241
Views
0
CrossRef citations to date
0
Altmetric
Review

Regulation of angiogenesis in malignancies associated with Epstein–Barr virus and Kaposi‘s sarcoma-associated herpes virus

&
Pages 903-917 | Published online: 01 Sep 2009

Bibliography

  • Ferrara N , KerbelRS: Angiogenesis as a therapeutic target.Nature438(7070) , 967–974 (2005).
  • Tzankov A , HeissS, EbnerSet al.: Angiogenesis in nodal B cell lymphomas: a high throughput study.J. Clin. Pathol.60(5) , 476–482 (2007).
  • Nakayama T , YaoL, TosatoG: Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors.J. Clin. Invest.114(9) , 1317–1325 (2004).
  • Hanahan D , WeinbergRA: The hallmarks of cancer.Cell100(1) , 57–70 (2000).
  • Algire G : Vascular reactions of normal and malignant tissues in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants.J. Natl Cancer Inst.6 , 73–85 (1945).
  • Ferrara N , GerberHP, LeCouterJ: The biology of VEGF and its receptors.Nat. Med.9(6) , 669–676 (2003).
  • Olsson AK , DimbergA, KreugerJ, Claesson-WelshL: VEGF receptor signalling – in control of vascular function.Nat. Rev. Mol. Cell Biol.7(5) , 359–371 (2006).
  • Folkman J : Tumor angiogenesis: therapeutic implications.N. Engl. J. Med.285(21) , 1182–1186 (1971).
  • Folkman J : Angiogenesis in cancer, vascular, rheumatoid and other disease.Nat. Med.1(1) , 27–31 (1995).
  • Crawford Y , FerraraN: VEGF inhibition: insights from preclinical and clinical studies.Cell Tissue Res.335(1) , 261–269 (2009).
  • Shojaei F , FerraraN: Antiangiogenesis to treat cancer and intraocular neovascular disorders.Lab. Invest.87(3) , 227–230 (2007).
  • Carmeliet P : Angiogenesis in health and disease.Nat. Med.9(6) , 653–660 (2003).
  • Hendrix MJ , SeftorEA, HessAR, SeftorRE: Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma.Nat. Rev. Cancer3(6) , 411–421 (2003).
  • Jain RK : Molecular regulation of vessel maturation.Nat. Med.9(6) , 685–693 (2003).
  • Bugert JJ , DaraiG: Poxvirus homologues of cellular genes.Virus Genes21(1–2) , 111–133 (2000).
  • Lee LF , WuP, SuiDet al.: The complete unique long sequence and the overall genomic organization of the GA strain of Marek‘s disease virus.Proc. Natl Acad. Sci. USA97(11) , 6091–6096 (2000).
  • Meyer M , ClaussM, Lepple-WienhuesAet al.: A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinases.EMBO J.18(2) , 363–374 (1999).
  • Wolf H , HausM, WilmesE: Persistence of Epstein–Barr virus in the parotid gland.J. Virol.51(3) , 795–798 (1984).
  • Young LS , RickinsonAB: Epstein–Barr virus: 40 years on.Nat. Rev. Cancer4(10) , 757–768 (2004).
  • Babcock GJ , DeckerLL, VolkM, Thorley-LawsonDA: EBV persistence in memory B cells in vivo.Immunity9(3) , 395–404 (1998).
  • Rickinson AB , MossDJ: Human cytotoxic T lymphocyte responses to Epstein–Barr virus infection.Annu. Rev. Immunol.15 , 405–431 (1997).
  • Laichalk LL , Thorley-LawsonDA: Terminal differentiation into plasma cells initiates the replicative cycle of Epstein–Barr virus in vivo.J. Virol.79(2) , 1296–1307 (2005).
  • Oyama T , IchimuraK, SuzukiRet al.: Senile EBV+ B-cell lymphoproliferative disorders: a clinicopathologic study of 22 patients.Am. J. Surg. Pathol.27(1) , 16–26 (2003).
  • Ohshima K , KimuraH, YoshinoTet al.: Proposed categorization of pathological states of EBV-associated T/natural killer-cell lymphoproliferative disorder (LPD) in children and young adults: overlap with chronic active EBV infection and infantile fulminant EBV T-LPD:.Pathol. Int.58(4) , 209–217 (2008).
  • Klein G , GiovanellaBC, LindahlT, FialkowPJ, SinghS, StehlinJS: Direct evidence for the presence of Epstein–Barr virus DNA and nuclear antigen in malignant epithelial cells from patients with poorly differentiated carcinoma of the nasopharynx.Proc. Natl Acad. Sci. USA71(12) , 4737–4741 (1974).
  • Shanmugaratnam K , ChanSH, de-TheGet al.: Histopathology of nasopharyngeal carcinoma: correlations with epidemiology, survival rates and other biological characteristics.Cancer44(3) , 1029–1044 (1979).
  • Hengge UR , BrockmeyerNH, BaumannM, ReimannG, GoosM: Liposomal doxorubicin in AIDS-related Kaposi‘s sarcoma.Lancet342(8869) , 497 (1993).
  • Yates JL , WarrenN, SugdenB: Stable replication of plasmids derived from Epstein–Barr virus in various mammalian cells.Nature313(6005) , 812–815 (1985).
  • Yin Y , ManouryB, FahraeusR: Self-inhibition of synthesis and antigen presentation by Epstein–Barr virus-encoded EBNA1.Science301(5638) , 1371–1374 (2003).
  • Kang MS , HungSC, KieffE: Epstein–Barr virus nuclear antigen 1 activates transcription from episomal but not integrated DNA and does not alter lymphocyte growth.Proc. Natl Acad. Sci. USA98(26) , 15233–15238 (2001).
  • Gruhne B , SompallaeR, MarescottiD, KamranvarSA, GastaldelloS, MasucciMG: The Epstein–Barr virus nuclear antigen-1 promotes genomic instability via induction of reactive oxygen species.Proc. Natl Acad. Sci. USA106(7) , 2313–2318 (2009).
  • Ning S , CamposAD, DarnayBG, BentzGL, PaganoJS: TRAF6 and the three C-terminal lysine sites on IRF7 are required for its ubiquitination-mediated activation by the tumor necrosis factor receptor family member latent membrane protein 1.Mol. Cell. Biol.28(20) , 6536–6546 (2008).
  • Song YJ , IzumiKM, ShinnersNP, GewurzBE, KieffE: IRF7 activation by Epstein–Barr virus latent membrane protein 1 requires localization at activation sites and TRAF6, but not TRAF2 or TRAF3.Proc. Natl Acad. Sci. USA105(47) , 18448–18453 (2008).
  • Soni V , Cahir-McFarlandE, KieffE: LMP1 trafficking activates growth and survival pathways.Adv. Exp. Med. Biol.597 , 173–187 (2007).
  • Caldwell RG , WilsonJB, AndersonSJ, LongneckerR: Epstein–Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals.Immunity9(3) , 405–411 (1998).
  • Scholle F , BendtKM, Raab-TraubN: Epstein–Barr virus LMP2A transforms epithelial cells, inhibits cell differentiation, and activates Akt.J. Virol.74(22) , 10681–10689 (2000).
  • Morrison JA , KlingelhutzAJ, Raab-TraubN: Epstein–Barr virus latent membrane protein 2A activates β-catenin signaling in epithelial cells.J. Virol.77(22) , 12276–12284 (2003).
  • Nanbo A , InoueK, Adachi-TakasawaK, TakadaK: Epstein–Barr virus RNA confers resistance to interferon-α-induced apoptosis in Burkitt‘s lymphoma.EMBO J.21(5) , 954–965 (2002).
  • Sall A , CasertaS, JolicoeurP, FranquevilleL, de Turenne-Tessier M, Ooka T: Mitogenic activity of Epstein–Barr virus-encoded BARF1 protein. Oncogene23(28) , 4938–4944 (2004).
  • Strockbine LD , CohenJI, FarrahTet al.: The Epstein–Barr virus BARF1 gene encodes a novel, soluble colony-stimulating factor-1 receptor.J. Virol.72(5) , 4015–4021 (1998).
  • Kusano S , Raab-TraubN: An Epstein–Barr virus protein interacts with Notch.J. Virol.75(1) , 384–395 (2001).
  • Lo AK , ToKF, LoKWet al.: Modulation of LMP1 protein expression by EBV-encoded microRNAs.Proc. Natl Acad. Sci. USA104(41) , 16164–16169 (2007).
  • Ballestas ME , ChatisPA, KayeKM: Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen.Science284(5414) , 641–644 (1999).
  • Fujimuro M , WuFY, ApRhysCet al.: A novel viral mechanism for dysregulation of β-catenin in Kaposi‘s sarcoma-associated herpesvirus latency.Nat. Med.9(3) , 300–306 (2003).
  • Sakakibara S , UedaK, NishimuraKet al.: Accumulation of heterochromatin components on the terminal repeat sequence of Kaposi‘s sarcoma-associated herpesvirus mediated by the latency-associated nuclear antigen.J. Virol.78(14) , 7299–7310 (2004).
  • Kwun HJ , da Silva SR, Shah IM, Blake N, Moore PS, Chang Y: Kaposi‘s sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mimics Epstein–Barr virus EBNA1 immune evasion through central repeat domain effects on protein processing. J. Virol.81(15) , 8225–8235 (2007).
  • Swanton C , MannDJ, FleckensteinB, NeipelF, PetersG, JonesN: Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins.Nature390(6656) , 184–187 (1997).
  • Field N , LowW, DanielsMet al.: KSHV vFLIP binds to IKK-γ to activate IKK.J. Cell Sci.116(Pt 18) , 3721–3728 (2003).
  • McCormick C , GanemD: The kaposin B protein of KSHV activates the p38/MK2 pathway and stabilizes cytokine mRNAs.Science307(5710) , 739–741 (2005).
  • Ziegelbauer JM , SullivanCS, GanemD: Tandem array-based expression screens identify host mRNA targets of virus-encoded microRNAs.Nat. Genet.41(1) , 130–134 (2009).
  • Gottwein E , MukherjeeN, SachseCet al.: A viral microRNA functions as an orthologue of cellular miR-155.Nature450(7172) , 1096–1099 (2007).
  • Murono S , InoueH, TanabeTet al.: Induction of cyclooxygenase-2 by Epstein–Barr virus latent membrane protein 1 is involved in vascular endothelial growth factor production in nasopharyngeal carcinoma cells.Proc. Natl Acad. Sci. USA98(12) , 6905–6910 (2001).
  • Guang-Wu H , SunagawaM, Jie-EnLet al.: The relationship between microvessel density, the expression of vascular endothelial growth factor (VEGF), and the extension of nasopharyngeal carcinoma.Laryngoscope110(12) , 2066–2069 (2000).
  • Qian CN , ZhangCQ, GuoXet al.: Elevation of serum vascular endothelial growth factor in male patients with metastatic nasopharyngeal carcinoma.Cancer88(2) , 255–261 (2000).
  • Wakisaka N , WenQH, YoshizakiTet al.: Association of vascular endothelial growth factor expression with angiogenesis and lymph node metastasis in nasopharyngeal carcinoma.Laryngoscope109(5) , 810–814 (1999).
  • Qian CN , MinHQ, LinHLet al.: Anti-tumor effect of angiogenesis inhibitor TNP-470 on the human nasopharyngeal carcinoma cell line NPC/HK1.Oncology57(1) , 36–41 (1999).
  • Parsonnet J , FriedmanGD, VandersteenDPet al.: Helicobacter pylori infection and the risk of gastric carcinoma.N. Engl. J. Med.325(16) , 1127–1131 (1991).
  • Sakamoto H , YoshimuraK, SaekiNet al.: Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer.Nat. Genet.40(6) , 730–740 (2008).
  • Shibata D , TokunagaM, UemuraY, SatoE, TanakaS, WeissLM: Association of Epstein–Barr virus with undifferentiated gastric carcinomas with intense lymphoid infiltration. Lymphoepithelioma-like carcinoma.Am. J. Pathol.139(3) , 469–474 (1991).
  • Oshima H , OshimaM, InabaK, TaketoMM: Hyperplastic gastric tumors induced by activated macrophages in COX-2/mPGES-1 transgenic mice.EMBO J.23(7) , 1669–1678 (2004).
  • Seno H , OshimaM, IshikawaTOet al.: Cyclooxygenase 2- and prostaglandin E(2) receptor EP(2)-dependent angiogenesis in Apc(d716) mouse intestinal polyps.Cancer Res.62(2) , 506–511 (2002).
  • Imai S , KoizumiS, SugiuraMet al.: Gastric carcinoma: monoclonal epithelial malignant cells expressing Epstein–Barr virus latent infection protein.Proc. Natl Acad. Sci. USA91(19) , 9131–9135 (1994).
  • Salmon JS , LockhartAC, BerlinJ: Anti-angiogenic treatment of gastrointestinal malignancies.Cancer Invest.23(8) , 712–726 (2005).
  • Lohela M , HeloteraH, HaikoP, DumontDJ, AlitaloK: Transgenic induction of vascular endothelial growth factor-C is strongly angiogenic in mouse embryos but leads to persistent lymphatic hyperplasia in adult tissues.Am. J. Pathol.173(6) , 1891–1901 (2008).
  • Hirakawa S , BrownLF, KodamaS, PaavonenK, AlitaloK, DetmarM: VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites.Blood109(3) , 1010–1017 (2007).
  • Karpanen T , AlitaloK: Molecular biology and pathology of lymphangiogenesis.Annu. Rev. Pathol.3 , 367–397 (2008).
  • Gao P , ZhouGY, ZhangQHet al.: Lymphangiogenesis in gastric carcinoma correlates with prognosis.J. Pathol.218(2) , 192–200 (2009).
  • Parravicini C , ChandranB, CorbellinoMet al.: Differential viral protein expression in Kaposi‘s sarcoma-associated herpesvirus-infected diseases: Kaposi‘s sarcoma, primary effusion lymphoma, and multicentric Castleman‘s disease.Am. J. Pathol.156(3) , 743–749 (2000).
  • Whitby D , HowardMR, Tenant-FlowersMet al.: Detection of Kaposi sarcoma associated herpesvirus in peripheral blood of HIV-infected individuals and progression to Kaposi‘s sarcoma.Lancet346(8978) , 799–802 (1995).
  • Della Bella S , TaddeoA, CalabroMLet al.: Peripheral blood endothelial progenitors as potential reservoirs of Kaposi‘s sarcoma-associated herpesvirus.PLoS ONE3(1) , e1520 (2008).
  • Yao L , SalvucciO, CardonesARet al.: Selective expression of stromal-derived factor-1 in the capillary vascular endothelium plays a role in Kaposi sarcoma pathogenesis.Blood102(12) , 3900–3905 (2003).
  • Bourboulia D , AldamD, LagosDet al.: Short- and long-term effects of highly active antiretroviral therapy on Kaposi sarcoma-associated herpesvirus immune responses and viraemia.AIDS18(3) , 485–493 (2004).
  • Yarchoan R , PludaJM, WyvillKMet al.: Treatment of AIDS-related Kaposi‘s sarcoma with interleukin-12: rationale and preliminary evidence of clinical activity.Crit. Rev. Immunol.27(5) , 401–414 (2007).
  • Ahsan N , KandaT, NagashimaK, TakadaK: Epstein–Barr virus transforming protein LMP1 plays a critical role in virus production.J. Virol.79(7) , 4415–4424 (2005).
  • Mosialos G , BirkenbachM, YalamanchiliR, VanArsdaleT, WareC, KieffE: The Epstein–Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family.Cell80(3) , 389–399 (1995).
  • Paine E , ScheinmanRI, BaldwinAS Jr, Raab-Traub N: Expression of LMP1 in epithelial cells leads to the activation of a select subset of NF-κB/Rel family proteins. J. Virol.69(7) , 4572–4576 (1995).
  • Schneider F , NeugebauerJ, GrieseJet al.: The viral oncoprotein LMP1 exploits TRADD for signaling by masking its apoptotic activity.PLoS Biol.6(1) , e8 (2008).
  • Chen H , Hutt-FletcherL, CaoL, HaywardSD: A positive autoregulatory loop of LMP1 expression and STAT activation in epithelial cells latently infected with Epstein–Barr virus.J. Virol.77(7) , 4139–4148 (2003).
  • Gires O , KohlhuberF, KilgerEet al.: Latent membrane protein 1 of Epstein–Barr virus interacts with JAK3 and activates STAT proteins.EMBO J.18(11) , 3064–3073 (1999).
  • Mainou BA , EverlyDN Jr, Raab-Traub N: Unique signaling properties of CTAR1 in LMP1-mediated transformation. J. Virol.81(18) , 9680–9692 (2007).
  • Vaysberg M , HattonO, LambertSLet al.: Tumor-derived variants of Epstein–Barr virus latent membrane protein 1 induce sustained Erk activation and c-Fos.J. Biol. Chem.283(52) , 36573–36585 (2008).
  • Thornburg NJ , KulwichitW, EdwardsRH, ShairKH, BendtKM, Raab-TraubN: LMP1 signaling and activation of NF-κB in LMP1 transgenic mice.Oncogene25(2) , 288–297 (2006).
  • Kondo S , WakisakaN, SchellMJet al.: Epstein–Barr virus latent membrane protein 1 induces the matrix metalloproteinase-1 promoter via an Ets binding site formed by a single nucleotide polymorphism: enhanced susceptibility to nasopharyngeal carcinoma.Int. J. Cancer115(3) , 368–376 (2005).
  • Yoshizaki T , HorikawaT, Qing-ChunRet al.: Induction of interleukin-8 by Epstein–Barr virus latent membrane protein-1 and its correlation to angiogenesis in nasopharyngeal carcinoma.Clin. Cancer Res.7(7) , 1946–1951 (2001).
  • Wakisaka N , MuronoS, YoshizakiT, FurukawaM, PaganoJS: Epstein–Barr virus latent membrane protein 1 induces and causes release of fibroblast growth factor-2.Cancer Res.62(21) , 6337–6344 (2002).
  • Kung CP , Raab-TraubN: Epstein–Barr virus latent membrane protein 1 induces expression of the epidermal growth factor receptor through effects on Bcl-3 and STAT3.J. Virol.82(11) , 5486–5493 (2008).
  • Stevenson D , CharalambousC, WilsonJB: Epstein–Barr virus latent membrane protein 1 (CAO) up-regulates VEGF and TGF α concomitant with hyperlasia, with subsequent up-regulation of p16 and MMP9.Cancer Res.65(19) , 8826–8835 (2005).
  • Sample J , LiebowitzD, KieffE: Two related Epstein–Barr virus membrane proteins are encoded by separate genes.J. Virol.63(2) , 933–937 (1989).
  • Miller CL , LeeJH, KieffE, LongneckerR: An integral membrane protein (LMP2) blocks reactivation of Epstein–Barr virus from latency following surface immunoglobulin crosslinking.Proc. Natl Acad. Sci. USA91(2) , 772–776 (1994).
  • Miller CL , BurkhardtAL, LeeJHet al.: Integral membrane protein 2 of Epstein–Barr virus regulates reactivation from latency through dominant negative effects on protein-tyrosine kinases.Immunity2(2) , 155–166 (1995).
  • Moody CA , ScottRS, SuT, SixbeyJW: Length of Epstein–Barr virus termini as a determinant of epithelial cell clonal emergence.J. Virol.77(15) , 8555–8561 (2003).
  • Longnecker R , MillerCL, MiaoXQ, MarchiniA, KieffE: The only domain which distinguishes Epstein–Barr virus latent membrane protein 2A (LMP2A) from LMP2B is dispensable for lymphocyte infection and growth transformation in vitro; LMP2A is therefore nonessential.J. Virol.66(11) , 6461–6469 (1992).
  • Morin PJ : β-catenin signaling and cancer.Bioessays21(12) , 1021–1030 (1999).
  • Easwaran V , LeeSH, IngeLet al.: β-catenin regulates vascular endothelial growth factor expression in colon cancer.Cancer Res.63(12) , 3145–3153 (2003).
  • Portis T , LongneckerR: Epstein–Barr virus LMP2A interferes with global transcription factor regulation when expressed during B-lymphocyte development.J. Virol.77(1) , 105–114 (2003).
  • Anderson LJ , LongneckerR: An auto-regulatory loop for EBV LMP2A involves activation of Notch.Virology371(2) , 257–266 (2008).
  • Iso T , HamamoriY, KedesL: Notch signaling in vascular development.Arterioscler. Thromb. Vasc. Biol.23(4) , 543–553 (2003).
  • Krebs LT , XueY, NortonCRet al.: Notch signaling is essential for vascular morphogenesis in mice.Genes Dev.14(11) , 1343–1352 (2000).
  • Shawber CJ , DasI, FranciscoE, KitajewskiJ: Notch signaling in primary endothelial cells.Ann. NY Acad. Sci.995 , 162–170 (2003).
  • Uyttendaele H , HoJ, RossantJ, KitajewskiJ: Vascular patterning defects associated with expression of activated Notch4 in embryonic endothelium.Proc. Natl Acad. Sci. USA98(10) , 5643–5648 (2001).
  • Noguera-Troise I , DalyC, PapadopoulosNJet al.: Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis.Nature444(7122) , 1032–1037 (2006).
  • Ridgway J , ZhangG, WuYet al.: Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis.Nature444(7122) , 1083–1087 (2006).
  • Zavadil J , CermakL, Soto-NievesN, BottingerEP: Integration of TGF-β/Smad and Jagged1/Notch signalling in epithelial-to-mesenchymal transition.EMBO J.23(5) , 1155–1165 (2004).
  • Miyamoto Y , MaitraA, GhoshBet al.: Notch mediates TGF α-induced changes in epithelial differentiation during pancreatic tumorigenesis.Cancer Cell3(6) , 565–576 (2003).
  • Crisan M , YapS, CasteillaLet al.: A perivascular origin for mesenchymal stem cells in multiple human organs.Cell Stem Cell3(3) , 301–313 (2008).
  • Hu S , VincenzC, BullerM, DixitVM: A novel family of viral death effector domain-containing molecules that inhibit both CD-95- and tumor necrosis factor receptor-1-induced apoptosis.J. Biol. Chem.272(15) , 9621–9624 (1997).
  • Ensser A , FleckensteinB: T-cell transformation and oncogenesis by γ2-herpesviruses.Adv. Cancer Res.93 , 91–128 (2005).
  • Grossmann C , PodgrabinskaS, SkobeM, GanemD: Activation of NF-κB by the latent vFLIP gene of Kaposi‘s sarcoma-associated herpesvirus is required for the spindle shape of virus-infected endothelial cells and contributes to their proinflammatory phenotype.J. Virol.80(14) , 7179–7185 (2006).
  • Bagneris C , AgeichikAV, CroninNet al.: Crystal structure of a vFlip–IKKγ complex: insights into viral activation of the IKK signalosome.Mol. Cell30(5) , 620–631 (2008).
  • Matta H , MazzacuratiL, SchamusS, YangT, SunQ, ChaudharyPM: KSHV oncoprotein K13 bypasses TRAFs and directly interacts with the IκB kinase complex to selectively activate NF-κB without JNK activation.J. Biol. Chem.282(34) , 24858–24865 (2007).
  • Sakakibara S , Pise-MasisonCA, BradyJN, TosatoG: Gene regulation and functional alterations induced by Kaposi‘s sarcoma-associated herpesvirus-encoded ORFK13/vFLIP in endothelial cells.J. Virol.83(5) , 2140–2153 (2009).
  • Fukumura D , XavierR, SugiuraTet al.: Tumor induction of VEGF promoter activity in stromal cells.Cell94(6) , 715–725 (1998).
  • Tang N , WangL, EskoJet al.: Loss of HIF-1α in endothelial cells disrupts a hypoxia-driven VEGF autocrine loop necessary for tumorigenesis.Cancer Cell6(5) , 485–495 (2004).
  • An FQ , FolarinHM, CompitelloNet al.: Long-term-infected telomerase-immortalized endothelial cells: a model for Kaposi‘s sarcoma-associated herpesvirus latency in vitro and in vivo.J. Virol.80(10) , 4833–4846 (2006).
  • Mutlu AD , CavallinLE, VincentLet al.: In vivo-restricted and reversible malignancy induced by human herpesvirus-8 KSHV: a cell and animal model of virally induced Kaposi‘s sarcoma.Cancer Cell11(3) , 245–258 (2007).
  • Aoki Y , JaffeES, ChangYet al.: Angiogenesis and hematopoiesis induced by Kaposi‘s sarcoma-associated herpesvirus-encoded interleukin-6.Blood93(12) , 4034–4043 (1999).
  • Wang L , WakisakaN, TomlinsonCCet al.: The Kaposi‘s sarcoma-associated herpesvirus (KSHV/HHV-8) K1 protein induces expression of angiogenic and invasion factors.Cancer Res.64(8) , 2774–2781 (2004).
  • Prakash O , TangZY, PengXet al.: Tumorigenesis and aberrant signaling in transgenic mice expressing the human herpesvirus-8 K1 gene.J. Natl Cancer Inst.94(12) , 926–935 (2002).
  • Tsai YH , WuMF, WuYHet al.: The M type K15 protein of Kaposi‘s sarcoma-associated herpesvirus regulates microRNA expression via its SH2-binding motif to induce cell migration and invasion.J. Virol.83(2) , 622–632 (2009).
  • Boshoff C , EndoY, CollinsPDet al.: Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines.Science278(5336) , 290–294 (1997).
  • Shin YC , JooCH, GackMU, LeeHR, JungJU: Kaposi‘s sarcoma-associated herpesvirus viral IFN regulatory factor 3 stabilizes hypoxia-inducible factor-1 α to induce vascular endothelial growth factor expression.Cancer Res.68(6) , 1751–1759 (2008).
  • Yang TY , ChenSC, LeachMWet al.: Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi‘s sarcoma.J. Exp. Med.191(3) , 445–454 (2000).
  • Katano H , SatoY, KurataT, MoriS, SataT: Expression and localization of human herpesvirus 8-encoded proteins in primary effusion lymphoma, Kaposi‘s sarcoma, and multicentric Castleman‘s disease.Virology269(2) , 335–344 (2000).
  • Rivas C , ThlickAE, ParraviciniC, MoorePS, ChangY: Kaposi‘s sarcoma-associated herpesvirus LANA2 is a B-cell-specific latent viral protein that inhibits p53.J. Virol.75(1) , 429–438 (2001).
  • Chiou CJ , PooleLJ, KimPSet al.: Patterns of gene expression and a transactivation function exhibited by the vGCR (ORF74) chemokine receptor protein of Kaposi‘s sarcoma-associated herpesvirus.J. Virol.76(7) , 3421–3439 (2002).
  • Bais C , SantomassoB, CosoOet al.: G-protein-coupled receptor of Kaposi‘s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator.Nature391(6662) , 86–89 (1998).
  • Montaner S , SodhiA, MolinoloAet al.: Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi‘s sarcomagenesis and can promote the tumorigenic potential of viral latent genes.Cancer Cell3(1) , 23–36 (2003).
  • Radkov SA , KellamP, BoshoffC: The latent nuclear antigen of Kaposi sarcoma-associated herpesvirus targets the retinoblastoma-E2F pathway and with the oncogene Hras transforms primary rat cells.Nat. Med.6(10) , 1121–1127 (2000).
  • Sugaya M , WatanabeT, YangAet al.: Lymphatic dysfunction in transgenic mice expressing KSHV k-cyclin under the control of the VEGFR-3 promoter.Blood105(6) , 2356–2363 (2005).
  • Brown LF , YeoKT, BerseBet al.: Expression of vascular permeability factor (vascular endothelial growth factor) by epidermal keratinocytes during wound healing.J. Exp. Med.176(5) , 1375–1379 (1992).
  • Olson TA , MohanrajD, CarsonLF, RamakrishnanS: Vascular permeability factor gene expression in normal and neoplastic human ovaries.Cancer Res.54(1) , 276–280 (1994).
  • Hino R , UozakiH, InoueYet al.: Survival advantage of EBV-associated gastric carcinoma: survivin up-regulation by viral latent membrane protein 2A.Cancer Res.68(5) , 1427–1435 (2008).
  • Stewart S , DawsonCW, TakadaKet al.: Epstein–Barr virus-encoded LMP2A regulates viral and cellular gene expression by modulation of the NF-κB transcription factor pathway.Proc. Natl Acad. Sci. USA101(44) , 15730–15735 (2004).
  • Tierney R , NagraJ, HutchingsIet al.: Epstein–Barr virus exploits BSAP/Pax5 to achieve the B-cell specificity of its growth-transforming program.J. Virol.81(18) , 10092–10100 (2007).
  • Hong YK , ForemanK, ShinJWet al.: Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus.Nat. Genet.36(7) , 683–685 (2004).
  • Wang HW , TrotterMW, LagosDet al.: Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma.Nat. Genet.36(7) , 687–693 (2004).
  • Dupin N , FisherC, KellamPet al.: Distribution of human herpesvirus-8 latently infected cells in Kaposi‘s sarcoma, multicentric Castleman‘s disease, and primary effusion lymphoma.Proc. Natl Acad. Sci. USA96(8) , 4546–4551 (1999).
  • Browning PJ , SechlerJM, KaplanMet al.: Identification and culture of Kaposi‘s sarcoma-like spindle cells from the peripheral blood of human immunodeficiency virus-1-infected individuals and normal controls.Blood84(8) , 2711–2720 (1994).
  • Lancrin C , SroczynskaP, StephensonC, AllenT, KouskoffV, LacaudG: The haemangioblast generates haematopoietic cells through a haemogenic endothelium stage.Nature457(7231) , 892–895 (2009).
  • Jiang Y , JahagirdarBN, ReinhardtRLet al.: Pluripotency of mesenchymal stem cells derived from adult marrow.Nature418(6893) , 41–49 (2002).
  • Kalluri R , ZeisbergM: Fibroblasts in cancer.Nat. Rev. Cancer6(5) , 392–401 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.