162
Views
0
CrossRef citations to date
0
Altmetric
Review

Multicomponent Drug Efflux Complexes: Architecture and Mechanism of Assembly

Pages 919-932 | Published online: 01 Sep 2009

Bibliography

  • Levy SB , MarshallB: Antibacterial resistance worldwide: causes, challenges and responses.Nat. Med.10 , S122–S129 (2004).
  • Livermore DM : The need for new antibiotics.Clin. Microbiol. Infect.10(Suppl. 4) , 1–9 (2004).
  • Nikaido H , VaaraM: Molecular basis of bacterial outer membrane permeability.Microbiol. Rev.49 , 1–32 (1985).
  • Lomovskaya O , LewisK: Emr, an Escherichia coli locus for multidrug resistance.Proc. Natl Acad. Sci. USA89 , 8938–8942 (1992).
  • Ma D , CookDN, AlbertiMet al.: Molecular cloning and characterization of acrA and acrE genes of Escherichia coli.J. Bacteriol.175 , 6299–6313 (1993).
  • Lomovskaya O , ZgurskayaHI, TotrovM, WatkinsWJ: Waltzing transporters and ‘the dance macabre‘ between humans and bacteria.Nat. Rev. Drug Discov.6 , 56–65 (2007).
  • Nikaido H : Preventing drug access to targets: cell surface permeability barriers and active efflux in bacteria.Semin. Cell Dev. Biol.12 , 215–223 (2001).
  • Zgurskaya HI , KrishnamoorthyG, TikhonovaEB, LauSY, StrattonKL: Mechanism of antibiotic efflux in Gram-negative bacteria.Front. Biosci.8 , s862–s873 (2003).
  • Dinh T , PaulsenIT, SaierMH Jr: A family of extracytoplasmic proteins that allow transport of large molecules across the outer membranes of Gram-negative bacteria. J. Bacteriol.176 , 3825–3831 (1994).
  • Aires JR , NikaidoH: Aminoglycosides are captured from both periplasm and cytoplasm by the AcrD multidrug efflux transporter of Escherichia coli.J. Bacteriol.187 , 1923–1929 (2005).
  • Tikhonova EB , DevroyVK, LauSY, ZgurskayaHI: Reconstitution of the Escherichia coli macrolide transporter: the periplasmic membrane fusion protein MacA stimulates the ATPase activity of MacB.Mol. Microbiol.63 , 895–910 (2007).
  • Zgurskaya HI , NikaidoH: Bypassing the periplasm: reconstitution of the AcrAB multidrug efflux pump of Escherichia coli.Proc. Natl Acad. Sci. USA96 , 7190–7195 (1999).
  • Andersen C , HughesC, KoronakisV: Protein export and drug efflux through bacterial channel-tunnels.Curr. Opin. Cell Biol.13 , 412–416 (2001).
  • Thanabalu T , KoronakisE, HughesC, KoronakisV: Substrate-induced assembly of a contiguous channel for protein export from E. coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore.EMBO J.17 , 6487–6496 (1998).
  • Paulsen IT , ChenJ, NelsonKE, SaierMH Jr: Comparative genomics of microbial drug efflux systems. J. Mol. Microbiol. Biotechnol.3 , 145–150 (2001).
  • Saier MH Jr, Beatty JT, Goffeau A et al.: The major facilitator superfamily. J. Mol. Microbiol. Biotechnol.1 , 257–279 (1999).
  • Tseng TT , GratwickKS, KollmanJet al.: The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins.J. Mol. Microbiol. Biotechnol.1 , 107–125 (1999).
  • Saier MH Jr, Paulsen IT, Sliwinski MK et al.: Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FASEB J.12 , 265–274 (1998).
  • Poole K : Efflux-mediated multiresistance in Gram-negative bacteria.Clin. Microbiol. Infect.10 , 12–26 (2004).
  • Sobel ML , HocquetD, CaoL, PlesiatP, PooleK: Mutations in PA3574 (nalD) lead to increased MexAB–OprM expression and multidrug resistance in laboratory and clinical isolates of Pseudomonas aeruginosa.Antimicrob. Agents Chemother.49 , 1782–1786 (2005).
  • Zgurskaya HI , NikaidoH: Multidrug resistance mechanisms: drug efflux across two membranes.Mol. Microbiol.37 , 219–225 (2000).
  • Nikaido H , ZgurskayaHI: AcrAB and related multidrug efflux pumps of Escherichia coli.J. Mol. Microbiol. Biotechnol.3 , 215–218 (2001).
  • Koronakis V , SharffA, KoronakisE, LuisiB, HughesC: Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export.Nature405 , 914–919 (2000).
  • Mikolosko J , BobykK, ZgurskayaHI, GhoshP: Conformational flexibility in the multidrug efflux system protein AcrA.Structure14 , 577–587 (2006).
  • Murakami S , NakashimaR, YamashitaE, YamaguchiA: Crystal structure of bacterial multidrug efflux transporter AcrB.Nature419 , 587–593 (2002).
  • Akama H , KanemakiM, YoshimuraMet al.: Crystal structure of the drug discharge outer membrane protein, OprM, of Pseudomonas aeruginosa: dual modes of membrane anchoring and occluded cavity end.J. Biol. Chem.279 , 52816–52819 (2004).
  • Akama H , MatsuuraT, KashiwagiSet al.: Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa.J. Biol. Chem.279 , 25939–25942 (2004).
  • Sennhauser G , BukowskaMA, BriandC, GrutterMG: Crystal structure of the multidrug exporter MexB from Pseudomonas aeruginosa.J. Mol. Biol.389 , 134–145 (2009).
  • Murakami S , NakashimaR, YamashitaE, MatsumotoT, YamaguchiA: Crystal structures of a multidrug transporter reveal a functionally rotating mechanism.Nature443 , 173–179 (2006).
  • Yu EW , AiresJR, McDermottG, NikaidoH: A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study.J. Bacteriol.187 , 6804–6815 (2005).
  • Yu EW , McDermottG, ZgurskayaHI, NikaidoH, KoshlandDE Jr: Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science300 , 976–980 (2003).
  • Seeger MA , SchiefnerA, EicherTet al.: Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism.Science313 , 1295–1298 (2006).
  • Murakami S : Multidrug efflux transporter, AcrB – the pumping mechanism.Curr. Opin. Struct. Biol.18 , 459–465 (2008).
  • Nikaido H , TakatsukaY: Mechanisms of RND multidrug efflux pumps.Biochim. Biophys. Acta1794 , 769–781 (2009).
  • Pos KM : Drug transport mechanism of the AcrB efflux pump.Biochim. Biophys. Acta1794 , 782–793 (2009).
  • Seeger MA , von Ballmoos C, Eicher T et al.: Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB. Nat. Struct. Mol. Biol.15 , 199–205 (2008).
  • Takatsuka Y , NikaidoH: Site-directed disulfide crosslinking shows that cleft flexibility in the periplasmic domain is needed for the multidrug efflux pump AcrB of Escherichia coli.J. Bacteriol.189 , 8677–8684 (2007).
  • Su CC , LiM, GuRet al.: Conformation of the AcrB multidrug efflux pump in mutants of the putative proton relay pathway.J. Bacteriol.188 , 7290–7296 (2006).
  • Tikhonova EB , ZgurskayaHI: AcrA, AcrB, and TolC of Escherichia coli form a stable intermembrane multidrug efflux complex.J. Biol. Chem.279 , 32116–32124 (2004).
  • Takatsuka Y , NikaidoH: Covalently linked trimer of the AcrB multidrug efflux pump provides support for the functional rotating mechanism.J. Bacteriol.191 , 1729–1737 (2009).
  • Nagano K , NikaidoH: Kinetic behavior of the major multidrug efflux pump AcrB of Escherichia coli.Proc. Natl Acad. Sci. USA106 , 5854–5858 (2009).
  • Federici L , DuD, WalasFet al.: The crystal structure of the outer membrane protein VceC from the bacterial pathogen Vibrio cholerae at 1.8 Å resolution.J. Biol. Chem.280 , 15307–15314 (2005).
  • Andersen C , KoronakisE, BokmaEet al.: Transition to the open state of the TolC periplasmic tunnel entrance.Proc. Natl Acad. Sci. USA99 , 11103–11108 (2002).
  • Bavro VN , PietrasZ, FurnhamNet al.: Assembly and channel opening in a bacterial drug efflux machine.Mol. Cell30 , 114–121 (2008).
  • Touze T , EswaranJ, BokmaEet al.: Interactions underlying assembly of the Escherichia coli AcrAB–TolC multidrug efflux system.Mol. Microbiol.53 , 697–706 (2004).
  • Borges-Walmsley MI , BeauchampJ, KellySMet al.: Identification of oligomerization and drug-binding domains of the membrane fusion protein EmrA.J. Biol. Chem.278 , 12903–12912 (2003).
  • Pimenta AL , RacherK, JamiesonL, BlightMA, HollandIB: Mutations in HlyD, part of the type 1 translocator for hemolysin secretion, affect the folding of the secreted toxin.J. Bacteriol.187 , 7471–7480 (2005).
  • Bagai I , LiuW, RensingC, BlackburnNJ, McEvoyMM: Substrate-linked conformational change in the periplasmic component of a Cu(I)/Ag(I) efflux system.J. Biol. Chem.282 , 35695–35702 (2007).
  • Zgurskaya HI , YamadaY, TikhonovaEB, GeQ, KrishnamoorthyG: Structural and functional diversity of bacterial membrane fusion proteins.Biochim. Biophys. Acta1794 , 794–807 (2009).
  • Symmons MF , BokmaE, KoronakisE, HughesC, KoronakisV: The assembled structure of a complete tripartite bacterial multidrug efflux pump.Proc. Natl Acad. Sci. USA106 , 7173–7178 (2009).
  • Krishnamoorthy G , TikhonovaEB, ZgurskayaHI: Fitting periplasmic membrane fusion proteins to inner membrane transporters: mutations that enable Escherichia coli AcrA to function with Pseudomonas aeruginosa MexB.J. Bacteriol.190 , 691–698 (2008).
  • Lobedanz S , BokmaE, SymmonsMFet al.: A periplasmic coiled–coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps.Proc. Natl Acad. Sci. USA104 , 4612–4617 (2007).
  • Ip H , StrattonK, ZgurskayaH, LiuJ: pH-induced conformational changes of AcrA, the membrane fusion protein of Escherichia coli multidrug efflux system.J. Biol. Chem.278 , 50474–50482 (2003).
  • Ge Q , YamadaY, ZgurskayaH: The C-terminal domain of AcrA is essential for the assembly and function of the multidrug efflux pump AcrAB–TolC.J. Bacteriol.191 , 4365–4371 (2009).
  • Misra R , BavroVN: Assembly and transport mechanism of tripartite drug efflux systems.Biochim. Biophys. Acta1794 , 817–825 (2009).
  • Reffay M , GambinY, BenabdelhakHet al.: Tracking membrane protein association in model membranes.PLoS One4 , e5035 (2009).
  • Davis DR , McAlpineJB, PazolesCJet al.: Enterococcus faecalis multi-drug resistance transporters: application for antibiotic discovery.J. Mol. Microbiol. Biotechnol.3 , 179–184 (2001).
  • Paulsen IT , ParkJH, ChoiPS, SaierMH Jr: A family of Gram-negative bacterial outer membrane factors that function in the export of proteins, carbohydrates, drugs and heavy metals from Gram-negative bacteria. FEMS Microbiol. Lett.156 , 1–8 (1997).
  • Davidson AL , DassaE, OrelleC, ChenJ: Structure, function, and evolution of bacterial ATP-binding cassette systems.Microbiol. Mol. Biol. Rev.72 , 317–364 (2008).
  • Seeger MA , van Veen HW: Molecular basis of multidrug transport by ABC transporters. Biochim. Biophys. Acta1794 , 725–737 (2009).
  • Locher KP : Review. Structure and mechanism of ATP-binding cassette transporters.Philos. Trans. R. Soc. Lond. B Biol. Sci.364 , 239–245 (2009).
  • Kobayashi N , NishinoK, HirataT, YamaguchiA: Membrane topology of ABC-type macrolide antibiotic exporter MacB in Escherichia coli.FEBS Lett.546 , 241–246 (2003).
  • Xu Y , SimSH, NamKHet al.: Crystal structure of the periplasmic region of MacB, a noncanonic ABC transporter.Biochemistry48 , 5218–5225 (2009).
  • Aller SG , YuJ, WardAet al.: Structure of P-glycoprotein reveals a molecular basis for poly-specific drug binding.Science323 , 1718–1722 (2009).
  • Dawson RJ , LocherKP: Structure of a bacterial multidrug ABC transporter.Nature443 , 180–185 (2006).
  • Reyes CL , ChangG: Structure of the ABC transporter MsbA in complex with ADP.vanadate and lipopolysaccharide.Science308 , 1028–1031 (2005).
  • Rosenberg MF , MaoQ, HolzenburgAet al.: The structure of the multidrug resistance protein 1 (MRP1/ABCC1) crystallization and single-particle analysis.J. Biol. Chem.276 , 16076–16082 (2001).
  • Pleban K , KoppS, CsaszarEet al.: P-glycoprotein substrate binding domains are located at the transmembrane domain/transmembrane domain interfaces: a combined photoaffinity labeling-protein homology modeling approach.Mol. Pharmacol.67 , 365–374 (2005).
  • Reyes CL , WardA, YuJ, ChangG: The structures of MsbA: insight into ABC transporter-mediated multidrug efflux.FEBS Lett.580 , 1042–1048 (2006).
  • Higgins CF , LintonKJ: The ATP switch model for ABC transporters.Nat. Struct. Mol. Biol.11 , 918–926 (2004).
  • Senior AE : Catalytic mechanism of P-glycoprotein.Acta Physiol. Scand. Suppl.643 , 213–218 (1998).
  • Hollenstein K , DawsonRJ, LocherKP: Structure and mechanism of ABC transporter proteins.Curr. Opin. Struct. Biol.17 , 412–418 (2007).
  • Oldham ML , DavidsonAL, ChenJ: Structural insights into ABC transporter mechanism.Curr. Opin. Struct. Biol.18 , 726–733 (2008).
  • Holland IB , BlightMA, KennyB: The mechanism of secretion of hemolysin and other polypeptides from Gram-negative bacteria.J. Bioenerg. Biomembr.22 , 473–491 (1990).
  • Delepelaire P : PrtD, the integral membrane ATP-binding cassette component of the Erwinia chrysanthemi metalloprotease secretion system, exhibits a secretion signal-regulated ATPase activity.J. Biol. Chem.269 , 27952–27957 (1994).
  • Gilson L , MahantyHK, KolterR: Genetic analysis of an MDR-like export system: the secretion of colicin V.EMBO J.9 , 3875–3894 (1990).
  • Kobayashi N , NishinoK, YamaguchiA: Novel macrolide-specific ABC-type efflux transporter in Escherichia coli.J. Bacteriol.183 , 5639–5644 (2001).
  • Yamanaka H , KobayashiH, TakahashiE, OkamotoK: MacAB is involved in the secretion of Escherichia coli heat-stable enterotoxin II.J. Bacteriol.190 , 7693–7698 (2008).
  • Dubern JF , CoppoolseER, StiekemaWJ, BloembergGV: Genetic and functional characterization of the gene cluster directing the biosynthesis of putisolvin I and II in Pseudomonas putida strain PCL1445.Microbiology154 , 2070–2083 (2008).
  • Johnson JM , ChurchGM: Alignment and structure prediction of divergent protein families: periplasmic and outer membrane proteins of bacterial efflux pumps.J. Mol. Biol.287 , 695–715 (1999).
  • Balakrishnan L , HughesC, KoronakisV: Substrate-triggered recruitment of the TolC channel-tunnel during type I export of hemolysin by Escherichia coli.J. Mol. Biol.313 , 501–510 (2001).
  • Yum S , XuY, PiaoSet al.: Crystal structure of the periplasmic component of a tripartite macrolide-specific efflux pump.J. Mol. Biol.387 , 1286–1297 (2009).
  • Lin HT , BavroVN, BarreraNPet al.: MacB ABC transporter is a dimer whose ATPase activity and macrolide-binding capacity are regulated by the membrane fusion protein MacA.J. Biol. Chem.284 , 1145–1154 (2009).
  • Nikaido H , HallJA: Overview of bacterial ABC transporters.Methods Enzymol.292 , 3–20 (1998).
  • Yu EW , AiresJR, NikaidoH: AcrB multidrug efflux pump of Escherichia coli: composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity.J. Bacteriol.185 , 5657–5664 (2003).
  • Tikhonova EB , WangQ, ZgurskayaHI: Chimeric analysis of the multicomponent multidrug efflux transporters from Gram-negative bacteria.J. Bacteriol.184 , 6499–6507 (2002).
  • Nehme D , LiXZ, ElliotR, PooleK: Assembly of the MexAB–OprM multidrug efflux system of Pseudomonas aeruginosa: identification and characterization of mutations in mexA compromising MexA multimerization and interaction with MexB.J. Bacteriol.186 , 2973–2983 (2004).
  • Mao W , WarrenMS, BlackDSet al.: On the mechanism of substrate specificity by resistance nodulation division (RND)-type multidrug resistance pumps: the large periplasmic loops of MexD from Pseudomonas aeruginosa are involved in substrate recognition.Mol. Microbiol.46 , 889–901 (2002).
  • Elkins CA , NikaidoH: Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominately by two large periplasmic loops.J. Bacteriol.184 , 6490–6498 (2002).
  • Middlemiss JK , PooleK: Differential impact of MexB mutations on substrate selectivity of the MexAB–OprM multidrug efflux pump of Pseudomonas aeruginosa.J. Bacteriol.186 , 1258–1269 (2004).
  • Paulsen IT , BrownMH, SkurrayRA: Characterization of the earliest known Staphylococcus aureus plasmid encoding a multidrug efflux system.J. Bacteriol.180 , 3477–3479 (1998).
  • Brown MH , SkurrayRA: Staphylococcal multidrug efflux protein QacA.J. Mol. Microbiol. Biotechnol.3 , 163–170 (2001).
  • Bolhuis H , PoelarendsG, van Veen HW et al.: The lactococcal lmrP gene encodes a proton motive force-dependent drug transporter. J. Biol. Chem.270 , 26092–26098 (1995).
  • Neyfakh AA : The multidrug efflux transporter of Bacillus subtilis is a structural and functional homolog of the Staphylococcus NorA protein.Antimicrob. Agents Chemother.36 , 484–485 (1992).
  • Lewinson O , AdlerJ, PoelarendsGJet al.: The Escherichia coli multidrug transporter MdfA catalyzes both electrogenic and electroneutral transport reactions.Proc. Natl Acad. Sci. USA100 , 1667–1672 (2003).
  • Abramson J , SmirnovaI, KashoVet al.: Structure and mechanism of the lactose permease of Escherichia coli.Science301 , 610–615 (2003).
  • Yin Y , HeX, SzewczykP, NguyenT, ChangG: Structure of the multidrug transporter EmrD from Escherichia coli.Science312 , 741–744 (2006).
  • Lemieux MJ , HuangY, WangDN: The structural basis of substrate translocation by the Escherichia coli glycerol-3-phosphate transporter: a member of the major facilitator superfamily.Curr. Opin. Struct. Biol.14 , 405–412 (2004).
  • Fluman N , BibiE: Bacterial multidrug transport through the lens of the major facilitator superfamily.Biochim. Biophys. Acta1794 , 738–747 (2009).
  • Saidijam M , BenedettiG, RenQet al.: Microbial drug efflux proteins of the major facilitator superfamily.Curr. Drug Targets7 , 793–811 (2006).
  • Smirnova I , KashoV, ChoeJYet al.: Sugar binding induces an outward facing conformation of LacY.Proc. Natl Acad. Sci. USA104 , 16504–16509 (2007).
  • Zhou Y , GuanL, FreitesJA, KabackHR: Opening and closing of the periplasmic gate in lactose permease.Proc. Natl Acad. Sci. USA105 , 3774–3778 (2008).
  • Sigal N , Molshanski-MorS, BibiE: No single irreplaceable acidic residues in the Escherichia coli secondary multidrug transporter MdfA.J. Bacteriol.188 , 5635–5639 (2006).
  • Bapna A , FedericiL, VenterHet al.: Two proton translocation pathways in a secondary active multidrug transporter.J. Mol. Microbiol. Biotechnol.12 , 197–209 (2007).
  • Schuldiner S : EmrE, a model for studying evolution and mechanism of ion-coupled transporters.Biochim. Biophys. Acta1794 , 748–762 (2009).
  • Elkins CA , MullisLB: Mammalian steroid hormones are substrates for the major RND- and MFS-type tripartite multidrug efflux pumps of Escherichia coli.J. Bacteriol.188 , 1191–1195 (2006).
  • Brown MH , SkurrayRA: Staphylococcal multidrug efflux protein QacA.J. Mol. Microbiol. Biotechnol.3 , 163–170 (2001).
  • Mitchell BA , PaulsenIT, BrownMH, SkurrayRA: Bioenergetics of the staphylococcal multidrug export protein QacA. Identification of distinct binding sites for monovalent and divalent cations.J. Biol. Chem.274 , 3541–3548 (1999).
  • Guan L , KabackHR: Lessons from lactose permease.Annu. Rev. Biophys. Biomol. Struct.35 , 67–91 (2006).
  • Sigal N , LewinsonO, WolfSG, BibiE: E. coli multidrug transporter MdfA is a monomer.Biochemistry46 , 5200–5208 (2007).
  • Tanabe M , SzakonyiG, BrownKAet al.: The multidrug resistance efflux complex, EmrAB from Escherichia coli forms a dimer in vitro.Biochem. Biophys. Res. Commun.380 , 338–342 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.