44
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

GNAT Toxin may have a Potential Role in Pseudomonas Aeruginosa Persistence: An In vitro and in Silico Study

, ORCID Icon, , , &
Pages 21-31 | Received 10 Jun 2023, Accepted 22 Aug 2023, Published online: 31 Jan 2024

References

  • Tuon FF , Dantas LR , Suss PH , Tasca Ribeiro VS . Pathogenesis of the Pseudomonas aeruginosa biofilm: a review. Pathogens 11(3), 300 (2022).
  • Rad ZR , Rad ZR , Goudarzi H et al.> Detection of New Delhi metallo-β-lactamase-1 among Pseudomonas aeruginosa isolated from adult and pediatric patients in Iranian hospitals. Gene Rep. 23, 101152 (2021).
  • Golmoradi Zadeh R , Mirshekar M , Sadeghi Kalani B , Pourghader J , Barati M , Masjedian Jazi F . The expression of type II TA system genes following persister cell formation in Pseudomonas aeruginosa isolates in the exponential and stationary phases. Arch. Microbiol. 204(8), 451 (2022).
  • Fisher RA , Gollan B , Helaine S . Persistent bacterial infections and persister cells. Nat. Rev. Microbiol. 15(8), 453–464 (2017).
  • Zadeh RG , Kalani BS , Ari MM , Talebi M , Razavi S , Jazi FM . Isolation of persister cells within the biofilm and relative gene expression analysis of type II toxin/antitoxin system in Pseudomonas aeruginosa isolates in exponential and stationary phases. J. Glob. Antimicrob. Resist 28, 30–37 (2022).
  • Cao Z , Chen X , Chen J et al. Gold nanocluster adjuvant enables the eradication of persister cells by antibiotics and abolishes the emergence of resistance. Nanoscale 14(28), 10016–10032 (2022).
  • Amraei F , Narimisa N , Lohrasbi V , Jazi FM . Persister cells formation and expression of type II toxin–antitoxin system genes in Brucella melitensis (16M) and Brucella abortus (B19). Iran J. Pathol. 15(2), 127 (2020).
  • Shivaee A , Mohammadzadeh R , Shahbazi S , Pardakhtchi E , Ohadi E , Kalani BS . Time-variable expression levels of mazF, atlE, sdrH, and bap genes during biofilm formation in Staphylococcus epidermidis . Acta Microbiol. Immunol. Hung. 66(4), 499–508 (2019).
  • Talwar S , Pandey M , Sharma C et al. Role of VapBC12 toxin–antitoxin locus in cholesterol-induced mycobacterial persistence. MSystems 5(6), e00855-20 (2020).
  • Singh G , Yadav M , Ghosh C , Rathore JS . Bacterial toxin–antitoxin modules: classification, functions, and association with persistence. Curr. Res. Microb. Sci. 2, 100047 (2021).
  • Jurėnas D , Fraikin N , Goormaghtigh F , Van Melderen L . Biology and evolution of bacterial toxin–antitoxin systems. Nat. Rev. Microbiol. 20(6), 335–350 (2022).
  • Narimisa N , Amraei F , Kalani BS , Azarnezhad A , Jazi FM . Biofilm establishment, biofilm persister cell formation, and relative gene expression analysis of type II toxin–antitoxin system in Klebsiella pneumoniae . Gene Rep. 21, 100846 (2020).
  • Baek MS , Chung ES , Jung DS , Ko KS . Effect of colistin-based antibiotic combinations on the eradication of persister cells in Pseudomonas aeruginosa . J. Antimicrob. Chemother. 75(4), 917–924 (2020).
  • Zelenitsky SA , Harding GK , Sun S , Ubhi K , Ariano RE . Treatment and outcome of Pseudomonas aeruginosa bacteraemia: an antibiotic pharmacodynamic analysis. J. Antimicrob. Chemother. 52(4), 668–674 (2003).
  • Lenoir G , Antypkin YG , Miano A et al. Efficacy, safety, and local pharmacokinetics of highly concentrated nebulized tobramycin in patients with cystic fibrosis colonized with Pseudomonas aeruginosa . Paediatr. Drugs 9, 11–20 (2007).
  • Livak KJ , Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25(4), 402–408 (2001).
  • Kelley LA , Mezulis S , Yates CM , Wass MN , Sternberg MJ . The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10(6), 845–858 (2015).
  • Kumar S , Stecher G , Li M , Knyaz C , Tamura K . MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35(6), 1547 (2018).
  • Ko J , Park H , Heo L , Seok C . GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res. 40(W1), W294–W297 (2012).
  • Kozakov D , Hall DR , Xia B et al. The ClusPro web server for protein–protein docking. Nat. Protoc. 12(2), 255–278 (2017).
  • Laskowski RA , Swindells MB . LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model 51(10), 2778–2786 (2011).
  • Sedan Y , Marcu O , Lyskov S , Schueler-Furman O . Peptiderive server: derive peptide inhibitors from protein–protein interactions. Nucleic Acids Res. 44(W1), W536–W541 (2016).
  • Lamiable A , Thévenet P , Rey J , Vavrusa M , Derreumaux P , Tufféry P . PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex. Nucleic Acids Res. 44(W1), W449–W454 (2016).
  • Delano WL . PyMOL: an open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 40(1), 82–92 (2002).
  • Wallace AC , Laskowski RA , Thornton JM . LIGPLOT: a program to generate schematic diagrams of protein–ligand interactions. Protein Eng. Des. Sel. 8(2), 127–134 (1995).
  • Harrison JJ , Turner RJ , Ceri H . Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa . Environ. Microbiol. 7(7), 981–994 (2005).
  • Kamruzzaman M , Wu AY , Iredell JR . Biological functions of type II toxin–antitoxin systems in bacteria. Microorganisms 9(6), 1276 (2021).
  • Page R , Peti W . Toxin–antitoxin systems in bacterial growth arrest and persistence. Nat. Chem. Biol. 12(4), 208–214 (2016).
  • Wen Y , Behiels E , Devreese B . Toxin–antitoxin systems: their role in persistence, biofilm formation, and pathogenicity. Pathog. Dis. 70(3), 240–249 (2014).
  • Yeo CC . GNAT toxins of bacterial toxin–antitoxin systems: acetylation of charged tRNAs to inhibit translation. Mol. Microbiol. 108(4), 331–335 (2018).
  • Wójcik P , Berlicki Ł . Peptide-based inhibitors of protein–protein interactions. Bioorganic Med. Chem. Lett. 26(3), 707–713 (2016).
  • Wang X , Ni D , Liu Y , Lu S . Rational design of peptide-based inhibitors disrupting protein–protein interactions. Front. Chem. 9, 682675 (2021).
  • Bojadzic D , Alcazar O , Chen J et al. Small-molecule inhibitors of the coronavirus spike: ACE2 protein–protein interaction as blockers of viral attachment and entry for SARS-CoV-2. ACS Infect. Dis. 7(6), 1519–1534 (2021).
  • Li B , Rong D , Wang Y . Targeting protein–protein interaction with covalent small-molecule inhibitors. Curr. Top Med. Chem. 19(21), 1872–1876 (2019).
  • Sundar S , Rajan MP , Piramanayagam S . In silico derived peptides for inhibiting the toxin–antitoxin systems of Mycobacterium tuberculosis: basis for developing peptide-based therapeutics. Int. J. Pept. Res. 25, 1467–1475 (2019).
  • Mohammadzadeh R , Shivaee A , Ohadi E , Kalani BS . In silico insight into the dominant type II toxin–antitoxin systems and Clp proteases in Listeria monocytogenes and designation of derived peptides as a novel approach to interfere with this system. Int. J. Pept. Res. 26, 613–623 (2020).
  • Kang S-M , Moon H , Han S-W , Kim D-H , Kim BM , Lee B-J . Structure-based de novo design of Mycobacterium tuberculosis VapC-activating stapled peptides. ACS Chem. Biol. 15(9), 2493–2498 (2020).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.