2016).
  • Rolhion N , ChassaingB. When pathogenic bacteria meet the intestinal microbiota.Philos. Trans. R. Soc. Lond. B. Biol. Sci371 (1707), 20150504 (2016).
  • Archambaud C , SismeiroO, ToedlingJet al. The intestinal microbiota interferes with the microRNA response upon oral Listeria infection. MBio. 4 (6), e00707–e00713 (2013).
  • Das K , GarnicaO, DhandayuthapaniS. Modulation of host miRNAs by intracellular bacterial pathogens.Front. Cell Infect. Microbiol.6, 79 (2016).
  • Cotter PD , DraperLA, LawtonEMet al. Listeriolysin S, a novel peptide haemolysin associated with a subset of lineage I Listeria monocytogenes. PLoS Pathog. 4 (9), e1000144 (2008).
  • Quereda JJ , DussurgetO, NahoriMAet al. Bacteriocin from epidemic Listeria strains alters the host intestinal microbiota to favor infection. Proc. Natl Acad. Sci. USA 113 (20), 5706–5711 (2016).
  • Cotter PD , RossRP, HillC. Bacteriocins – a viable alternative to antibiotics?Nat. Rev. Microbiol.11 (2), 95–105 (2013).
  • Kommineni S , BretlDJ, LamVet al. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature 526 (7575), 719–722 (2015).
  • Rea MC , SitCS, ClaytonEet al. Thuricin CD, a post-translationally modified bacteriocin with a narrow spectrum of activity against Clostridium difficile. Proc. Natl Acad. Sci. USA 107 (20), 9352–9357 (2010).
  • Lebreton AS , StavruF, BrisseS, CossartP. 1926–2016: 90 Years of listeriology.Microbes Infect.18 (12), 711–723 (2016).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.