215
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Function of Glutaredoxin 3 (Grx3) in Oxidative Stress Response Caused by Iron Homeostasis Disorder in Candida Albicans

, , , , , , , , & show all
Pages 1397-1412 | Received 31 May 2017, Accepted 14 Aug 2017, Published online: 17 Oct 2017

References

  • Lillig C , BerndtC. Glutaredoxins in thiol/disulfide exchange.Anioxid. Redox. Sign.18 (13), 1654 – 1665 (2013).
  • Holmgren A . Glutathione-dependent synthesis of deoxyribonucleotides. Purification and characterization of glutaredoxin from Escherichia coli.J. Biol. Chem.254 (9), 3664 – 3671 (1979).
  • Isakov N , WitteS, AltmanA. PICOT-HD: a highly conserved protein domain that is often associated with thioredoxin and glutaredoxin modules.Trends Biochem. Sci.25 (11), 537 – 539 (2000).
  • Luikenhuis S , PerroneG, DawesIWet al. The yeast Saccharomyces cerevisiae contains two glutaredoxin genes that are required for protection against reactive oxygen species. Mol. Biol. Cell. 9 (5), 1081 – 1091 (1998).
  • Porras P , PadillaC, VoosWet al. One single in-frame AUG codon is responsible for a diversity of subcellular localizations of glutaredoxin 2 in Saccharomyces cerevisiae. J. Biol. Chem. 281 (24), 16551 – 16562 (2006).
  • Collinson E , WheelerG, GarridoEet al. The yeast glutaredoxins are active as glutathione peroxidases. J. Biol. Chem. 277 (19), 16712 – 16717 (2002).
  • Johansson C , LilligC, HolmgrenA. Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase.J. Biol. Chem.279 (9), 7537 – 7543 (2004).
  • Lillig C , BerrndtC, VergnolleOet al. Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor. Proc. Natl Acad. Sci. USA 102 (23), 8168 – 8173 (2005).
  • Herrero E , MaT. Monothiol glutaredoxins: a common domain for multiple functions.Cell. Mol. Life Sci.64 (12), 1518 – 1530 (2007).
  • Stehling O , LillR. Biogenesis of iron-sulfur proteins in eukaryotes: mechanisms, diseases and role in DNA maintenance.Yeast30 (S1), 23 (2013).
  • Yamaguchiiwai Y , UetaR, FukunakaAet al. Subcellular localization of Aft1 transcription factor responds to iron status in Saccharomyces cerevisiae. J. Biol. Chem. 277 (21), 18914 – 18918 (2002).
  • Pujolcarrion N , BelliG, HerreroEet al. Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J. Cell. Sci. 119 (Pt 21), 4554 – 4564 (2006).
  • Ojeda L , KellerG, MuhlenhoffUet al. Role of glutaredoxin-3 and glutaredoxin-4 in the iron regulation of the Aft1 transcriptional activator in Saccharomyces cerevisiae. J. Biol. Chem. 281 (26), 17661 – 17669 (2006).
  • Cheng N , ZhangW, ChenWet al. A mammalian monothiol glutaredoxin, Grx3, is critical for cell cycle progression during embryogenesis. FEBS J. 278 (14), 2525 – 2539 (2011).
  • Haunhorst P , HanschmannE, BräutigamLet al. Crucial function of vertebrate glutaredoxin 3(PICOT) in iron homeostasis and hemoglobinmaturation. Mol. Biol. Cell. 24 (12), 1895 – 1903 (2013).
  • Rodríguez-Manzaneque M , TamaritJ, BellíGet al. Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzymes. Mol. Biol. Cell. 13 (4), 1109 – 1121 (2002).
  • Li S . Redox modulation matters: emerging functions for glutaredoxins in plant development and stress responses.Plants3 (4), 559 – 582 (2014).
  • Chaves G , DaS. Superoxide dismutases and glutaredoxins have a distinct role in the response of Candida albicans to oxidative stress generated by the chemical compounds menadione and diamide.Mem. Inst. Oswaldo Cruz.107 (8), 998 – 1005 (2012).
  • Hentze M , MuckenthalerM, AndrewsN. Balancing acts: molecular control of mammalian iron metabolism.Cell117 (3), 285 – 297 (2004).
  • Theil E , GossD. Living with iron (and oxygen): questions and answers about iron homeostasis.Chem. Rev.109 (10), 4568 – 4579 (2009).
  • Meneghini R . Iron homeostasis, oxidative stress, and DNA damage.Free Radic. Biol. Med.23 (5), 783 – 792 (1997).
  • Winterbourn C . Toxicity of iron and hydrogen peroxide: the Fenton reaction.Toxlcol Lett.82–83, 969 – 974 (1995).
  • Kaplan C , KaplanJ. Iron acquisition and transcriptional regulation.Chem. Rev.109 (10), 4536 – 4552 (2009).
  • Shakouryelizeh M , TiedemanJ, RashfordJet al. Transcriptional remodeling in response to iron deprivation in Saccharomyces cerevisiae. Mol. Biol. Cell. 15 (3), 1233 – 1243 (2004).
  • Philpott C . Iron uptake in fungi: a system for every source.Biochim. Biophys. Acta1763 (7), 636 – 645 (2006).
  • Blaiseau P , LesuisseE, CamadroJ. Aft2p, a novel iron-regulated transcription activator that modulates, with Aft1p, intracellular iron use and resistance to oxidative stress in yeast.J. Biol. Chem.276 (36), 34221 – 34226 (2001).
  • Philpott C , ProtchenkoO. Response to iron deprivation in Saccharomyces cerevisiae.Eukaryot. Cell7 (1), 20 – 27 (2008).
  • Kumánovic A , ChenO, BagleyDet al. Identification of FRA1 and FRA2 as genes involved in regulating the yeast iron regulon in response to decreased mitochondrial iron-sulfur cluster synthesis. J. Biol. Chem. 283 (16), 10276 – 10286 (2008).
  • Jacques J , AercierA, BraultAet al. Fra2 Is a co-regulator of Fep1 inhibition in response to iron starvation. PLoS ONE 9 (6), 1582 – 1597 (2014).
  • Dedo DJ , GabrielliN, CarmonaMet al. A cascade of iron-containing proteins governs the genetic iron starvation response to promote iron uptake and inhibit iron storage in fission yeast. PLoS Genet. 11 (3), e1005106 (2015).
  • Nishal B , SharmaA, KumarRet al. A novel mechanism of drug resistance to an anticancer drug, temoxifen unveiled through interference with iron homeostasis. Curr. Trends Biotechnol. Chem. Res. 1 (2), 127 – 131 (2012).
  • Rutherford J , JaronS, WingeD. Aft1p and Aft2p mediate iron-responsive gene expression in yeast through related promoter elements.J. Biol. Chem.278 (30), 27636 – 27643 (2003).
  • Xu N , ChengX, YuQet al. Aft2, a novel transcription regulator, is required for iron metabolism, oxidative stress, surface adhesion and hyphal development in Candida albicans. PLos ONE 8 (4), e62367 (2013).
  • Singhi S , DeepA. Invasive candidiasis in pediatric intensive care units.Indian J. Pediatr.76 (10), 1033 – 1044 (2009).
  • Cheng M , LiuJ, LinCet al. Risk factors for fatal candidemia caused by Candida albicans and non-albicans Candida species. BMC Infect. Dis. 5 (1), 22 – 27 (2005).
  • Wong H , KawasakiT, ShimamotoK. Rac GTPase and the regulation of NADPH oxidase in rice innate immunity response. In : Advances in Genetics Genomics and Control of Rice Blast Disease. WangGL, ValentB( Eds ). Springer, 173 – 178 (2009).
  • Reczek C , ChandelN. ROS-dependent signal transduction.Curr. Opin. Cell Biol.33, 8 – 13 (2015).
  • Cross C , HalliwellB, BorishEet al. Oxygen radicals and human disease. Ann. Intern. Med. 107 (4), 526 – 545 (1987).
  • Enjalbert B , NantelA, WhitewayM. Stress-induced gene expression in Candida albicans: absence of a general stress response.Mol. Biol Cell.14 (4), 1460 – 1467 (2003).
  • Enjalbert B , SmithD, CornellMet al. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Mol. Biol. Cell. 17 (2), 1018 – 1032 (2006).
  • Li H , XuH, GrahamDet al. Glutathione synthetase homologs encode α-L-glutamate ligases for methanogenic coenzyme F420 and tetrahydrosarcinapterin biosyntheses. Proc. Natl Acad. Sci. USA 100 (17), 9785 – 9790 (2003).
  • Jones D . Redox potential of GSH/GSSG couple: assay and biological significance.Method. Enzymol.348 (1), 93 – 112 (2002).
  • Noble S , JohnsonD. Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans.Eukaryot. Cell4 (2), 298 – 309 (2005).
  • Jones D . Redox potential of GSH/GSSG couple: assay and biological significance.Methods Enzymol.348 (1), 93 – 112 (2002).
  • Wilson R , DavisD, MitchellA. Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions.J. Bacteriol.181 (6), 1868 – 1874 (1999).
  • Tasdemir E , MaiuriMC, TajeddineNet al. Cell cycle-dependent induction of autophagy, mitophagy and reticulophagy. Cell Cycle 6 (18), 2263 – 2267 (2007).
  • Kobayashi D , KondoK, UeharaNet al. Endogenous reactive oxygen species is an important mediator of miconazole antifungal effect. Animicrob. Agents Chemother. 46 (10), 3113 – 3117 (2002).
  • Hsu P , YangC, LanC. Candida albicans Hap43 is a repressor induced under low-iron conditions and is essential for iron-responsive transcriptional regulation and virulence.Eukaryot. Cell10 (2), 207 – 225 (2011).
  • Jia C , ZhangK, YuQet al. Tfp1 is required for ion homeostasis, fluconazole resistance and N-Acetylglucosamine utilization in Candida albicans. Biochim. Biophys. Acta 1853 (10), 2731 – 2744 (2015).
  • Lillig C , BerndtC, HolmgrenA. Glutaredoxin systems.Biochim. Biophys. Acta1780 (11), 1304 – 1317 (2008).
  • NCBI Database . http://blast.nlm.nih.gov/Blast.cgi.
  • Candida Genome Database . http://www.candidagenome.org/.
  • Pujolcarrion N , BelliG, HerreroEet al. Glutaredoxins Grx3 and Grx4 regulate nuclear localisation of Aft1 and the oxidative stress response in Saccharomyces cerevisiae. J. Cell. Sci. 119 (21), 4554 – 4564 (2006).
  • Rutherford J , JaronS, RayEet al. A second iron-regulatory system in yeast independent of Aft1p. Proc. Natl Acad. Sci. USA 98 (25), 14322 – 14329 (2001).
  • Dlouhy A , OuttenE. The iron metallome in eukaryotic organisms.Met. Ions Life Sci.12 (12), 241 – 278 (2013).
  • Xu N , ChengX, YuQet al. Identification and functional characterization of mitochondrial carrier Mrs4 in Candida albicans. FEMS Yeast Res. 12 (7), 844 – 858 (2012).
  • Wang Y , CaoY, JiaXet al. Cap1p is involved in multiple pathways of oxidative stress response in Candida albicans. Free Radic. Biol. Med. 40 (7), 1201 – 1209 (2006).
  • Zhang B , YuQ, WangYet al. The Candida albicans fimbrin Sac6 regulates oxidative stress response (OSR) and morphogenesis at the transcriptional level. Biochim. Biophys. Acta 1863 (9), 2255 – 2266 (2016).
  • Zitka O , SkalickovaS, GumulecJet al. Redox status expressed as GSH:GSSG ratio as a marker for oxidative stress in paediatric tumour patients. Oncol. Lett. 4 (6), 1247 – 1253 (2012).
  • Imlay J , ChinS, LinnS. Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro.Science240 (4852), 640 – 643 (1988).
  • Agarwal R , ShuklaG. Potential role of cerebral glutathione in the maintenance of blood–brain barrier integrity in rat.Neurochem. Res.24 (12), 1507 – 1514 (1999).
  • Holmgren A . Thioredoxin and glutaredoxin systems.J. Biol. Chem.264 (24), 13963 – 13966 (1989).
  • Holmgren A , AslundF. Glutaredoxin.Method. Enzymol.252 (1), 283 – 292 (1995).
  • Mathews C . Deoxyribonucleotides as genetic and metabolic regulators.FASEB J.28 (9), 3832 – 3840 (2014).
  • Zhang L , TngL, YingSet al. Regulative roles of glutathione reductase and four glutaredoxins in glutathione redox, antioxidant activity, and iron homeostasis of Beauveria bassiana. Appl. Microbiol. Biot. 100 (13), 5907 – 5917 (2016).
  • Martínez-Pastor M , Perea-GarcíaA, PuigS. Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae.World J. Microb. Biotechnol.33 (4), 75 (2017).
  • Chen C , PandeK, FrenchSet al. An iron homeostasis regulatory circuit with reciprocal roles in Candida albicans commensalism and pathogenesis. Cell Host Microbe 10 (2), 118 – 135 (2011).
  • Cuéllarcruz M , LópezromeroE, RuizbacaEet al. Differential response of Candida albicans and Candida glabrata to oxidative and nitrosative stresses. Curr. Microbiol. 69 (5), 733 – 739 (2014).
  • Pujol-Carrion N , Torre-RuizM. Physical interaction between the MAPK Slt2 of the PKC1-MAPK pathway and Grx3/Grx4 glutaredoxins is required for the oxidative stress response in budding yeast.Free Radic. Biol. Med.103, 107 – 120 (2016).
  • Schippers J , NguyenH, LuDet al. ROS homeostasis during development: an evolutionary conserved Strategy. Cell. Mol. Life Sci. 64 (19), 3245 – 3257 (2012).
  • Luchowskakocot D . Iron in medicine and treatment.J. Elementol.19 (3), 889 – 902 (2014).
  • Khan M , MohammadA, PatilGet al. Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 33 (5), 1477 – 1488 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.