485
Views
0
CrossRef citations to date
0
Altmetric
Review

Short-chain Fatty Acids: A Link Between Prebiotics And Microbiota In Chronic Kidney Disease

, , , &
Pages 1413-1425 | Received 04 Apr 2017, Accepted 18 Jul 2017, Published online: 13 Oct 2017

References

  • NKF-KDIGO . KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease.Kidney Int.3, 5 – 6 (2013).
  • Barros AF , BorgesNA, FerreiraDCet al. Is there interaction between gut microbial profile and cardiovascular risk in chronic kidney disease patients? Future Microbiol. 10 (4), 517 – 526 (2015).
  • Mafra D , LoboJC, BarrosAF, KoppeL, VaziriND, FouqueD. Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease.Future Microbiol.9 (3), 399 – 410 (2014).
  • Vaziri ND . CKD impairs barrier function and alters microbial flora of the intestine: a major link to inflammation and uremic toxicity.Curr. Opin. Nephrol. Hypertens.21 (6), 587 – 592 (2012).
  • Schippa S , ConteMP. Dysbiotic events in gut microbiota: impact on human health.Nutrients6 (12), 5786 – 5805 (2014).
  • Esgalhado M , BorgesNA, MafraD. Could physical exercise help modulate the gut microbiota in chronic kidney disease?Future Microbiol.11, 699 – 707 (2016).
  • Thaiss CA , ZmoraN, LevyM, ElinavE. The microbiome and innate immunity.Nature535 (7610), 65 – 74 (2016).
  • Prakash S , RodesL, Coussa-CharleyM, Tomaro-DuchesneauC. Gut microbiota: next frontier in understanding human health and development of biotherapeutics.Biologics5, 71 – 86 (2011).
  • Edwards JK . Altered gut microbiota in CKD.Nat. Rev. Nephrol.12 (3), 126 (2016).
  • Vaziri ND , WongJ, PahlMet al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 83 (2), 308 – 315 (2013).
  • Simenhoff ML , SaukkonenJJ, BurkeJF, WessonLG, SchaedlerRW, GordonSJ. Bacterial populations of the small intestine in uremia.Nephron22 (1–3), 63 – 68 (1978).
  • Carney EF . Chronic kidney disease: microbiota trigger inflammation.Nat. Rev. Nephrol.12 (7), 376 (2016).
  • Lau WL , Kalantar-ZadehK, VaziriND. The gut as a source of inflammation in chronic kidney disease.Nephron130 (2), 92 – 98 (2015).
  • Mafra D , BarrosAF, FouqueD. Dietary protein metabolism by gut microbiota and its consequences for chronic kidney disease patients.Future Microbiol.8 (10), 1317 – 1323 (2013).
  • Hauser AB , StinghenAEM, GonçalvesSM, BucharlesS, Pecoits-filhoRA. Gut feeling on endotoxemia: causes and consequences in chronic kidney disease.Nephron Clin. Pract.118 (2), c165 – c172 (2011).
  • National Kidney Foundation . K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification and stratification. Part 7. Stratification of risk for progression of kidney disease and development of cardiovascular disease, guideline 15. Association of chronic kidney disease with cardiovascular disease.Am. J. Kidney. Dis.39 (Suppl. 1), S238 – S250 (2002).
  • Ramezani A , RajDS. The gut microbiome, kidney disease and targeted interventions.J. Am. Soc. Nephrol.25 (4), 657 – 670 (2014).
  • Kieffer DA , PiccoloBD, VaziriNDet al. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. Am. J. Physiol. Renal Physiol. 310 (9), F857 – F871 (2016).
  • Rossi M , JohnsonDW, MorrisonMet al. Synbiotics easing renal failure by improving gut microbiology (SYNERGY): a randomized trial. Clin. J. Am. Soc. Nephrol. 11 (2), 223 – 231 (2016).
  • Pavan M . Influence of prebiotic and probiotic supplementation on the progression of chronic kidney disease.Minerva Urol. Nefrol.68 (2), 222 – 226 (2016).
  • Salmean YA , SegalMS, PaliiSP, DahlWJ. Fiber supplementation lowers plasma p-cresol in chronic kidney disease patients.J. Ren. Nutr.25 (3), 316 – 320 (2015).
  • Vaziri ND , LiuSM, LauWLet al. High amylose resistant starch diet ameliorates oxidative stress, inflammation and progression of chronic kidney disease. PLoS ONE 9 (12), e114881 (2014).
  • Sirich TL , PlummerNS, GardnerCD, HostetterTH, MeyerTW. Effect of increasing dietary fiber on plasma levels of colon-derived solutes in hemodialysis patients.Clin. J. Am. Soc. Nephrol.9 (9), 1603 – 1610 (2014).
  • Koppe L , PillonNJ, VellaREet al. p-cresyl sulfate promotes insulin resistance associated with CKD. J. Am. Soc. Nephrol. 24 (1), 88 – 99 (2013).
  • Meijers BK , De PreterV, VerbekeK, VanrenterghemY, EvenepoelP. p-cresyl sulfate serum concentrations in hemodialysis patients are reduced by the prebiotic oligofrutose-enriched inulin.Nephrol. Dial. Transplant.25 (1), 219 – 224 (2010).
  • Gibson GR , ScottKP, RastallRAet al. Dietary prebiotics: current status and new definition. Food Sci. Technol. Bull. Funct. Foods 7, 1 – 19 (2010).
  • Salehi-Abargouei A , GhiasvandR, HaririM. Prebiotics, prosynbiotics and synbiotics: can they reduce plasma oxidative stress parameters? A systematic review.Probiotics Antimicrob. Proteins9 (1), 1 – 11 (2017).
  • Valcheva R , DielemanLA. Prebiotics: definition and protective mechanisms.Best Pract. Res. Clin. Gastroenterol.30 (1), 27 – 37 (2016).
  • Slavin J . Fiber and prebiotics: mechanisms and health benefits.Nutrients5 (4), 1417 – 1435 (2013).
  • Ríos-Covián D , Ruas-MadiedoP, MargollesA, GueimondeM, de Los Reyes-GavilánCG, SalazarN. Intestinal short chain fatty acids and their link with diet and human health.Front. Microbiol.7, 185 (2016).
  • Puddu A , SanguinetiR, MontecuccoF, VivianiGL. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes.Mediators Inflamm.2014, 162021 (2014).
  • Layden BT , AngueiraAR, BrodskyM, DuraiV, LoweWLJr. Short chain fatty acids and their receptors: new metabolic targets.Transl. Res.161 (3), 131 – 140 (2013).
  • Mitreva M . Human microbiome project consortium. Structure, function and diversity of the healthy human microbiome.Nature486 (7402), 207 – 214 (2012).
  • Power SE , O'ToolePW, StantonC, RossRP, FitzgeraldGF. Intestinal microbiota, diet and health.Br. J. Nutr.111 (3), 387 – 402 (2014).
  • Parks BW , NamE, KostemEet al. Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab. 17 (1), 141 – 152 (2013).
  • Icaza-Chávez ME . Gut microbiota in health and disease.Rev. Gastroenterol. Mex.78, 240 – 248 (2013).
  • Sommer F , BäckhedF. The gut microbiota-masters of host development and physiology.Nat. Rev. Microbiol.11 (4), 227 – 238 (2013).
  • Marteau P . Bacterial flora in inflammatory bowel disease.Dig. Dis.27 (Suppl. 1), 99 – 103 (2009).
  • Ley RE , TurnbaughPJ, KleinS, GordonJI. Microbial ecology: human gut microbes associated with obesity.Nature444 (7122), 1022 – 1023 (2006).
  • Manco M , PutignaniL, BottazzoGF. Gut microbiota, lipopolysaccharides and innate immunity in the pathogenesis of obesity and cardiovascular risk.Endocr. Rev.31 (6), 817 – 844 (2010).
  • Cani PD , BibiloniR, KnaufCet al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57 (6), 1470 – 1481 (2008).
  • Seki E , BrennerDA. Toll-like receptors and adaptor molecules in liver disease: update.Hepatology48 (1), 322 – 335 (2008).
  • Tawadros PS , PowersKA, AilenbergMet al. Oxidative stress increases surface toll-like receptor 4 expression in murine macrophages via ceramide generation. Shock 44 (2), 157 – 165 (2015).
  • Hida M , AibaY, SawamuraS, SuzukiN, SatohT, KogaY. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis.Nephron74 (2), 349 – 355 (1996).
  • Wang F , JiangH, ShiK, RenY, ZhangP, ChengS. Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients.Nephrology (Carlton)17 (8), 733 – 738 (2012).
  • Shi K , WangF, JiangHet al. Gut bacterial translocation may aggravate microinflammation in hemodialysis patients. Dig. Dis. Sci. 59 (9), 2109 – 2117 (2014).
  • Lau WL , VaziriND. Urea, a true uremic toxin: the empire strikes back.Clin. Sci. (Lond).131 (1), 3 – 12 (2017).
  • Stockler-Pinto MB , SaldanhaJF, YiD, MafraD, FouqueD, SoulageCO. The uremic toxin indoxyl sulfate exacerbates reactive oxygen species production and inflammation in 3T3-L1 adipose cells.Free Radic. Res.50 (3), 337 – 344 (2016).
  • Adelibieke Y , YisireyiliM, NgHY, SaitoS, NishijimaF, NiwaT. Indoxyl sulfate induces IL-6 expression in vascular endothelial and smooth muscle cells through OAT3-mediated uptake and activation of AhR/NF-κB pathway.Nephron Exp. Nephrol.128 (1–2), 1 – 8 (2014).
  • Gross P , MassyZA, HenautLet al. Para-cresyl sulfate acutely impairs vascular reactivity and induces vascular remodeling. J. Cell Physiol. 230 (12), 2927 – 2935 (2015).
  • Bolati D , ShimizuH, YisireyiliM, NishijimaF, NiwaT. Indoxyl sulfate, a uremic toxin, downregulates renal expression of Nrf2 through activation of NF-kappaB.BMC Nephrol.14, 56 – 45 (2013).
  • Borges NA , BarrosAF, NakaoLS, DolengaCJ, FouqueD, MafraD. Protein-bound uremic toxins from gut microbiota and inflammatory markers in chronic kidney disease.J. Ren. Nutr.26 (6), 396 – 400 (2016).
  • Fernandez-Prado R , EsterasR, Perez-GomezMVet al. Nutrients turned into toxins: microbiota of nutrient properties in chronic kidney disease. Nutrients 9 (5), pii: E489 (2017).
  • Watanabe I , TatebeJ, NambaS, KoizumiM, YamazakiJ, MoritaT. Activation of aryl hydrocarbon receptor mediates indoxyl sulfate-induced monocyte chemoattractant protein-1 expression in human umbilical vein endothelial cells.Circ. J.77 (1), 224 – 230 (2013).
  • Wu IW , HsuKH, LeeCCet al. p-cresyl sulphate and indoxyl sulphate predict progression of chronic kidney disease. Nephrol. Dial. Transplant. 26 (3), 938 – 947 (2011).
  • Rossi M , CampbellKL, JohnsonDWet al. Protein-bound uremic toxins, inflammation and oxidative stress: a cross-sectional study in stage 3–4 chronic kidney disease. Arch. Med. Res. 45 (4), 309 – 317 (2014).
  • Dou L , SalléeM, CeriniCet al. The cardiovascular effect of the uremic solute indole-3 acetic acid. J. Am. Soc. Nephrol. 26 (4), 876 – 887 (2014).
  • Gibson GR , RoberfroidMB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics.J. Nutr.125 (6), 1401 – 1412 (1995).
  • Gibson GR , ProbertHM, LooJV, RastallRA, RoberfroidMB. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics.Nutr. Res. Rev.17 (2), 259 – 275 (2004).
  • Barczynska R , BandurskaK, SlizewskaKet al. Intestinal microbiota, obesity and prebiotics. Pol. J. Microbiol. 64 (2), 93 – 100 (2015).
  • Reid G , BruceAW, FraserN, HeinemannC, OwenJ, HenningB. Oral probiotics can resolve urogenital infections.FEMS Immunol. Med. Microbiol.30 (1), 49 – 52 (2001).
  • Dong JY , SzetoIM, MakinenKet al. Effect of probiotic fermented milk on blood pressure: a meta-analysis of randomised controlled trials. Br. J. Nutr. 110 (7), 1188 – 1194 (2013).
  • Sanchez M , DarimontC, DrapeauVet al. Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women. Br. J. Nutr. 111 (8), 1507 – 1519 (2014).
  • McNaught AD , WilkinsonA. IUPAC: Compendium of Chemical Terminology (2nd Edition). Blackwell Scientific Publications, Oxford, UK (1997).
  • Peti-Peterdi J , KishoreBK, PluznickJL. Regulation of vascular and renal function by metabolite receptors.Annu. Rev. Physiol.78, 391 – 414 (2016).
  • Morrison DJ , PrestonT. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism.Gut Microbes7 (3), 189 – 200 (2016).
  • Kim CH , ParkJ, KimM. Gut microbiota-derived short-chain fatty acids, T cells and inflammation.Immune Netw.14 (6), 277 – 288 (2014).
  • den Besten G , van EunenK, GroenAK, VenemaK, ReijngoudDJ, BakkerBM. The role of short-chain fatty acids in the interplay between diet, gut microbiota and host energy metabolism.J. Lipid Res.54 (9), 2325 – 2340 (2013).
  • Canfora EE , JockenJW, BlaakEE. Short-chain fatty acids in control of body weight and insulin sensitivity.Nat. Rev. Endocrinol.11 (10), 577 – 591 (2015).
  • Liu B , QianJ, WangQ, WangF, MaZ, QiaoY. Butyrate protects rat liver against total hepatic ischemia reperfusion injury with bowel congestion.PLoS ONE9 (8), e106184 (2014).
  • Chambers ES , ViardotA, PsichasAet al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 64 (11), 1744 – 1754 (2015).
  • Ge H , LiX, WeiszmannJet al. Activation of G protein-coupled receptor 43 in adipocytes leads to inhibition of lipolysis and suppression of plasma free fatty acids. Endocrinol. 149 (9), 4519 – 4526 (2008).
  • de Vadder F , Kovatcheva-DatcharyP, GoncalvesDet al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell 156 (1–2), 84 – 96 (2014).
  • Cani PD , NeyrinckAM, MatonN, DelzenneNM. Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like peptide-1.Obesity Res.13 (6), 1000 – 1007 (2005).
  • Zhou J , MartinRJ, TulleyRTet al. Dietary resistant starch upregulates total GLP1 and PYY in a sustained day-long manner through fermentation in rodents. Am. J. Physiol. Endocrinol. Metab. 295 (5), E1160 – E1166 (2008).
  • Maslowski KM , VieiraAT, NgAet al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461 (7268), 1282 – 1286 (2009).
  • Bjursell M , AdmyreT, GoranssonMet al. Improved glucose control and reduced body fat mass in free fatty acid receptor 2-deficient mice fed a high-fat diet. Am. J. Physiol. 300 (1), E211 – E220 (2010).
  • Tolhurst G , HeffronH, LamYSet al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 61 (2), 364 – 371 (2012).
  • Kimura I , OzawaK, InoueDet al. The gut microbiota suppresses insulin-mediated fat accumulation via the short-chain fatty acid receptor GPR43. Nat. Commun. 4, 1829 (2013).
  • Arpaia N , CampbellC, FanXYet al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504 (7480), 451 – 455 (2013).
  • Mattace Raso G , SimeoliR, RussoRet al. Effects of sodium butyrate and its synthetic amide derivative on liver inflammation and glucose tolerance in an animal model of steatosis induced by high fat diet. PLoS ONE 8 (7), e68626 (2013).
  • Frost G , SleethML, Sahuri-ArisoyluMet al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 5, 3611 (2014).
  • Liu J , KandasamyS, ZhangJet al. Prebiotic effects of diet supplemented with the cultivated red seaweed Chondrus crispus or with fructo-oligosaccharide on host immunity, colonic microbiota and gut microbial metabolites. BMC Complement Altern. Med. 15, 279 (2015).
  • Qiao YL , QianJM, WangFR, MaZY, WangQW. Butyrate protects liver against ischemia reperfusion injury by inhibiting nuclear factor kappa B activation in Kupffer cells.J. Surg. Res.187 (2), 653 – 659 (2014).
  • Psichas A , SleethML, MurphyKGet al. The short chain fatty acid propionate stimulates GLP1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. (Lond). 39 (3), 424 – 429 (2014).
  • Segain JP , Raingeard de la BlétièreD, BourreilleAet al. Butyrate inhibits inflammatory responses through NFκB inhibition: implications for Crohn's disease. Gut 47 (3), 397 – 403 (2000).
  • Lührs H , GerkeT, MüllerJGet al. Butyrate inhibits NF-kappaB activation in lamina propria macrophages of patients with ulcerative colitis. Scand. J. Gastroenterol. 37 (4), 458 – 466 (2002).
  • Cani PD , LecourtE, DewulfEMet al. Gut microbiota fermentation of prebiotics increases satietogenic and incretin gut peptide production with consequences for appetite sensation and glucose response after a meal. Am. J. Clin. Nutr. 90 (5), 1236 – 1243 (2009).
  • Freeland KR , WoleverTM. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-alpha.Br. J. Nutr.103 (3), 460 – 466 (2010).
  • Fernandes J , VogtJ, WoleverTM. Intravenous acetate elicits a greater free fatty acid rebound in normal than hyperinsulinaemic humans.Eur. J. Clin. Nutr.66 (9), 1029 – 1034 (2012).
  • Chen C , YuX, LuH, XiaoD, MaoW, LiL. Antioxidant protective effects of lactitol against endotoxemia in patients with chronic viral hepatitis.Mol. Med. Rep.7 (2), 401 – 405 (2013).
  • Pourghassem Gargari B , DehghanP, AliasgharzadehA, Asghari Jafar-AbadiM. Effects of high performance inulin supplementation on glycemic control and antioxidant status in women with Type 2 diabetes.Diabetes Metab. J.37 (2), 140 – 148 (2013).
  • Cosola C , De AngelisM, RocchettiMTet al. Beta-glucans supplementation associates with reduction in P-cresyl sulfate levels and improved endothelial vascular reactivity in healthy individuals. PLoS ONE 12 (1), e0169635 (2017).
  • Tedelind S , WestbergF, KjerrulfM, VidalA. Anti-inflammatory properties of the short-chain fatty acids acetate and propionate: a study with relevance to inflammatory bowel disease.World J. Gastroenterol.13 (20), 2826 – 2832 (2007).
  • Nastasi C , CandelaM, BonefeldCMet al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci. Rep. 5, 16148 (2015).
  • Chen H , ChenL, LiuDet al. A combined clinical phenotype and lipidomic analysis reveals the impact of chronic kidney disease on lipid metabolism. J. Proteome Res. doi:10.1021/acs.jproteome.6b00956 (2017 ) ( Epub ahead of print).
  • Koppe L , PelletierCC, AlixPMet al. Insulin resistant in chronic kidney disease: new lessons from experimental models. Nephrol. Dial. Transplant. 29 (9), 1666 – 1674 (2014).
  • Hill NR , FatobaST, OkeJLet al. Global prevalence of chronic kidney disease – a systematic review and meta-analysis. PLoS ONE 11 (7), e0158765 (2016).
  • Machowska A , CarreroJJ, LindholmB, StenvinkelP. Therapeutics targeting persistent inflammation in chronic kidney disease.Transl. Res.167 (1), 204 – 213 (2016).
  • Modaresi A , NafarM, SahraeiZ. Oxidative stress in chronic kidney disease.Iran J. Kidney Dis.9 (3), 165 – 179 (2015).
  • Pashkow FJ . Oxidative stress and inflammation in heart disease: do antioxidants have a role in treatment and/or prevention?Int. J. Inflam.2011, 514623 (2011).
  • Kobayashi M , MikamiD, KimuraHet al. Short-chain fatty acids, GPR41 and GPR43, ligands, inhibit TNF-α-induced MCP 1 expression by modulating p38 and JNK signaling pathways in human renal cortical epithelial cells. Biochem. Biophys. Res. Commun. 486 (2), 499 – 505 (2017).
  • Andrade-Oliveira V , AmanoMT, Correa-CostaMet al. Gut bacteria products prevent AKI induced by ischemia-reperfusion. J. Am. Soc. Nephrol. 26 (8), 1877 – 1888 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.