6,533
Views
0
CrossRef citations to date
0
Altmetric
Review

Existing Antiviral Options Against SARS-CoV-2 Replication in COVID-19 Patients

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1747-1758 | Received 20 May 2020, Accepted 18 Nov 2020, Published online: 06 Jan 2021

References

  • Guo YR , CaoQD , HongZSet al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil. Med. Res.7(1), 1–10 (2020).
  • Hui DS , AzharEI , MadaniTAet al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health—the latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis.91, 264–266 (2020).
  • Whitworth J . COVID-19: a fast evolving pandemic. Trans. R. Soc. Trop. Med. Hyg.114(4), 241–248 (2020).
  • World Health Organization . Coronavirus disease 2019 (COVID-19) situation report – 91 (2020). http://www.who.int/docs/default-source/coronaviruse/situation-reports/20200420-sitrep-91-covid-19.pdf
  • Lu R , ZhaoX , LiJet al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet395(10224), 565–574 (2020).
  • Ye ZW , YuanS , YuenKS , FungSY , ChanCP , JinDY. Zoonotic origins of human coronaviruses. Int. J. Biol. Sci.16(10), 1686–1697 (2020).
  • Li G , DeClercq E. Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat. Rev. Drug. Discov.19(3), 149–150 (2020).
  • Sohrabi C , AlsafiZ , O'NeillNet al. World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int. J. Surg.76, 71–76 (2020).
  • Mitjà O , ClotetB. Use of antiviral drugs to reduce COVID-19 transmission. Lancet. Glob. Health8(5), e639–e640 (2020).
  • Tu YF , ChienCS , YarmishynAAet al. A review of SARS-CoV-2 and the ongoing clinical trials. Int. J. Mol. Sci.21(7), 2657 (2020).
  • Wu C , LiuY , YangYet al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta. Pharm. Sin. B.10(5), 766–788 (2020).
  • Wu A , PengY , HuangBet al. Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell. Host. Microbe.27(3), 325–328 (2020).
  • Zhang H , PenningerJM , LiY , ZhongN , SlutskyAS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med.46(4), 586–590 (2020).
  • Hoffmann M , Kleine-WeberH , SchroederSet al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell181(2), 271–280.e8 (2020).
  • Shereen MA , KhanS , KazmiA , BashirN , SiddiqueR. COVID-19 infection: origin, transmission, and characteristics of human coronaviruses. J. Adv. Res.24, 91–98 (2020).
  • Liu W , MorseJS , LalondeT , XuS. Learning from the past: possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. Chembiochem21(5), 730–738 (2020).
  • Yu R , ChenL , LanR , ShenR , LiP. Computational screening of antagonist against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. Int. J. Antimicrob. Agents.56(2), 106012 (2020).
  • Aftab SO , GhouriMZ , MasoodMUet al. Analysis of SARS-CoV-2 RNA-dependent RNA polymerase as a potential therapeutic drug target using a computational approach. J. Transl. Med.18(1), 275 (2020).
  • Sun J , HeW-T , WangLet al. COVID-19: epidemiology, evolution, and cross-disciplinary perspectives. Trends. Mol. Med.26(5), 483–495 (2020).
  • Lan J , GeJ , YuJet al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature581(7807), 215–220 (2020).
  • Lusvarghi S , BewleyCA. Griffithsin: an antiviral lectin with outstanding therapeutic potential. Viruses8(10), 296 (2016).
  • Lee C . Griffithsin, a highly potent broad-spectrum antiviral lectin from red algae: from discovery to clinical application. Mar. Drugs.17(10), 567 (2019).
  • Fischer K , NguyenK , LiWangPJ. Griffithsin retains anti-HIV-1 potency with changes in gp120 glycosylation and complements broadly neutralizing antibodies PGT121 and PGT126. Antimicrob. Agents Chemother.64(1), e01084–19 (2019).
  • Ziółkowska NE , O'KeefeBR , MoriTet al. Domain-swapped structure of the potent antiviral protein griffithsin and its mode of carbohydrate binding. Structure14(7), 1127–1135 (2006).
  • Millet JK , SéronK , LabittRNet al. Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Res.133, 1–8 (2016).
  • O'Keefe BR , GiomarelliB , BarnardDLet al. Broad-spectrum in vitro activity and in vivo efficacy of the antiviral protein griffithsin against emerging viruses of the family Coronaviridae. J. Virol.84(5), 2511–2521 (2010).
  • Ou X , LiuY , LeiXet al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun.11(1), 1620 (2020).
  • Yamamoto M , MatsuyamaS , LiXet al. Identification of nafamostat as a potent inhibitor of Middle East respiratory syndrome coronavirus S protein-mediated membrane fusion using the split-protein-based cell-cell fusion assay. Antimicrob. Agents Chemother.60(11), 6532–6539 (2016).
  • Drug Target Review . Nafamostat inhibits SARS-CoV-2 infection, preventing COVID-19 transmission. NEWS (2020). http://www.drugtargetreview.com/news/58915/nafamostat-inhibits-sars-cov-2-infection-preventing-covid-19-transmission/
  • Li Y , ZhangJ , WangNet al. Therapeutic drugs targeting 2019-nCoV main protease by high-throughput screening. BioRxiv doi: 10.1101/2020.01.28.922922 (2020).
  • Muralidharan N , SakthivelR , VelmuruganD , GromihaMM. Computational studies of drug repurposing and synergism of lopinavir, oseltamivir and ritonavir binding with SARS-CoV-2 Protease against COVID-19. J. Biomol. Struct. Dyn. doi:10.1080/07391102.2020.1752802 (2020) ( Epub ahead of print).
  • Kumar S , ZhiK , MukherjiA , GerthK. Repurposing antiviral protease inhibitors using extracellular vesicles for potential therapy of COVID-19. Viruses12(5), 486 (2020).
  • Schroeder JP , CooperDA , SchankJRet al. Disulfiram attenuates drug-primed reinstatement of cocaine seeking via inhibition of dopamine β-hydroxylase. Neuropsychopharmacology35(12), 2440–2449 (2010).
  • Ekinci E , RohondiaS , KhanR , DouQP. Repurposing disulfiram as an anti-cancer agent: updated review on literature and patents. Recent. Pat. Anticancer. Drug. Discov.14(2), 113–132 (2019).
  • Lee SA , ElliottJH , McMahonJet al. Population pharmacokinetics and pharmacodynamics of disulfiram on inducing latent HIV-1 transcription in a Phase IIb Trial. Clin. Pharmacol. Ther.105(3), 692–702 (2019).
  • Lin MH , MosesDC , HsiehCHet al. Disulfiram can inhibit mers and sars coronavirus papain-like proteases via different modes. Antiviral Res.150, 155–163 (2018).
  • Anand K , ZiebuhrJ , WadhwaniP , MestersJR , HilgenfeldR. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science300(5626), 1763–1767 (2003).
  • Lee YM , DuhY , WangST , LaiMM , YuanHS , LimC. Using an old drug to target a new drug site: application of disulfiram to target the Zn-site in HCV NS5A protein. J. Am. Chem. Soc.138(11), 3856–3862 (2016).
  • Sargsyan K , ChenT , GrauffelC , LimC. Identifying COVID-19 drug-sites susceptible to clinically safe Zn-ejector drugs using evolutionary/physical principles. OSF Preprints doi: 10.31219/osf.io/snuqf (2020).
  • Yoshimoto FK . The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein. J.39(3), 198–216 (2020).
  • Hurst M , FauldsD. Lopinavir. Drugs60(6), 1371–1379 (2000).
  • Zeldin RK , PetruschkeRA. Pharmacological and therapeutic properties of ritonavir-boosted protease inhibitor therapy in HIV-infected patients. J. Antimicrob. Chemother.53(1), 4–9 (2004).
  • Chandwani A , ShuterJ. Lopinavir/ritonavir in the treatment of HIV-1 infection: a review. Ther. Clin. Risk. Manag.4(5), 1023–1033 (2008).
  • Liu X , WangX-J. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J. Genet. Genomics.47(2), 119–121 (2020).
  • Chen F , ChanK , JiangYet al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J. Clin. Virol.31(1), 69–75 (2004).
  • Chu C , ChengV , HungIet al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax59(3), 252–256 (2004).
  • Yao TT , QianJD , ZhuWY , WangY , WangGQ. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus–a possible reference for coronavirus disease-19 treatment option. J. Med. Virol.92(6), 556–563 (2020).
  • Cao B , WangY , WenDet al. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med.382(19), 1787–1799 (2020).
  • Xu Z , PengC , ShiYet al. Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. BioRxiv doi: 10.1101/2020.01.27.921627 (2020).
  • Yamamoto N , YangR , YoshinakaYet al. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem. Biophys. Res. Commun.318(3), 719–725 (2004).
  • Khaerunnisa S , KurniawanH , AwaluddinR , SuhartatiS , SoetjiptoS. Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Preprints doi: 10.20944/preprints202003.0226.v1 (2020).
  • Xu Z , YaoH , ShenJet al. Nelfinavir is active against SARS-CoV-2 in vero E6 cells. ChemRxiv doi: 10.26434/chemrxiv.12039888.v1 (2020).
  • Yamamoto N , MatsuyamaS , HoshinoT , YamamotoN. Nelfinavir inhibits replication of severe acute respiratory syndrome coronavirus 2 in vitro. BioRxiv doi: 10.1101/2020.04.06.026476 (2020).
  • Ohashi H , WatashiK , SasoWet al. Multidrug treatment with nelfinavir and cepharanthine against COVID-19. BioRxiv doi: 10.1101/2020.04.14.039925 (2020).
  • Markham A , KeamSJ. Danoprevir: first global approval. Drugs78(12), 1271–1276 (2018).
  • Wei L , ShangJ , MaYet al. Efficacy and safety of 12-week interferon-based danoprevir regimen in patients with genotype 1 chronic hepatitis C. J. Clin. Transl. Hepatol.7(3), 221–225 (2019).
  • Bafna K , KrugRM , MontelioneGT. Structural similarity of SARS-CoV2 Mpro and HCV NS3/4A proteases suggests new approaches for identifying existing drugs useful as COVID-19 therapeutics. ChemRxiv doi: 10.26434/chemrxiv.12153615 (2020).
  • Chen H , ZhangZ , WangLet al. First clinical study using HCV protease inhibitor danoprevir to treat naive and experienced COVID-19 patients. MedRxiv doi: 10.1101/2020.03.22.20034041 (2020).
  • Elfiky AA . Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci.248, 117477 (2020).
  • Ju J , LiX , KumarSet al. Nucleotide analogues as inhibitors of SARS-CoV polymerase. BioRxiv doi: 10.1101/2020.03.12.989186 (2020).
  • Elfiky AA . Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): a molecular docking study. Life Sci.253, 117592 (2020).
  • Furuta Y , TakahashiK , ShirakiKet al. T-705 (favipiravir) and related compounds: novel broad-spectrum inhibitors of RNA viral infections. Antiviral Res.82(3), 95–102 (2009).
  • Furuta Y , GowenBB , TakahashiK , ShirakiK , SmeeDF , BarnardDL. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res.100(2), 446–454 (2013).
  • Live Science . Flu drug used in Japan shows promise in treating COVID-19 (2020). http://www.livescience.com/flu-drug-could-treat-coronavirus.html
  • Wang M , CaoR , ZhangLet al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell. Res.30(3), 269–271 (2020).
  • Cai Q , YangM , LiuDet al. Experimental treatment with favipiravir for COVID-19: an open-label control study. Engineering doi:10.1016/j.eng.2020.03.007 (2020) ( Epub ahead of print).
  • Stockman LJ , BellamyR , GarnerP. SARS: systematic review of treatment effects. PLoS Med.3(9), e343 (2006).
  • Arabi YM , ShalhoubS , MandourahYet al. Ribavirin and interferon therapy for critically ill patients with middle east respiratory syndrome: a multicenter observational study. Clin. Infect. Dis.70(9), 1837–1844 (2020).
  • Sheahan TP , SimsAC , GrahamRLet al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Sci. Transl. Med.9(396), eaal3653 (2017).
  • Tchesnokov EP , FengJY , PorterDP , GötteM. Mechanism of inhibition of Ebola virus RNA-dependent RNA polymerase by remdesivir. Viruses11(4), 326 (2019).
  • Holshue ML , DeBoltC , LindquistSet al. First case of 2019 novel coronavirus in the United States. N. Engl. J. Med.382(10), 929–936 (2020).
  • The Telegraph . Coronavirus cure hope as 79-year-old Italian man successfully treated with experimental drug (2020). http://www.telegraph.co.uk/news/2020/03/18/coronavirus-cure-hope-79-year-old-italian-man-successfully-treated/
  • Warren TK , WellsJ , PanchalRGet al. Protection against filovirus diseases by a novel broad-spectrum nucleoside analogue BCX4430. Nature508(7496), 402–405 (2014).
  • Westover JB , MathisA , TaylorRet al. Galidesivir limits Rift Valley fever virus infection and disease in Syrian golden hamsters. Antiviral Res.156, 38–45 (2018).
  • PubChem . National Library of Medicine, National Center for Biotechnology Information. https://pubchem.ncbi.nlm.nih.gov/
  • Ahmed SF , QuadeerAA , McKayMR. Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses12(3), 254 (2020).
  • Zhang G , PomplunS , LoftisAR , LoasA , PenteluteBL. The first-in-class peptide binder to the SARS-CoV-2 spike protein. BioRxiv doi: 10.1101/2020.03.19.999318 (2020).
  • Xia S , ZhuY , LiuMet al. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein. Cell. Mol. Immunol.17(7), 765–767 (2020).
  • Liu C , ZhouQ , LiYet al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS. Cent. Sci.6(3), 315–331 (2020).
  • Zhou H , FangY , XuT , NiWJ , ShenAZ , MengXM. Potential therapeutic targets and promising drugs for combating SARS-CoV-2. Br. J. Pharmacol.177(14), 3147–3161 (2020).
  • Peele KA , ChandrasaiP , SrihansaTet al. Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: a computational study. Inform. Med. Unlocked.19, 100345 (2020).
  • Calligari P , BoboneS , RicciG , BocediA. Molecular investigation of SARS–CoV-2 proteins and their interactions with antiviral drugs. Viruses12(4), 445 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.