239
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Protein–Protein Interactions of HPV–Chlamydia Trachomatis–Human and their Potential in Cervical Cancer

, , &
Pages 509-520 | Received 25 Aug 2019, Accepted 03 Mar 2020, Published online: 01 Jun 2020

References

  • Vos T , FlaxmanAD, NaghaviMet al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet380(9859), 2163–2196 (2012).
  • Paavonen J . Chlamydia trachomatis and cancer. Sex. Transm. Infect.77(3), 154–156 (2001).
  • Anttila T , SaikkuP, KoskelaPet al. Serotypes of Chlamydia trachomatis and risk for development of cervical squamous cell carcinoma. JAMA285(1), 47–51 (2001).
  • WHO . Human papillomavirus (HPV) and cervical cancer. http://www.who.int/mediacentre/factsheets/fs380/en/
  • Siegel RL , MillerKD, JemalA. Cancer Statistics, 2017. CA Cancer J. Clin.67(1), 7–30 (2017).
  • Silva J , CerqueiraF, MedeirosR. Chlamydia trachomatis infection: implications for HPV status and cervical cancer. Arch. Gynecol. Obstet.289(4), 715–723 (2014).
  • Seraceni S , DeSeta F, ColliCet al. High prevalence of HPV multiple genotypes in women with persistent Chlamydia trachomatis infection. Infect. Agent Cancer9, 30 (2014).
  • Madeleine MM , AnttilaT, SchwartzSMet al. Risk of cervical cancer associated with Chlamydia trachomatis antibodies by histology, HPV type and HPV cofactors. Int. J. Cancer120(3), 650–655 (2007).
  • Smith JS , BosettiC, MunozNet al. Chlamydia trachomatis and invasive cervical cancer: a pooled analysis of the IARC multicentric case-control study. Int. J. Cancer111(3), 431–439 (2004).
  • Contini C , SeraceniS, CarradoriS, CultreraR, PerriP, LanzaF. Identification of Chlamydia trachomatis in a patient with ocular lymphoma. Am. J. Hematol.84(9), 597–599 (2009).
  • Naucler P , ChenHC, PerssonKet al. Seroprevalence of human papillomaviruses and Chlamydia trachomatis and cervical cancer risk: nested case-control study. J. Gen. Virol.88(Pt 3), 814–822 (2007).
  • Tungsrithong N , KasinpilaC, ManeeninCet al. Lack of significant effects of Chlamydia trachomatis infection on cervical cancer risk in a nested case-control study in north-east Thailand. Asian Pac. J. Cancer Prev.15(3), 1497–1500 (2014).
  • Bhatla N , PuriK, JosephE, KriplaniA, IyerVK, SreenivasV. Association of Chlamydia trachomatis infection with human papillomavirus (HPV) and cervical intraepithelial neoplasia – a pilot study. Indian J. Med. Res.137(3), 533–539 (2013).
  • Schweppe DK , HardingC, ChavezJDet al. Host–microbe protein interactions during bacterial infection. Chem. Biol.22(11), 1521–1530 (2015).
  • Pais SV , KeyCE, BorgesVet al. CteG is a Chlamydia trachomatis effector protein that associates with the Golgi complex of infected host cells. Sci. Rep.9(1), 6133 (2019).
  • Olive AJ , HaffMG, EmanueleMJet al. Chlamydia trachomatis-induced alterations in the host cell proteome are required for intracellular growth. Cell Host Microb.15(1), 113–124 (2014).
  • Harris SR , ClarkeIN, Seth-SmithHMet al. Whole-genome analysis of diverse Chlamydia trachomatis strains identifies phylogenetic relationships masked by current clinical typing. Nat. Genet.44(4), 413–419S411 (2012).
  • Josefson D . Chlamydia increases risk of cervical cancer. BMJ322(7278), 71 (2001).
  • Consortium TU . Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res.42, D191–D198 (2014).
  • Garcia-Garcia J , SchlekerS, Klein-SeetharamanJ, OlivaB. BIPS: BIANA interolog prediction server. A tool for protein–protein interaction inference. Nucleic Acids Res.40, W147–W151 (2012).
  • Garcia-Garcia J , GuneyE, AraguesR, Planas-IglesiasJ, OlivaB. Biana: a software framework for compiling biological interactions and analyzing networks. BMC Bioinformatics11, 56 (2010).
  • Ammari MG , GreshamCR, MccarthyFM, NanduriB. HPIDB 2.0: a curated database for host-pathogen interactions. Database (Oxford)2016, baw103 (2016).
  • Finn RD , CoggillP, EberhardtRYet al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res.44(D1), D279–D285 (2016).
  • Yellaboina S , TasneemA, ZaykinDV, RaghavachariB, JothiR. DOMINE: a comprehensive collection of known and predicted domain–domain interactions. Nucleic Acids Res.39, D730–D735 (2011).
  • DOMPRINT: domain-domain interaction prediction server. http://crdd.osdd.net/raghava/domprint/index.html
  • Durmus Tekir S , CakirT, ArdicEet al. PHISTO: pathogen-host interaction search tool. Bioinformatics29(10), 1357–1358 (2013).
  • Shannon P , MarkielA, OzierOet al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res.13(11), 2498–2504 (2003).
  • Uhlen M , FagerbergL, HallstromBMet al. Proteomics. Tissue-based map of the human proteome. Science347(6220), 1260419 (2015).
  • Agarwal SM , RaghavD, SinghH, RaghavaGP. CCDB: a curated database of genes involved in cervix cancer. Nucleic Acids Res.39, D975–D979 (2011).
  • Mori S , Kusumoto-MatsuoR, IshiiY, TakeuchiT, KukimotoI. Replication interference between human papillomavirus types 16 and 18 mediated by heterologous E1 helicases. Virol. J.11, 11 (2014).
  • Kleba B , StephensRS. Chlamydial effector proteins localized to the host cell cytoplasmic compartment. Infect. Immun.76(11), 4842–4850 (2008).
  • Murakami Y , MizuguchiK. Homology-based prediction of interactions between proteins using averaged one-dependence estimators. BMC Bioinfo.15, 213 (2014).
  • Ramakrishnan G , SrinivasanN, PadmapriyaP, NatarajanV. Homology-based prediction of potential protein-protein interactions between human erythrocytes and Plasmodium falciparum. Bioinform. Biol. Insights.9, 195–206 (2015).
  • Matthews LR , VaglioP, ReboulJet al. Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or ‘interologs’. Genome Res.11(12), 2120–2126 (2001).
  • Huo T , LiuW, GuoY, YangC, LinJ, RaoZ. Prediction of host–pathogen protein interactions between Mycobacterium tuberculosis and Homo sapiens using sequence motifs. BMC Bioinformatics16, 100 (2015).
  • Espadaler J , Romero-IsartO, JacksonRM, OlivaB. Prediction of protein-protein interactions using distant conservation of sequence patterns and structure relationships. Bioinformatics21(16), 3360–3368 (2005).
  • Deng M , MehtaS, SunF, ChenT. Inferring domain-domain interactions from protein–protein interactions. Genome Res.12(10), 1540–1548 (2002).
  • Rejman Lipinski A , HeymannJ, MeissnerCet al. Rab6 and Rab11 regulate Chlamydia trachomatis development and golgin-84-dependent Golgi fragmentation. PLoS Pathog.5(10), e1000615 (2009).
  • Chen F , ChengW, ZhangS, ZhongG, YuP. Induction of IL-8 by Chlamydia trachomatis through MAPK pathway rather than NF-kappaB pathway. Zhong Nan Da Xue Xue Bao Yi Xue Ban35(4), 307–313 (2010) ( article in Chinese).
  • Khan AA , KhanZ, KalamMA. Inter-kingdom prediction certainty evaluation of protein subcellular localization tools: microbial pathogenesis approach for deciphering host microbe interaction. Brief. Bioinform.19(1), 12–22 (2016).
  • Denks K , SpaethEL, JoersKet al. Coinfection of Chlamydia trachomatis, Ureaplasma urealyticum and human papillomavirus among patients attending STD clinics in Estonia. Scand. J. Infect. Dis.39(8), 714–718 (2007).
  • Cai T , WagenlehnerFM, MondainiNet al. Effect of human papillomavirus and Chlamydia trachomatis coinfection on sperm quality in young heterosexual men with chronic prostatitis-related symptoms. BJU Int.113(2), 281–287 (2014).
  • Igansi CN , DosSantos VK, DRMet al. HPV and Chlamydia trachomatis genital infection among nonsymptomatic women: prevalence, associated factors and relationship with cervical lesions. Cad. Saude. Colet.20(3), 287–296 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.