226
Views
0
CrossRef citations to date
0
Altmetric
Review

Type B Coxsackieviruses and Their Interactions with the Innate and Adaptive Immune Systems

, &
Pages 1329-1347 | Published online: 22 Sep 2010

Bibliography

  • Modlin JF , RotbartHA: Group B coxsackie disease in children.Curr. Top. Microbiol. Immunol.223 , 53–80 (1997).
  • Whitton JL : Immunopathology during coxsackievirus infection.Springer Semin. Immunopathol.24 , 201–213 (2002).
  • Romero JR : Pediatric group B coxsackievirus infections.Curr. Top. Microbiol. Immunol.323 , 223–239 (2008).
  • O‘Connell JB : The role of myocarditis in end-stage dilated cardiomyopathy.Tex. Heart Inst. J.14 , 268–275 (1987).
  • Sole MJ , LiuP: Viral myocarditis: a paradigm for understanding the pathogenesis and treatment of dilated cardiomyopathy.J. Am. Coll. Cardiol.22 , A99–A105 (1993).
  • Tam PE : Coxsackievirus myocarditis: interplay between virus and host in the pathogenesis of heart disease.Viral Immunol.19 , 133–146 (2006).
  • Daley AJ , IsaacsD, DwyerDE, GilbertGL: A cluster of cases of neonatal coxsackievirus B meningitis and myocarditis.J. Paediatr. Child Health34 , 196–198 (1998).
  • Mena I , FischerC, GebhardJR, PerryCM, HarkinsS, WhittonJL: Coxsackievirus infection of the pancreas: evaluation of receptor expression, pathogenesis, and immunopathology.Virology271 , 276–288 (2000).
  • Huber S , RamsinghAI: Coxsackievirus-induced pancreatitis.Viral Immunol.17 , 358–369 (2004).
  • Feuer R , PagariganRR, HarkinsS, LiuF, HunzikerIP, WhittonJL: Coxsackievirus targets proliferating neuronal progenitor cells in the neonatal CNS.J. Neurosci.25 , 2434–2444 (2005).
  • Beutler B : Microbe sensing, positive feedback loops, and the pathogenesis of inflammatory diseases.Immunol. Rev.227 , 248–263 (2009).
  • Kurt-Jones EA , PopovaL, KwinnLet al. : Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus.Nat. Immunol.1 , 398–401 (2000).
  • Georgel P , JiangZ, KunzSet al. : Vesicular stomatitis virus glycoprotein G activates a specific antiviral Toll-like receptor 4-dependent pathway.Virology362 , 304–313 (2007).
  • Triantafilou K , TriantafilouM: Coxsackievirus B4-induced cytokine production in pancreatic cells is mediated through toll-like receptor 4.J. Virol.78 , 11313–11320 (2004).
  • Fairweather D , YusungS, FrisanchoSet al. : IL-12 receptor β 1 and Toll-like receptor 4 increase IL-1 β- and IL-18-associated myocarditis and coxsackievirus replication.J. Immunol.170 , 4731–4737 (2003).
  • Frisancho-Kiss S , DavisSE, NylandJFet al. : Cutting edge: cross-regulation by TLR4 and T cell Ig mucin-3 determines sex differences in inflammatory heart disease.J. Immunol.178 , 6710–6714 (2007).
  • Lane JR , NeumannDA, Lafond-WalkerA, HerskowitzA, RoseNR: LPS promotes CB3-induced myocarditis in resistant B10.A mice.Cell Immunol.136 , 219–233 (1991).
  • Richer MJ , FangD, ShaninaI, HorwitzMS: Toll-like receptor 4-induced cytokine production circumvents protection conferred by TGF-β in coxsackievirus-mediated autoimmune myocarditis.Clin. Immunol.121(3) , 339–349 (2006).
  • Alexopoulou L , HoltAC, MedzhitovR, FlavellRA: Recognition of double-stranded RNA and activation of NF-κB by Toll- like receptor 3.Nature413 , 732–738 (2001).
  • Negishi H , OsawaT, OgamiKet al. : A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity.Proc. Natl Acad. Sci. USA105 , 20446–20451 (2008).
  • Weinzierl AO , SzalayG, WolburgHet al. : Effective chemokine secretion by dendritic cells and expansion of cross-presenting CD4-/CD8+ dendritic cells define a protective phenotype in the mouse model of coxsackievirus myocarditis.J. Virol.82 , 8149–8160 (2008).
  • Richer MJ , LavalleeDJ, ShaninaI, HorwitzMS: Toll-like receptor 3 signaling on macrophages is required for survival following coxsackievirus B4 infection.PLoS ONE4 , E4127 (2009).
  • Triantafilou K , OrthopoulosG, VakakisEet al. : Human cardiac inflammatory responses triggered by coxsackie B viruses are mainly Toll-like receptor (TLR) 8-dependent.Cell. Microbiol.7 , 1117–1126 (2005).
  • Heil F , HemmiH, HochreinHet al. : Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8.Science303 , 1526–1529 (2004).
  • Liu J , XuC, HsuLC, LuoY, XiangR, ChuangTH: A five-amino-acid motif in the undefined region of the TLR8 ectodomain is required for species-specific ligand recognition.Mol. Immunol.47 , 1083–1090 (2010).
  • Werling D , JannOC, OffordV, GlassEJ, CoffeyTJ: Variation matters: TLR structure and species-specific pathogen recognition.Trends Immunol.30 , 124–130 (2009).
  • Berdeli A , CelikHA, OzyurekR, DogrusozB, AydinHH: TLR-2 gene Arg753Gln polymorphism is strongly associated with acute rheumatic fever in children.J. Mol. Med.83 , 535–541 (2005).
  • Tuthill TJ , BubeckD, RowlandsDJ, HogleJM: Characterization of early steps in the poliovirus infection process: receptor-decorated liposomes induce conversion of the virus to membrane-anchored entry-intermediate particles.J. Virol.80 , 172–180 (2006).
  • Brandenburg B , LeeLY, LakadamyaliM, RustMJ, ZhuangX, HogleJM: Imaging poliovirus entry in live cells.PLoS Biol.5 , E183 (2007).
  • Milstone AM , PetrellaJ, SanchezMD, MahmudM, WhitbeckJC, BergelsonJM: Interaction with coxsackievirus and adenovirus receptor, but not with decay-accelerating factor (DAF), induces A-particle formation in a DAF-binding coxsackievirus B3 isolate.J. Virol.79 , 655–660 (2005).
  • Coyne CB , BergelsonJM: Virus-induced Abl and Fyn kinase signals permit coxsackievirus entry through epithelial tight junctions.Cell124 , 119–131 (2006).
  • Coyne CB , ShenL, TurnerJR, BergelsonJM: Coxsackievirus entry across epithelial tight junctions requires occludin and the small GTPases Rab34 and Rab5.Cell Host Microbe2 , 181–192 (2007).
  • Patel KP , CoyneCB, BergelsonJM: Dynamin- and lipid raft-dependent entry of decay-accelerating factor (DAF)-binding and non-DAF-binding coxsackieviruses into nonpolarized cells.J. Virol.83 , 11064–11077 (2009).
  • Wang JP , AsherDR, ChanM, Kurt-JonesEA, FinbergRW: Cutting edge: antibody-mediated TLR7-dependent recognition of viral RNA.J. Immunol.178 , 3363–3367 (2007).
  • Deretic V : Autophagy in infection.Curr. Opin. Cell Biol.22(2) , 252–62 (2010).
  • Deretic V , LevineB: Autophagy, immunity, and microbial adaptations.Cell Host Microbe5 , 527–549 (2009).
  • Orvedahl A , MacphersonS, SumpterRJr, TalloczyZ, ZouZ, LevineB: Autophagy protects against sindbis virus infection of the central nervous system.Cell Host Microbe7 , 115–127 (2010).
  • Lee HK , LundJM, RamanathanB, MizushimaN, IwasakiA: Autophagy-dependent viral recognition by plasmacytoid dendritic cells.Science315 , 1398–1401 (2007).
  • Delgado MA , ElmaouedRA, DavisAS, KyeiG, DereticV: Toll-like receptors control autophagy.EMBO J.27 , 1110–1121 (2008).
  • Dales S , EggersHJ, TammI, PaladeGE: Electron microscopic study of the formation of poliovirus.Virology26 , 379–389 (1965).
  • Schlegel A , GiddingsTHJr, LadinskyMS, KirkegaardK: Cellular origin and ultrastructure of membranes induced during poliovirus infection.J. Virol.70 , 6576–6588 (1996).
  • Suhy DA , GiddingsTHJr, KirkegaardK: Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles.J. Virol.74 , 8953–8965 (2000).
  • Taylor MP , KirkegaardK: Potential subversion of autophagosomal pathway by picornaviruses.Autophagy4 , 286–289 (2008).
  • Taylor MP , KirkegaardK: Modification of cellular autophagy protein LC3 by poliovirus.J. Virol.81 , 12543–12553 (2007).
  • Harb JM , BurchGE: Spherical aggregates of coxsackie B4 virus particles in mouse pancreas.Beitr. Pathol.156 , 122–127 (1975).
  • Wong J , ZhangJ, SiXet al. : Autophagosome supports coxsackievirus B3 replication in host cells.J. Virol.82 , 9143–9153 (2008).
  • Yoon SY , HaYE, ChoiJEet al. : Coxsackievirus B4 uses autophagy for replication after calpain activation in rat primary neurons.J. Virol.82 , 11976–11978 (2008).
  • Jackson WT , GiddingsTHJr, TaylorMPet al.: Subversion of cellular autophagosomal machinery by RNA viruses.PLoS Biol.3 , e156 (2005).
  • Zhou Z , JiangX, LiuDet al. : Autophagy is involved in influenza A virus replication.Autophagy5 , 321–328 (2009).
  • Sir D , TianY, ChenWL, AnnDK, YenTS, OuJH: The early autophagic pathway is activated by hepatitis B virus and required for viral DNA replication.Proc. Natl Acad. Sci. USA107 , 4383–4388 (2010).
  • Dreux M , GastaminzaP, WielandSF, ChisariFV: The autophagy machinery is required to initiate hepatitis C virus replication.Proc. Natl Acad. Sci. USA106 , 14046–14051 (2009).
  • Wileman T : Aggresomes and autophagy generate sites for virus replication.Science312 , 875–878 (2006).
  • Taylor MP , JacksonWT: Viruses and arrested autophagosome development.Autophagy5 , 870–871 (2009).
  • Taylor MP , BurgonTB, KirkegaardK, JacksonWT: Role of microtubules in extracellular release of poliovirus.J. Virol.83 , 6599–6609 (2009).
  • Gannage M , DormannD, AlbrechtRet al. : Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes.Cell Host Microbe6 , 367–380 (2009).
  • Kyei GB , DinkinsC, DavisASet al. : Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages.J. Cell Biol.186 , 255–268 (2009).
  • de Bouteiller O , MerckE, HasanUAet al. : Recognition of double-stranded RNA by human Toll-like receptor 3 and downstream receptor signaling requires multimerization and an acidic pH.J. Biol. Chem.280 , 38133–38145 (2005).
  • Kim YM , BrinkmannMM, PaquetME, PloeghHL: UNC93B1 delivers nucleotide-sensing Toll-like receptors to endolysosomes.Nature452 , 234–238 (2008).
  • Serresi M , BizzarriR, CardarelliF, BeltramF: Real-time measurement of endosomal acidification by a novel genetically encoded biosensor.Anal. Bioanal. Chem.393 , 1123–1133 (2009).
  • Lee J , ChuangTH, RedeckeVet al. : Molecular basis for the immunostimulatory activity of guanine nucleoside analogs: activation of Toll-like receptor 7.Proc. Natl Acad. Sci. USA100 , 6646–6651 (2003).
  • Diebold SS , KaishoT, HemmiH, AkiraS, Reis e Sousa C: Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science303 , 1529–1531 (2004).
  • Latz E , SchoenemeyerA, VisintinAet al. : TLR9 signals after translocating from the ER to CpG DNA in the lysosome.Nat. Immunol.5 , 190–198 (2004).
  • Rutz M , MetzgerJ, GellertTet al. : Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner.Eur. J. Immunol.34 , 2541–2550 (2004).
  • Sepulveda FE , MaschalidiS, ColissonRet al. : Critical role for asparagine endopeptidase in endocytic Toll-like receptor signaling in dendritic cells.Immunity31 , 737–748 (2009).
  • Luber CA , CoxJ, LauterbachHet al. : Quantitative proteomics reveals subset-specific viral recognition in dendritic cells.Immunity.32 , 279–289 (2010).
  • Mukherjee A , MoroskySA, ShenLet al. : Retinoic acid-induced gene-1 (RIG-I) associates with the actin cytoskeleton via caspase activation and recruitment domain-dependent interactions.J. Biol. Chem.284 , 6486–6494 (2009).
  • Kato H , TakeuchiO, SatoSet al. : Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses.Nature441 , 101–105 (2006).
  • Loo YM , FornekJ, CrochetNet al. : Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity.J. Virol.82 , 335–345 (2008).
  • Dixit E , BoulantS, ZhangYet al. : Peroxisomes are signaling platforms for antiviral innate immunity.Cell141 , 668–681 (2010).
  • Seth RB , SunL, EaCK, ChenZJ: Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3.Cell122 , 669–682 (2005).
  • Xu LG , WangYY, HanKJ, LiLY, ZhaiZ, ShuHB: VISA is an adapter protein required for virus-triggered IFN-β signaling.Mol. Cell19 , 727–740 (2005).
  • Meylan E , CurranJ, HofmannKet al. : Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus.Nature437 , 1167–1172 (2005).
  • Kawai T , TakahashiK, SatoSet al. : IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction.Nat. Immunol.6 , 981–988 (2005).
  • Hornung V , EllegastJ, KimSet al. : 5´-triphosphate RNA is the ligand for RIG-I.Science314 , 994–997 (2006).
  • Pichlmair A , SchulzO, TanCPet al. : RIG-I-mediated antiviral responses to single-stranded RNA bearing 5´-phosphates.Science314 , 997–1001 (2006).
  • Barral PM , SarkarD, FisherPB, RacanielloVR: RIG-I is cleaved during picornavirus infection.Virology391 , 171–176 (2009).
  • Coyne CB , KimKS, BergelsonJM: Poliovirus entry into human brain microvascular cells requires receptor-induced activation of SHP-2.EMBO J.26 , 4016–4028 (2007).
  • Ju Y , WangT, LiY, XinW, WangS, LiJ: Coxsackievirus B3 affects endothelial tight junctions: possible relationship to ZO-1 and F-actin, as well as p38 MAPK activity.Cell Biol. Int.31 , 1207–1213 (2007).
  • Gitlin L , BarchetW, GilfillanSet al. : Essential role of MDA-5 in type I IFN responses to polyriboinosinic:polyribocytidylic acid and encephalomyocarditis picornavirus.Proc. Natl Acad. Sci. USA103 , 8459–8464 (2006).
  • Fredericksen BL , GaleMJr : West Nile virus evades activation of interferon regulatory factor 3 through RIG-I-dependent and -independent pathways without antagonizing host defense signaling.J. Virol.80 , 2913–2923 (2006).
  • Fredericksen BL , KellerBC, FornekJ, KatzeMG, GaleMJr : Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1.J. Virol.82 , 609–616 (2008).
  • Kato H , TakeuchiO, Mikamo-SatohEet al. : Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5.J. Exp. Med.205 , 1601–1610 (2008).
  • Yount JS , GitlinL, MoranTM, LopezCB: MDA5 participates in the detection of paramyxovirus infection and is essential for the early activation of dendritic cells in response to Sendai virus defective interfering particles.J. Immunol.180 , 4910–4918 (2008).
  • Gitlin L , BenoitL, SongCet al. : Melanoma differentiation-associated gene 5 (MDA5) is involved in the innate immune response to Paramyxoviridae infection in vivo.PLoS Path.6 , E1000734 (2010).
  • McCartney SA , ThackrayLB, GitlinL, GilfillanS, VirginHW, ColonnaM: MDA-5 recognition of a murine norovirus.PLoS Path.4 , E1000108 (2008).
  • Ikegame S , TakedaM, OhnoS, NakatsuY, NakanishiY, YanagiY: Both RIG-I and MDA5 RNA helicases contribute to the induction of α/β interferon in measles virus-infected human cells.J. Virol.84 , 372–379 (2010).
  • Wang JP , CernyA, AsherDR, Kurt-JonesEA, BronsonRT, FinbergRW: MDA5 and MAVS mediate type I IFN responses to coxsackie B virus.J. Virol.84 , 254–260 (2010).
  • Huhn MH , McCartneySA, LindK, SvedinE, ColonnaM, Flodstrom-TullbergM: Melanoma differentiation-associated protein-5 (MDA-5) limits early viral replication but is not essential for the induction of type 1 interferons after coxsackievirus infection.Virology401 , 42–48 (2010).
  • Barral PM , MorrisonJM, DrahosJet al. : MDA-5 is cleaved in poliovirus-infected cells.J. Virol.81 , 3677–3684 (2007).
  • Saito T , HiraiR, LooYMet al. : Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2.Proc. Natl Acad. Sci. USA104 , 582–587 (2007).
  • Komuro A , HorvathCM: RNA- and virus-independent inhibition of antiviral signaling by RNA helicase LGP2.J. Virol.80 , 12332–12342 (2006).
  • Rothenfusser S , GoutagnyN, DiPernaGet al. : The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I.J. Immunol.175 , 5260–5268 (2005).
  • Venkataraman T , ValdesM, ElsbyRet al. : Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses.J. Immunol.178 , 6444–6455 (2007).
  • Satoh T , KatoH, KumagaiYet al. : LGP2 is a positive regulator of RIG-I- and MDA5-mediated antiviral responses.Proc. Natl Acad. Sci. USA107 , 1512–1517 (2010).
  • Kramer M , SchulteBM, ToonenLWet al. : Echovirus infection causes rapid loss-of-function and cell death in human dendritic cells.Cell. Microbiol.9 , 1507–1518 (2007).
  • Kramer M , SchulteBM, ToonenLWet al. : Phagocytosis of picornavirus-infected cells induces an RNA-dependent antiviral state in human dendritic cells.J. Virol.82 , 2930–2937 (2008).
  • Sun Q , SunL, LiuHHet al. : The specific and essential role of MAVS in antiviral innate immune responses.Immunity24 , 633–642 (2006).
  • Yang Y , LiangY, QuLet al. : Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor.Proc. Natl Acad. Sci. USA104 , 7253–7258 (2007).
  • Lei Y , MooreCB, LiesmanRMet al. : MAVS-mediated apoptosis and its inhibition by viral proteins.PLoS ONE4 , E5466 (2009).
  • Yu CY , ChiangRL, ChangTH, LiaoCL, LinYL: The interferon stimulator mitochondrial antiviral signaling protein facilitates cell death by disrupting the mitochondrial membrane potential and by activating caspases.J. Virol.84 , 2421–2431 (2010).
  • Castanier C , GarcinD, VazquezA, ArnoultD: Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway.EMBO Rep.11 , 133–138 (2010).
  • Deane JA , PisitkunP, BarrettRSet al. : Control of Toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation.Immunity27 , 801–810 (2007).
  • Christensen SR , ShupeJ, NickersonK, KashgarianM, FlavellRA, ShlomchikMJ: Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus.Immunity25 , 417–428 (2006).
  • Perl A , NagyG, GergelyP, PuskasF, QianY, BankiK: Apoptosis and mitochondrial dysfunction in lymphocytes of patients with systemic lupus erythematosus.Methods Mol. Med.102 , 87–114 (2004).
  • Jonsen A , YuX, TruedssonLet al. : Mitochondrial DNA polymorphisms are associated with susceptibility and phenotype of systemic lupus erythematosus.Lupus18 , 309–312 (2009).
  • Neu N , BeiselKW, TraystmanMD, RoseNR, CraigSW: Autoantibodies specific for the cardiac myosin isoform are found in mice susceptible to coxsackievirus B3-induced myocarditis.J. Immunol.138 , 2488–2492 (1987).
  • Neu N , RoseNR, BeiselKW, HerskowitzA, Gurri-GlassG, CraigSW: Cardiac myosin induces myocarditis in genetically predisposed mice.J. Immunol.139 , 3630–3636 (1987).
  • Rose NR , HerskowitzA, NeumannDA: Autoimmunity in myocarditis: models and mechanisms.Clin. Immunol. Immunopathol.68 , 95–99 (1993).
  • Huber SA , LodgePA: Coxsackievirus B-3 myocarditis in Balb/c mice. Evidence for autoimmunity to myocyte antigens.Am. J. Pathol.116 , 21–29 (1984).
  • Huber SA , LydenDC, LodgePA: Immunopathogenesis of experimental coxsackievirus induced myocarditis: role of autoimmunity.Herz10 , 1–7 (1985).
  • Estrin M , SmithC, HuberSA: Coxsackievirus B-3 myocarditis. T-cell autoimmunity to heart antigens is resistant to cyclosporin-A treatment.Am. J. Pathol.125 , 244–251 (1986).
  • Smyth DJ , CooperJD, BaileyRet al. : A genome-wide association study of nonsynonymous SNPs identifies a Type 1 diabetes locus in the interferon-induced helicase (IFIH1) region.Nat. Genet.38 , 617–619 (2006).
  • Nejentsev S , WalkerN, RichesD, EgholmM, ToddJA: Rare variants of IFIH1, a gene implicated in antiviral responses, protect against Type 1 diabetes.Science324 , 387–389 (2009).
  • Shigemoto T , KageyamaM, HiraiR, ZhengJ, YoneyamaM, FujitaT: Identification of loss of function mutations in human genes encoding RIG-I and MDA5: implications for resistance to type I diabetes.J. Biol. Chem.284 , 13348–13354 (2009).
  • Hultcrantz M , HuhnMH, WolfMet al. : Interferons induce an antiviral state in human pancreatic islet cells.Virology367(1) , 92–101 (2007).
  • Schlee M , BarchetW, HornungV, HartmannG: Beyond double-stranded RNA-type I IFN induction by 3pRNA and other viral nucleic acids.Curr. Top. Microbiol. Immunol.316 , 207–230 (2007).
  • Ward SV , SamuelCE: Regulation of the interferon-inducible PKR kinase gene: the KCS element is a constitutive promoter element that functions in concert with the interferon-stimulated response element.Virology296 , 136–146 (2002).
  • Vella C , FestensteinH: Coxsackievirus B4 infection of the mouse pancreas: the role of natural killer cells in the control of virus replication and resistance to infection.J. Gen. Virol.73(Pt 6) , 1379–1386 (1992).
  • Yuan J , LiuZ, LimTet al. : CXCL10 inhibits viral replication through recruitment of natural killer cells in coxsackievirus B3-induced myocarditis.Circ. Res.104(5) , 628–638 (2009).
  • Seko Y , ShinkaiY, KawasakiAet al. : Expression of perforin in infiltrating cells in murine hearts with acute myocarditis caused by coxsackievirus B3.Circulation84 , 788–795 (1991).
  • Henke A , HuberSA, StelznerA, WhittonJL: The role of CD8+ T lymphocytes in coxsackievirus B3-induced myocarditis.J. Virol.69 , 6720–6728 (1995).
  • Godeny EK , GaunttCJ: Involvement of natural killer cells in coxsackievirus B3-induced murine myocarditis.J. Immunol.137 , 1695–1702 (1986).
  • Godeny EK , GaunttCJ: Murine natural killer cells limit coxsackievirus B3 replication.J. Immunol.139 , 913–918 (1987).
  • Cornell CT , KiossesWB, HarkinsS, WhittonJL: Inhibition of protein trafficking by coxsackievirus B3: multiple viral proteins target a single organelle.J. Virol.80 , 6637–6647 (2006).
  • Cornell CT , KiossesWB, HarkinsS, WhittonJL: Coxsackievirus B3 proteins directionally complement each other to downregulate surface MHC class I.J. Virol.81 , 6785–6797 (2007).
  • Huhn MH , HultcrantzM, LindK, LjunggrenHG, MalmbergKJ, Flodstrom-TullbergM: IFN-γ production dominates the early human natural killer cell response to coxsackievirus infection.Cell. Microbiol.10 , 426–436 (2008).
  • Bruton OC : Agammaglobulinemia.Pediatrics9 , 722–728 (1952).
  • Good RA , ZakSJ: Disturbance in γ-globulin synthesis as “experiments of nature”.Pediatrics18 , 109–149 (1956).
  • Dörries R , ter MeulenV: Specificity of IgM antibodies in acute human coxsackievirus B infections, analysed by indirect solid phase enzyme immunoassay and immunoblot technique.J. Gen. Virol.64(Pt 1) , 159–167 (1983).
  • Lodge PA , HerzumM, OlszewskiJ, HuberSA: Coxsackievirus B-3 myocarditis. Acute and chronic forms of the disease caused by different immunopathogenic mechanisms.Am. J. Pathol.128 , 455–463 (1987).
  • Sauter P , HoberD: Mechanisms and results of the antibody-dependent enhancement of viral infections and role in the pathogenesis of coxsackievirus B-induced diseases.Microbes Infect.11 , 443–451 (2009).
  • Haarmann CM , SchwimmbeckPL, MertensT, SchultheissHP, StrauerBE: Identification of serotype-specific and nonserotype-specific B- cell epitopes of coxsackie B virus using synthetic peptides.Virology200 , 381–389 (1994).
  • Leipner C , BorchersM, MerkleI, StelznerA: Coxsackievirus B3-induced myocarditis in MHC class II-deficient mice.J. Hum. Virol.2 , 102–114 (1999).
  • Hashimoto I , KomatsuT: Myocardial changes after infection with coxsackie virus B3 in nude mice.Br. J. Exp. Pathol.59 , 13–20 (1978).
  • Woodruff JF , WoodruffJJ: Involvement of T lymphocytes in the pathogenesis of coxsackie virus B3 heart disease.J. Immunol.113 , 1726–1734 (1974).
  • Huber SA , PfaeffleB: Differential Th1 and Th2 cell responses in male and female BALB/c mice infected with coxsackievirus group B type 3.J. Virol.68 , 5126–5132 (1994).
  • Cooper JB , PrattWR, EnglishBK, ShearerWT: Coxsackievirus B3 producing fatal meningoencephalitis in a patient with X-linked agammaglobulinemia.Am. J. Dis. Child137 , 82–83 (1983).
  • Hertel NT , PedersenFK, HeilmannC: Coxsackie B3 virus encephalitis in a patient with agammaglobulinaemia.Eur. J. Pediatr.148 , 642–643 (1989).
  • Katamura K , HattoriH, KunishimaT, KaneganeH, MiyawakiT, NakahataT: Non-progressive viral myelitis in X-linked agammaglobulinemia.Brain Dev.24 , 109–111 (2002).
  • Misbah SA , SpickettGP, RybaPCet al. : Chronic enteroviral meningoencephalitis in agammaglobulinemia: case report and literature review.J. Clin. Immunol.12 , 266–270 (1992).
  • Johnson JP , YolkenRH, GoodmanD, WinkelsteinJA, NagelJE: Prolonged excretion of group A coxsackievirus in an infant with agammaglobulinemia.J. Infect. Dis.146 , 712 (1982).
  • O‘Neil KM , PallanschMA, WinkelsteinJA, LockTM, ModlinJF: Chronic group A coxsackievirus infection in agammaglobulinemia: demonstration of genomic variation of serotypically identical isolates persistently excreted by the same patient.J. Infect. Dis.157 , 183–186 (1988).
  • Kew OM , SutterRW, NottayBKet al. : Prolonged replication of a type 1 vaccine-derived poliovirus in an immunodeficient patient.J. Clin. Microbiol.36 , 2893–2899 (1998).
  • Martin J , OdoomK, TuiteGet al. : Long-term excretion of vaccine-derived poliovirus by a healthy child.J. Virol.78 , 13839–13847 (2004).
  • Mena I , PerryCM, HarkinsS, RodriguezF, GebhardJR, WhittonJL: The role of B lymphocytes in coxsackievirus B3 infection.Am. J. Pathol.155 , 1205–1215 (1999).
  • Jarasch N , MartinU, ZellR, WutzlerP, HenkeA: Influence of pan-caspase inhibitors on coxsackievirus B3-infected CD19+ B lymphocytes.Apoptosis12 , 1633–1643 (2007).
  • Geller TJ , CondieD: A case of protracted coxsackie virus meningoencephalitis in a marginally immunodeficient child treated successfully with intravenous immunoglobulin.J. Neurol. Sci.129 , 131–133 (1995).
  • Modlin JF , BowmanM: Perinatal transmission of coxsackievirus B3 in mice.J. Infect. Dis.156 , 21–25 (1987).
  • Nathanson N , McGannKA, WilesmithJ, DesrosiersRC, BrookmeyerR: The evolution of virus diseases: their emergence, epidemicity, and control.Virus Res.29 , 3–20 (1993).
  • Woodruff JF : Lack of correlation between neutralizing antibody production and suppression of coxsackievirus B-3 replication in target organs: evidence for involvement of mononuclear inflammatory cells in host defense.J. Immunol.123 , 31–36 (1979).
  • Chow LH , BeiselKW, McManusBM: Enteroviral infection of mice with severe combined immunodeficiency. Evidence for direct viral pathogenesis of myocardial injury.Lab. Invest.66 , 24–31 (1992).
  • Sato S , TsutsumiR, BurkeAet al. : Persistence of replicating coxsackievirus B3 in the athymic murine heart is associated with development of myocarditic lesions.J. Gen. Virol.75 , 2911–2924 (1994).
  • Schnurr DP , SchmidtNJ: Coxsackievirus B3 persistence and myocarditis in NFR nu/nu and +/nu mice.Med. Microbiol. Immunol.173 , 1–7 (1984).
  • Wong CY , WoodruffJJ, WoodruffJF: Generation of cytotoxic T lymphocytes during coxsackievirus B-3 infection. I. Model and viral specificity.J. Immunol.118 , 1159–1164 (1977).
  • Guthrie M , LodgePA, HuberSA: Cardiac injury in myocarditis induced by coxsackievirus group B, type 3 in Balb/c mice is mediated by Lyt 2+ cytolytic lymphocytes.Cell. Immunol.88 , 558–567 (1984).
  • Huber SA , MoraskaA, ChoateM: T cells expressing the γδ T-cell receptor potentiate coxsackievirus B3-induced myocarditis.J. Virol.66 , 6541–6546 (1992).
  • Ramsingh AI , LeeWT, CollinsDN, ArmstrongLE: T cells contribute to disease severity during coxsackievirus B4 infection.J. Virol.73 , 3080–3086 (1999).
  • Blay R , SimpsonK, LeslieK, HuberS: Coxsackievirus-induced disease. CD4+ cells initiate both myocarditis and pancreatitis in DBA/2 mice.Am. J. Pathol.135 , 899–907 (1989).
  • Opavsky MA , PenningerJ, AitkenKet al. : Susceptibility to myocarditis is dependent on the response of ab T lymphocytes to coxsackieviral infection.Circ. Res.85 , 551–558 (1999).
  • Weinzierl AO , RudolfD, MaurerDet al. : Identification of HLA-A*01- and HLA-A*02-restricted CD8+ T-cell epitopes shared among group B enteroviruses.J. Gen. Virol.89 , 2090–2097 (2008).
  • Jakel S , KuckelkornU, SzalayGet al. : Differential interferon responses enhance viral epitope generation by myocardial immunoproteasomes in murine enterovirus myocarditis.Am. J. Pathol.175 , 510–518 (2009).
  • Voigt A , JakelS, Textoris-TaubeKet al. : Generation of in silico predicted coxsackievirus B3-derived MHC class I epitopes by proteasomes.Amino Acids39(1) , 243–255 (2009).
  • Varela-Calvino R , SkoweraA, ArifS, PeakmanM: Identification of a naturally processed cytotoxic CD8 T-cell epitope of coxsackievirus B4, presented by HLA-A2.1 and located in the PEVKEK region of the P2C nonstructural protein.J. Virol.78 , 13399–13408 (2004).
  • Callan MF , TanL, AnnelsNet al. : Direct visualization of antigen-specific CD8+ T cells during the primary immune response to Epstein-Barr virus in vivo.J. Exp. Med.187 , 1395–1402 (1998).
  • Miller JD , van derMost RG, AkondyRSet al.: Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines.Immunity28 , 710–722 (2008).
  • Kemball CC , HarkinsS, WhittonJL: Enumeration and functional evaluation of virus-specific CD4+ and CD8+ T cells in lymphoid and peripheral sites of coxsackievirus B3 infection.J. Virol.82 , 4331–4342 (2008).
  • Yue Y , XuW, HuL, JiangZ, XiongS: Enhanced resistance to coxsackievirus B3-induced myocarditis by intranasal co-immunization of lymphotactin gene encapsulated in chitosan particle.Virology386 , 438–447 (2009).
  • Kemball CC , HarkinsS, WhitmireJK, FlynnCT, FeuerR, WhittonJL: Coxsackievirus B3 inhibits antigen presentation in vivo, exerting a profound and selective effect on the MHC class I pathway.PLoS Path.5 , E1000618 (2009).
  • Slifka MK , PagariganRR, MenaI, FeuerR, WhittonJL: Using recombinant coxsackievirus B3 to evaluate the induction and protective efficacy of CD8+ T cells during picornavirus infection.J. Virol.75 , 2377–2387 (2001).
  • Slifka MK , WhittonJL: Functional avidity maturation of CD8+ T cells without selection of higher affinity TCR.Nat. Immunol.2 , 711–717 (2001).
  • Miller JP , GengY, NgHL, YangOO, KrogstadP: Packaging limits and stability of HIV-1 sequences in a coxsackievirus B vector.Vaccine27 , 3992–4000 (2009).
  • Wessels E , DuijsingsD, NotebaartRA, MelchersWJ, van Kuppeveld FJ: A proline-rich region in the coxsackievirus 3A protein is required for the protein to inhibit endoplasmic reticulum-to-Golgi transport. J. Virol.79 , 5163–5173 (2005).
  • de Jong AS , VischHJ, de MattiaFet al.: The coxsackievirus 2B protein increases efflux of ions from the endoplasmic reticulum and Golgi, thereby inhibiting protein trafficking through the Golgi.J. Biol. Chem.281 , 14144–14150 (2006).
  • Wessels E , DuijsingsD, NiuTKet al. : A viral protein that blocks Arf1-mediated COP-I assembly by inhibiting the guanine nucleotide exchange factor GBF1.Dev. Cell11 , 191–201 (2006).
  • Wessels E , DuijsingsD, LankeKHet al. : Effects of picornavirus 3A proteins on protein transport and GBF1-dependent COP-I recruitment.J. Virol.80 , 11852–11860 (2006).
  • de Jong AS , deMF, van DommelenMMet al.: Functional analysis of picornavirus 2B proteins: effects on calcium homeostasis and intracellular protein trafficking.J. Virol.82 , 3782–3790 (2008).
  • Villadangos JA , HeathWR, CarboneFR: Outside looking in: the inner workings of the cross-presentation pathway within dendritic cells.Trends Immunol.28 , 45–47 (2007).
  • Mandl S , SigalLJ, RockKL, AndinoR: Poliovirus vaccine vectors elicit antigen-specific cytotoxic T cells and protect mice against lethal challenge with malignant melanoma cells expressing a model antigen.Proc. Natl Acad. Sci. USA95 , 8216–8221 (1998).
  • Doedens JR , KirkegaardK: Inhibition of cellular protein secretion by poliovirus proteins 2B and 3A.EMBO J.14 , 894–907 (1995).
  • Deitz SB , DoddDA, CooperS, ParhamP, KirkegaardK: MHC I-dependent antigen presentation is inhibited by poliovirus protein 3A.Proc. Natl Acad. Sci. USA97 , 13790–13795 (2000).
  • Dodd DA , GiddingsTHJr, KirkegaardK: Poliovirus 3A protein limits interleukin-6 (IL-6), IL-8, and β interferon secretion during viral infection.J. Virol.75 , 8158–8165 (2001).
  • Wahid R , CannonMJ, ChowM: Virus-specific CD4+ and CD8+ cytotoxic T-cell responses and long-term T-cell memory in individuals vaccinated against polio.J. Virol.79 , 5988–5995 (2005).
  • Wahid R , CannonMJ, ChowM: Dendritic cells and macrophages are productively infected by poliovirus.J. Virol.79 , 401–409 (2005).
  • Marttila J , HyotyH, ViljaPet al. : T cell epitopes in coxsackievirus B4 structural proteins concentrate in regions conserved between enteroviruses.Virology293 , 217–224 (2002).
  • Huber S , PolgarJ, MoraskaA, CunninghamMW, SchwimmbeckP, SchultheissP: T lymphocyte responses in CVB3-induced murine myocarditis.Scand. J. Infect. Dis. Suppl.88 , 67–78 (1993).
  • Halim SS , OstrowskiSE, LeeWT, RamsinghAI: Immunogenicity of a foreign peptide expressed within a capsid protein of an attenuated coxsackievirus.Vaccine19 , 958–965 (2001).
  • Filippi CM , EstesEA, OldhamJE, von Herrath MG: Immunoregulatory mechanisms triggered by viral infections protect from Type 1 diabetes in mice. J. Clin. Invest.119 , 1515–1523 (2009).
  • Lee HK , MatteiLM, SteinbergBEet al. : In vivo requirement for Atg5 in antigen presentation by dendritic cells.Immunity32 , 227–239 (2010).
  • Huber SA , GravelineD, NewellMK, BornWK, O‘BrienRL: Vγ1+ T cells suppress and Vγ4+ T cells promote susceptibility to coxsackievirus B3-induced myocarditis in mice.J. Immunol.165 , 4174–4181 (2000).
  • Huber SA , GravelineD, BornWK, O‘BrienRL: Cytokine production by Vγ+-T-cell subsets is an important factor determining CD4+-Th-cell phenotype and susceptibility of BALB/c mice to coxsackievirus B3-induced myocarditis.J. Virol.75 , 5860–5869 (2001).
  • Huber S , SartiniD: T cells expressing the Vγ1 T-cell receptor enhance virus-neutralizing antibody response during coxsackievirus B3 infection of BALB/c mice: differences in male and female mice.Viral Immunol.18 , 730–739 (2005).
  • Huber SA : CD1d expression on hemopoietic cells promotes CD4+ Th1 response in coxsackievirus B3 induced myocarditis.Virology352 , 226–236 (2006).
  • Huber SA , BuddRC, RossnerK, NewellMK: Apoptosis in coxsackievirus B3-induced myocarditis and dilated cardiomyopathy.Ann. NY Acad. Sci.887 , 181–190 (1999).
  • Huber SA , ShiC, BuddRC: γδ T cells promote a Th1 response during coxsackievirus B3 infection in vivo: role of Fas and Fas ligand.J. Virol.76 , 6487–6494 (2002).
  • Huber SA : Depletion of γδ+ T cells increases CD4+ FoxP3 (T regulatory) cell response in coxsackievirus B3-induced myocarditis.Immunology127 , 567–576 (2009).
  • Heim A , CanuA, KirschnerPet al. : Synergistic interaction of interferon-β and interferon-γ in coxsackievirus B3-infected carrier cultures of human myocardial fibroblasts.J. Infect. Dis.166 , 958–965 (1992).
  • Kandolf R , CanuA, HofschneiderPH: Coxsackie B3 virus can replicate in cultured human foetal heart cells and is inhibited by interferon.J. Mol. Cell Cardiol.17 , 167–181 (1985).
  • Yiyun C , YagiS, SchnurrD: Persistent infections by coxsackie virus B3.In: Pathogenesis and control of viral infections.AutiF (Ed.), Raven Press,NY, USA,105–112, (1989).
  • Matteucci D , PagliantiM, GiangregorioAM, CapobianchiMR, DianzaniF, BendinelliM: Group B coxsackieviruses readily establish persistent infections in human lymphoid cell lines.J. Virol.56 , 651–654 (1985).
  • Tam PE , SchmidtAM, YtterbergSR, MessnerRP: Viral persistence during the developmental phase of coxsackievirus B1-induced murine polymyositis.J. Virol.65 , 6654–6660 (1991).
  • Tam PE , SchmidtAM, YtterbergSR, MessnerRP: Duration of virus persistence and its relationship to inflammation in the chronic phase of coxsackievirus B1-induced murine polymyositis.J. Lab. Clin. Med.123 , 346–356 (1994).
  • Tam PE , MessnerRP: Molecular mechanisms of coxsackievirus persistence in chronic inflammatory myopathy: viral RNA persists through formation of a double-stranded complex without associated genomic mutations or evolution.J. Virol.73 , 10113–10121 (1999).
  • Klingel K , HohenadlC, CanuAet al. : Ongoing enterovirus-induced myocarditis is associated with persistent heart muscle infection: quantitative analysis of virus replication, tissue damage, and inflammation.Proc. Natl Acad. Sci. USA89 , 314–318 (1992).
  • Klingel K , StephanS, SauterMet al. : Pathogenesis of murine enterovirus myocarditis: virus dissemination and immune cell targets.J. Virol.70 , 8888–8895 (1996).
  • Wessely R , HenkeA, ZellR, KandolfR, KnowltonKU: Low-level expression of a mutant coxsackieviral cDNA induces a myocytopathic effect in culture: an approach to the study of enteroviral persistence in cardiac myocytes.Circulation98 , 450–457 (1998).
  • Wessely R , KlingelK, SantanaLFet al. : Transgenic expression of replication-restricted enteroviral genomes in heart muscle induces defective excitation-contraction coupling and dilated cardiomyopathy.J. Clin. Invest.102 , 1444–1453 (1998).
  • Kim KS , TracyS, TapprichWet al. : 5´-terminal deletions occur in coxsackievirus B3 during replication in murine hearts and cardiac myocyte cultures and correlate with encapsidation of negative-strand viral RNA.J. Virol.79 , 7024–7041 (2005).
  • Chapman NM , KimKS, DrescherKM, OkaK, TracyS: 5´ terminal deletions in the genome of a coxsackievirus B2 strain occurred naturally in human heart.Virology375 , 480–491 (2008).
  • Kim KS , ChapmanNM, TracyS: Replication of coxsackievirus B3 in primary cell cultures generates novel viral genome deletions.J. Virol.82 , 2033–2037 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.