608
Views
0
CrossRef citations to date
0
Altmetric
Review

Pathogen recognition by DC-SIGN shapes adaptive immunity

, &
Pages 879-890 | Published online: 01 Sep 2009

Bibliography

  • Banchereau J , SteinmanRM: Dendritic cells and the control of immunity.Nature392 , 245–252 (1998).
  • Liew FY : TH1 and TH2 cells: a historical perspective.Nat. Rev. Immunol.2 , 55–60 (2002).
  • Harrington LE , HattonRD, ManganPRet al.: Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages.Nat. Immunol.6 , 1123–1132 (2005).
  • Park H , LiZX, YangXOet al.: A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17.Nat. Immunol.6 , 1133–1141 (2005).
  • Mills KH : Induction, function and regulation of IL-17-producing T cells.Eur. J. Immunol.38 , 2636–2649 (2008).
  • Vignali DA , CollisonLW, WorkmanCJ: How regulatory T cells work.Nat. Rev. Immunol.8 , 523–532 (2008).
  • Murphy KM , ReinerSL: The lineage decisions of helper T cells.Nat. Rev. Immunol.2 , 933–944 (2002).
  • Mills KH : Regulatory T cells: friend or foe in immunity to infection?Nat. Rev. Immunol.4 , 841–855 (2004).
  • Janeway CA , MedzhitovR: Innate immune recognition.Annu. Rev. Immunol.20 , 197–216 (2002).
  • Medzhitov R : Recognition of microorganisms and activation of the immune response.Nature449 , 819–826 (2007).
  • Robinson MJ , SanchoD, SlackEC, LeibundGut-LandmannS, SousaCRE: Myeloid C-type lectins in innate immunity.Nat. Immunol.7 , 1258–1265 (2006).
  • van Vliet SJ , den Dunnen J, Gringhuis SI, Geijtenbeek TB, van Kooyk Y: Innate signaling and regulation of dendritic cell immunity. Curr. Opin. Immunol.19 , 435–440 (2007).
  • Iwasaki A , MedzhitovR: Toll-like receptor control of the adaptive immune responses.Nat. Immunol.5 , 987–995 (2004).
  • Kawai T , AkiraS: TLR signaling.Cell Death Differ.13 , 816–825 (2006).
  • Medzhitov R , JanewayCA Jr: Innate immunity: the virtues of a nonclonal system of recognition. Cell91 , 295–298 (1997).
  • Gringhuis SI , den Dunnen J, Litjens M et al.: C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-κB. Immunity26 , 605–616 (2007).
  • Geijtenbeek TB , van Vliet SJ, Koppel EA et al.: Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med.197 , 7–17 (2003).
  • Gantner BN , SimmonsRM, CanaveraSJ, AkiraS, UnderhillDM: Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2.J. Exp. Med.197 , 1107–1117 (2003).
  • Rogers NC , SlackEC, EdwardsADet al.: Syk-dependent cytokine induction by dectin-1 reveals a novel pattern recognition pathway for C type lectins.Immunity22 , 507–517 (2005).
  • Brown GD : Dectin-1, a signalling non-TLR pattern-recognition receptor.Nat. Rev. Immunol.6 , 33–43 (2006).
  • Figdor CG , van Kooyk Y, Adema GJ: C-type lectin receptors on dendritic cells and Langerhans cells. Nat. Rev. Immunol.2 , 77–84 (2002).
  • Drickamer K : C-type lectin-like domains.Curr. Opin. Struct. Biol.9 , 585–590 (1999).
  • Higashi N , MorikawaA, FujiokaKet al.: Human macrophage lectin specific for galactose/N-acetylgalactosamine is a marker for cells at an intermediate stage in their differentiation from monocytes into macrophages.Int. Immunol.14 , 545–554 (2002).
  • Higashi N , FujiokaK, Denda-NagaiKet al.: The macrophage C-type lectin specific for galactose/N-acetylgalactosamine is an endocytic receptor expressed on monocyte- derived immature dendritic cells.J. Biol. Chem.277 , 20686–20693 (2002).
  • Iobst ST , WormaldMR, WeisWI, DwekRA, DrickamerK: Binding of sugar ligands to Ca2+-dependent animal lectins. I. Analysis of mannose binding by site-directed mutagenesis and NMR.J. Biol. Chem.269 , 15505–15511 (1994).
  • Zelensky AN , GreadyJE: The C-type lectin-like domain superfamily.FEBS J.272 , 6179–6217 (2005).
  • Weis WI , TaylorME, DrickamerK: The C-type lectin superfamily in the immune system.Immunol. Rev.163 , 19–34 (1998).
  • Geijtenbeek TB , KrooshoopDJ, BleijsDAet al.: DC-SIGN–ICAM-2 interaction mediates dendritic cell trafficking.Nat. Immunol.1 , 353–357 (2000).
  • Geijtenbeek TB , TorensmaR, van Vliet SJ et al.: Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell100 , 575–585 (2000).
  • Steinman RM , BanchereauJ: Taking dendritic cells into medicine.Nature449 , 419–426 (2007).
  • Gringhuis SI , den Dunnen J, Litjens M et al.: Dectin-1 directs T helper cell differentiation by controlling noncanonical NF-κB activation through Raf-1 and Syk. Nat. Immunol.10 , 203–213 (2009).
  • Engering A , van Vliet SJ, Geijtenbeek TB, van Kooyk Y: Subset of DC-SIGN+ dendritic cells in human blood transmits HIV-1 to T lymphocytes. Blood100 , 1780–1786 (2002).
  • Soilleux EJ , MorrisLS, LeslieGet al.: Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro.J. Leukoc. Biol.71 , 445–457 (2002).
  • Granelli-Piperno A , PritskerA, PackMet al.: Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin/CD209 is abundant on macrophages in the normal human lymph node and is not required for dendritic cell stimulation of the mixed leukocyte reaction.J. Immunol.175 , 4265–4273 (2005).
  • Appelmelk BJ , Van Die I, van Vliet SJ et al.: Cutting edge: carbohydrate profiling identifies new pathogens that interact with dendritic cell-specific ICAM-3-grabbing nonintegrin on dendritic cells. J. Immunol.170 , 1635–1639 (2003).
  • Zhang P , SchwartzO, PantelicMet al.: DC-SIGN (CD209) recognition of Neisseria gonorrhoeae is circumvented by lipooligosaccharide variation.J. Leukoc. Biol.79 , 731–738 (2006).
  • Steeghs L , van Vliet SJ, Uronen-Hansson H et al.: Neisseria meningitidis expressing lgtB lipopolysaccharide targets DC-SIGN and modulates dendritic cell function. Cell Microbiol.8 , 316–325 (2006).
  • Zhang P , SnyderS, FengPet al.: Role of N- acetylglucosamine within core lipopolysaccharide of several species of Gram-negative bacteria in targeting the DC-SIGN (CD209).J. Immunol.177 , 4002–4011 (2006).
  • Bernhard OK , LaiJ, WilkinsonJ, SheilMM, CunninghamAL: Proteomic analysis of DC-SIGN on dendritic cells detects tetramers required for ligand binding but no association with CD4.J. Biol. Chem.279 , 51828–51835 (2004).
  • Mitchell DA , FaddenAJ, DrickamerK: A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands.J. Biol. Chem.276 , 28939–28945 (2001).
  • Geijtenbeek TB , KwonDS, TorensmaRet al.: DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells.Cell100 , 587–597 (2000).
  • van Kooyk Y , GeijtenbeekTB: DC-SIGN: escape mechanism for pathogens.Nat. Rev. Immunol.3 , 697–709 (2003).
  • de Witte L , AbtM, Schneider-SchauliesS, van Kooyk Y, Geijtenbeek TB: Measles virus targets DC-SIGN to enhance dendritic cell infection. J. Virol.80 , 3477–3486 (2006).
  • Tailleux L , SchwartzO, HerrmannJLet al.: DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells.J. Exp. Med.197 , 121–127 (2003).
  • Bergman MP , EngeringA, SmitsHHet al.: Helicobacter pylori modulates the T helper cell 1/T helper cell 2 balance through phase-variable interaction between lipopolysaccharide and DC-SIGN.J. Exp. Med.200 , 979–990 (2004).
  • Cambi A , GijzenK, de Vries JM et al.: The C-type lectin DC-SIGN (CD209) is an antigen-uptake receptor for Candida albicans on dendritic cells. Eur. J. Immunol.33 , 532–538 (2003).
  • Smits HH , EngeringA, van der Kleij D et al.: Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. J. Allergy Clin. Immunol.115 , 1260–1267 (2005).
  • Chatterjee D , KhooKH: Mycobacterial lipoarabinomannan: an extraordinary lipoheteroglycan with profound physiological effects.Glycobiology8 , 113–120 (1998).
  • Sturgill-Koszycki S , SchlesingerPH, ChakrabortyPet al.: Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase.Science263 , 678–681 (1994).
  • Xu S , CooperA, Sturgill-KoszyckiSet al.: Intracellular trafficking in Mycobacterium tuberculosis and Mycobacterium avium-infected macrophages.J. Immunol.153 , 2568–2578 (1994).
  • Gringhuis SI , den Dunnen DJ, Litjens M et al.: Carbohydrate-specific signaling through dynamic regulation of the DC-SIGN signalosome directs immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat. Immunol. (2009) (In Press).
  • Appelmelk BJ , ShiberuB, TrinksCet al.: Phase variation in Helicobacter pylori lipopolysaccharide.Infect. Immun.66 , 70–76 (1998).
  • Hodges A , SharrocksK, EdelmannMet al.: Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication.Nat. Immunol.8 , 569–577 (2007).
  • Smith AL , GaneshL, LeungKet al.: Leukocyte-specific protein 1 interacts with DC-SIGN and mediates transport of HIV to the proteasome in dendritic cells.J. Exp. Med.204 , 421–430 (2007).
  • Moris A , NobileC, BuseyneFet al.: DC-SIGN promotes exogenous MHC-I-restricted HIV-1 antigen presentation.Blood103 , 2648–2654 (2004).
  • Moris A , PajotA, BlanchetFet al.: Dendritic cells and HIV-specific CD4+ T cells: HIV antigen presentation, T-cell activation, and viral transfer.Blood108 , 1643–1651 (2006).
  • Turville SG , SantosJJ, FrankIet al.: Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells.Blood103 , 2170–2179 (2004).
  • McDonald D , WuL, BohksSMet al.: Recruitment of HIV and its receptors to dendritic cell–T-cell junctions.Science300 , 1295–1297 (2003).
  • Halary F , AmaraA, Lortat-JacobHet al.: Human cytomegalovirus binding to DC-SIGN is required for dendritic cell infection and target cell trans-infection.Immunity17 , 653–664 (2002).
  • Lozach PY , Lortat-JacobH, De Lacroix De Lavalette A et al.: DC-SIGN and L-SIGN are high-affinity binding receptors for hepatitis C virus glycoprotein E2. J. Biol. Chem.278(22) , 20358–20366 (2003).
  • de Jong MA , de Witte L, Bolmstedt A, van Kooyk Y, Geijtenbeek TB: Dendritic cells mediate herpes simplex virus infection and transmission through the C-type lectin DC-SIGN. J. Gen. Virol.89 , 2398–2409 (2008).
  • Tassaneetrithep B , BurgessTH, Granelli-PipernoAet al.: DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells.J. Exp. Med.197 , 823–829 (2003).
  • Alvarez CP , LasalaF, CarrilloJet al.: C-type lectins DC-SIGN and L-SIGN mediate cellular entry by ebola virus in cis and in trans.J. Virol.76 , 6841–6844 (2002).
  • Maeda N , NigouJ, HerrmannJLet al.: The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan.J. Biol. Chem.278 , 5513–5516 (2003).
  • Appelmelk BJ , den Dunnen J, Driessen NN et al.: The mannose cap of mycobacterial lipoarabinomannan does not dominate the Mycobacterium–host interaction. Cell Microbiol.10 , 930–944 (2008).
  • Pitarque S , HerrmannJL, DuteyratJLet al.: Deciphering the molecular bases of Mycobacterium tuberculosis binding to the lectin DC-SIGN reveals an underestimated complexity.Biochem. J.392 , 615–624 (2005).
  • Wellbrock C , KarasaridesM, MaraisR: The RAF proteins take centre stage.Nat. Rev. Mol. Cell Biol.5 , 875–885 (2004).
  • Lowell CA : Src-family kinases: rheostats of immune cell signaling.Mol. Immunol.41 , 631–643 (2004).
  • Baccarini M : Second nature: biological functions of the Raf-1 “kinase”.FEBS Lett.579 , 3271–3277 (2005).
  • Kolch W : Coordinating ERK/MAPK signalling through scaffolds and inhibitors.Nat. Rev. Mol. Cell Biol.6 , 827–837 (2005).
  • Caparros E , MunozP, Sierra-FilardiEet al.: DC-SIGN ligation on dendritic cells results in ERK and PI3K activation and modulates cytokine production.Blood107 , 3950–3958 (2006).
  • Shreffler WG , CastroRR, KucukZYet al.: The major glycoprotein allergen from Arachis hypogaea, Ara h 1, is a ligand of dendritic cell-specific ICAM-grabbing nonintegrin and acts as a Th2 adjuvant in vitro.J. Immunol.177 , 3677–3685 (2006).
  • Shan M , KlassePJ, BanerjeeKet al.: HIV-1 gp120 mannoses induce immunosuppressive responses from dendritic cells.PLoS Pathog.3 , e169 (2007).
  • Ouaaz F , ArronJ, ZhengY, ChoiY, BegAA: Dendritic cell development and survival require distinct NF-κB subunits.Immunity16 , 257–270 (2002).
  • Hayden MS , GhoshS: Signaling to NF-κB.Genes Dev.18 , 2195–2224 (2004).
  • Chen LF , WilliamsSA, MuYJet al.: NF-κB RelA phosphorylation regulates RelA acetylation.Mol. Cell. Biol.25 , 7966–7975 (2005).
  • Chen LF , MuY, GreeneWC: Acetylation of RelA at discrete sites regulates distinct nuclear functions of NF-κB.EMBO J.21 , 6539–6548 (2002).
  • Chen LF , GreeneWC: Regulation of distinct biological activities of the NF-κB transcription factor complex by acetylation.J. Mol. Med.81 , 549–557 (2003).
  • Chen LF , FischleW, VerdinE, GreeneWC: Duration of nuclear NF-κB action regulated by reversible acetylation.Science293 , 1653–1657 (2001).
  • Netea MG , FerwerdaG, van der Graaf CAA, van der Meer JWM, Kullberg BJ: Recognition of fungal pathogens by Toll-like receptors. Curr. Pharm. Des.12 , 4195–4201 (2006).
  • Gross O , GewiesA, FingerKet al.: Card9 controls a non-TLR signalling pathway for innate antifungal immunity.Nature442 , 651–656 (2006).
  • LeibundGut-Landmann S , GrossO, RobinsonMJet al.: Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17.Nat. Immunol.8 , 630–638 (2007).
  • Bieback K , LienE, KlaggeIMet al.: Hemagglutinin protein of wild-type measles virus activates Toll-like receptor 2 signaling.J. Virol.76 , 8729–8736 (2002).
  • Marienfeld R , MayMJ, BerberichIet al.: RelB forms transcriptionally inactive complexes with RelA/p65.J. Biol. Chem.278 , 19852–19860 (2003).
  • Das S , BanerjeeG, DePonteKet al.: Salp25D, an Ixodes scapularis antioxidant, is 1 of 14 immunodominant antigens in engorged tick salivary glands.J. Infect. Dis.184 , 1056–1064 (2001).
  • Ramamoorthi N , NarasimhanS, PalUet al.: The Lyme disease agent exploits a tick protein to infect the mammalian host.Nature436 , 573–577 (2005).
  • Alexopoulou L , ThomasV, SchnareMet al.: Hyporesponsiveness to vaccination with Borrelia burgdorferi OspA in humans and in TLR1- and TLR2-deficient mice.Nat. Med.8 , 878–884 (2002).
  • Hirschfeld M , KirschningCJ, SchwandnerRet al.: Cutting edge: inflammatory signaling by Borrelia burgdorferi lipoproteins is mediated by Toll-like receptor 2.J. Immunol.163 , 2382–2386 (1999).
  • Hovius JW , de Jong MA, den Dunnen J et al.: Salp15 binding to DC-SIGN inhibits cytokine expression by impairing both nucleosome remodeling and mRNA stabilization. PLoS Pathog.4 , e31 (2008).
  • Juncadella IJ , GargR, AnanthnarayananSK, YengoCM, AnguitaJ: T-cell signaling pathways inhibited by the tick saliva immunosuppressor, Salp15.FEMS Immunol. Med. Microbiol.49 , 433–438 (2007).
  • Lee B , LeslieG, SoilleuxEet al.: Cis expression of DC-SIGN allows for more efficient entry of human and simian immunodeficiency viruses via CD4 and a coreceptor.J. Virol.75 , 12028–12038 (2001).
  • Takahara K , YashimaY, OmatsuYet al.: Functional comparison of the mouse DC-SIGN, SIGNR1, SIGNR3 and Langerin, C-type lectins.Int. Immunol.16 , 819–829 (2004).
  • Gramberg T , CaminschiI, WegeleA, HofmannH, PohlmannS: Evidence that multiple defects in murine DC-SIGN inhibit a functional interaction with pathogens.Virology345 , 482–491 (2006).
  • Schaefer M , ReilingN, FesslerCet al.: Decreased pathology and prolonged survival of human DC-SIGN transgenic mice during mycobacterial infection.J. Immunol.180 , 6836–6845 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.