404
Views
0
CrossRef citations to date
0
Altmetric
Review

Antibiotic Resistance in Chlamydiae

&
Pages 1427-1442 | Published online: 22 Sep 2010

Bibliography

  • Abdelrahman YM , BellandRJ: The chlamydial developmental cycle.FEMS Microbiol. Rev.29 , 949–959 (2005).
  • Rzomp KA , MoorheadAR, ScidmoreMA: The GTPase Rab4 interacts with Chlamydia trachomatis inclusion membrane protein CT229.Infect. Immun.74 , 5362–5373 (2006).
  • Scidmore MA , HackstadtT: Mammalian 14-3-3β associates with the Chlamydia trachomatis inclusion membrane via its interaction with IncG.Mol. Microbiol.39 , 1638–1650 (2001).
  • Mital J , MillerNJ, FischerER, HackstadtT: Specific chlamydial inclusion membrane proteins associate with active Src family kinases in microdomains that interact with the host microtubule network.Cell Microbiol.12(9) , 1235–1249 (2010).
  • Misaghi S , BalsaraZR, CaticAet al. : Chlamydia trachomatis-derived deubiquitinating enzymes in mammalian cells during infection.Mol. Microbiol.61 , 142–150 (2006).
  • Le Negrate G , KriegA, FaustinBet al. : ChlaDub1 of Chlamydia trachomatis suppresses NF-κB activation and inhibits IκBα ubiquitination and degradation.Cell Microbiol.10 , 1879–1892 (2008).
  • Zhong G , FanP, JiH, DongF, HuangY: Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors.J. Exp. Med.193 , 935–942 (2001).
  • Thomson NR , ClarkeIN: Chlamydia trachomatis: small genome, big challenges.Future Microbiol.5 , 555–561 (2010).
  • Binet R , MaurelliAT: Transformation and isolation of allelic exchange mutants of Chlamydia psittaci using recombinant DNA introduced by electroporation.Proc. Natl Acad. Sci. USA106 , 292–297 (2009).
  • DeMars R , WeinfurterJ: Interstrain gene transfer in Chlamydia trachomatisin vitro: mechanism and significance.J. Bacteriol.190 , 1605–1614 (2008).
  • Demars R , WeinfurterJ, GuexE, LinJ, PotucekY: Lateral gene transfer in vitro in the intracellular pathogen Chlamydia trachomatis.J. Bacteriol.189 , 991–1003 (2007).
  • Suchland RJ , SandozKM, JeffreyBM, StammWE, RockeyDD: Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro.Antimicrob. Agents Chemother.53 , 4604–4611 (2009).
  • Binet R , BowlinAK, MaurelliAT, RankRG: Impact of azithromycin resistance mutations on the virulence and fitness of Chlamydia caviae in guinea pigs.Antimicrob. Agents Chemother.54 , 1094–1101 (2010).
  • Binet R , MaurelliAT: Frequency of spontaneous mutations that confer antibiotic resistance in Chlamydia spp.Antimicrob. Agents Chemother.49 , 2865–2873 (2005).
  • Binet R , MaurelliAT: Fitness cost due to mutations in the 16S rRNA associated with spectinomycin resistance in Chlamydia psittaci 6BC.Antimicrob. Agents Chemother.49 , 4455–4464 (2005).
  • Binet R , MaurelliAT: Frequency of development and associated physiological cost of azithromycin resistance in Chlamydia psittaci 6BC and C. trachomatis L2.Antimicrob. Agents Chemother.51 , 4267–4275 (2007).
  • Binet R , MaurelliAT: The chlamydial functional homolog of KsgA confers kasugamycin sensitivity to Chlamydia trachomatis and impacts bacterial fitness.BMC Microbiol.9 , 279 (2009).
  • Dessus-Babus S , BebearCM, CharronA, BebearC, de Barbeyrac B: Sequencing of gyrase and topoisomerase IV quinolone-resistance-determining regions of Chlamydia trachomatis and characterization of quinolone-resistant mutants obtained in vitro. Antimicrob. Agents Chemother.42 , 2474–2481 (1998).
  • Dreses-Werringloer U , PadubrinI, KohlerL, HudsonAP: Detection of nucleotide variability in rpoB in both rifampin-sensitive and rifampin-resistant strains of Chlamydia trachomatis.Antimicrob. Agents Chemother.47 , 2316–2318 (2003).
  • Kutlin A , KohlhoffS, RoblinP, HammerschlagMR, RiskaP: Emergence of resistance to rifampin and rifalazil in Chlamydophila pneumoniae and Chlamydia trachomatis.Antimicrob. Agents Chemother.49 , 903–907 (2005).
  • Morrissey I , SalmanH, BakkerSet al. : Serial passage of Chlamydia spp. in sub-inhibitory fluoroquinolone concentrations.J. Antimicrob. Chemother.49 , 757–761 (2002).
  • Workowski KA , LevineWC, WasserheitJN: U.S. Centers for Disease Control and Prevention guidelines for the treatment of sexually transmitted diseases: an opportunity to unify clinical and public health practice.Ann. Intern. Med.137 , 255–262 (2002).
  • Geisler WM : Duration of untreated, uncomplicated Chlamydia trachomatis genital infection and factors associated with chlamydia resolution: a review of human studies.J. Infect. Dis.201(Suppl. 2) , S104–S113 (2010).
  • Burton MJ , MabeyDC: The global burden of trachoma: a review.PLoS Negl. Trop. Dis.3 , E460 (2009).
  • Gerard HC , Whittum-HudsonJA, CarterJD, HudsonAP: Molecular biology of infectious agents in chronic arthritis.Rheum. Dis. Clin. North Am.35 , 1–19 (2009).
  • Campbell LA , KuoCC: Chlamydia pneumoniae – an infectious risk factor for atherosclerosis?Nat. Rev. Microbiol.2 , 23–32 (2004).
  • Patton DL , Askienazy-ElbharM, Henry-SuchetJet al. : Detection of Chlamydia trachomatis in fallopian tube tissue in women with postinfectious tubal infertility.Am. J. Obstet. Gynecol.171 , 95–101 (1994).
  • Stamm WE : Chlamydia trachomatis infections: progress and problems.J. Infect. Dis.179(Suppl. 2) , S380–S383 (1999).
  • Donati M , Di FrancescoA, D‘AntuonoAet al.: Chlamydia trachomatis serovar distribution and other concurrent sexually transmitted infections in heterosexual men with urethritis in Italy.Eur. J. Clin. Microbiol. Infect. Dis.28 , 523–526 (2009).
  • Khan A , FortenberryJD, JuliarBEet al. : The prevalence of chlamydia, gonorrhea, and trichomonas in sexual partnerships: implications for partner notification and treatment.Sex. Transm. Dis.32 , 260–264 (2005).
  • Lin JS , DoneganSP, HeerenTCet al. : Transmission of Chlamydia trachomatis and Neisseria gonorrhoeae among men with urethritis and their female sex partners.J. Infect. Dis.178 , 1707–1712 (1998).
  • Stamm WE , GuinanME, JohnsonCet al. : Effect of treatment regimens for Neisseria gonorrhoeae on simultaneous infection with Chlamydia trachomatis.N. Engl. J. Med.310 , 545–549 (1984).
  • Stamm LV : Global challenge of antibiotic-resistant Treponema pallidum.Antimicrob. Agents Chemother.54 , 583–589 (2010).
  • Newman LM , MoranJS, WorkowskiKA: Update on the management of gonorrhea in adults in the United States.Clin. Infect. Dis.44(Suppl. 3) , S84–S101 (2007).
  • Chopra I , StoreyC, FallaTJ, PearceJH: Antibiotics, peptidoglycan synthesis and genomics: the chlamydial anomaly revisited.Microbiology144(Pt 10) , 2673–2678 (1998).
  • Hogan RJ , MathewsSA, MukhopadhyayS, SummersgillJT, TimmsP: Chlamydial persistence: beyond the biphasic paradigm.Infect. Immun.72 , 1843–1855 (2004).
  • Roblin PM , HammerschlagMR: Microbiologic efficacy of azithromycin and susceptibilities to azithromycin of isolates of Chlamydia pneumoniae from adults and children with community-acquired pneumonia.Antimicrob. Agents Chemother.42 , 194–196 (1998).
  • Hammerschlag MR : Advances in the management of Chlamydia pneumoniae infections.Expert Rev. Anti-Infect. Ther.1 , 493–503 (2003).
  • Kutlin A , RoblinPM, HammerschlagMR: In vitro activities of azithromycin and ofloxacin against Chlamydia pneumoniae in a continuous-infection model.Antimicrob. Agents Chemother.43 , 2268–2272 (1999).
  • Kutlin A , RoblinPM, HammerschlagMR: Effect of prolonged treatment with azithromycin, clarithromycin, or levofloxacin on Chlamydia pneumoniae in a continuous-infection model.Antimicrob. Agents Chemother.46 , 409–412 (2002).
  • Dreses-Werringloer U , PadubrinI, Jurgens-SaathoffBet al. : Persistence of Chlamydia trachomatis is induced by ciprofloxacin and ofloxacin in vitro.Antimicrob. Agents Chemother.44 , 3288–3297 (2000).
  • Wyrick PB , KnightST: Pre-exposure of infected human endometrial epithelial cells to penicillin in vitro renders Chlamydia trachomatis refractory to azithromycin.J. Antimicrob. Chemother.54 , 79–85 (2004).
  • Clark RB , SchatzkiPF, DaltonHP: Ultrastructural analysis of the effects of erythromycin on the morphology and developmental cycle of Chlamydia trachomatis HAR-13.Arch. Microbiol.133 , 278–282 (1982).
  • Gerard HC , Whittum-HudsonJA, SchumacherHR, HudsonAP: Differential expression of three Chlamydia trachomatis hsp60-encoding genes in active vs. persistent infections.Microb. Pathog.36 , 35–39 (2004).
  • Gerard HC , BraniganPJ, SchumacherHRJr, HudsonAP: Synovial Chlamydia trachomatis in patients with reactive arthritis/Reiter‘s syndrome are viable but show aberrant gene expression.J. Rheumatol.25 , 734–742 (1998).
  • Dean D , SchachterJ, DawsonCR, StephensRS: Comparison of the major outer membrane protein variant sequence regions of B/Ba isolates: a molecular epidemiologic approach to Chlamydia trachomatis infections.J. Infect. Dis.166 , 383–392 (1992).
  • Dean D , SuchlandRJ, StammWE: Evidence for long-term cervical persistence of Chlamydia trachomatis by omp1 genotyping.J. Infect. Dis.182 , 909–916 (2000).
  • Mazzoli S , BaniD, SalviA, RamacciottiI, RomeoC, BaniT: In vivo evidence of Chlamydia trachomatis miniature reticulary bodies (MRB) as persistence markers in patients with chronic chlamydial prostatitis.Proc. Eur. Soc. Chlamydia Res.4 (2000).
  • Skowasch D , YeghiazaryanK, SchrempfSet al. : Persistence of Chlamydia pneumoniae in degenerative aortic valve stenosis indicated by heat shock protein 60 homologues.J. Heart Valve Dis.12 , 68–75 (2003).
  • Jones RB , Van derPol B, MartinDH, ShepardMK: Partial characterization of Chlamydia trachomatis isolates resistant to multiple antibiotics.J. Infect. Dis.162 , 1309–1315 (1990).
  • Mourad A , SweetRL, SuggN, SchachterJ: Relative resistance to erythromycin in Chlamydia trachomatis.Antimicrob. Agents Chemother.18 , 696–698 (1980).
  • Lefevre JC , LepargneurJP: Comparative in vitro susceptibility of a tetracycline-resistant Chlamydia trachomatis strain isolated in Toulouse (France).Sex. Transm. Dis.25 , 350–352 (1998).
  • Lefevre JC , LepargneurJP, GuionD, BeiS: Tetracycline-resistant Chlamydia trachomatis in Toulouse, France.Pathol. Biol. (Paris)45 , 376–378 (1997).
  • Misyurina OY , ChipitsynaEV, FinashutinaYPet al. : Mutations in a 23S rRNA gene of Chlamydia trachomatis associated with resistance to macrolides.Antimicrob. Agents Chemother.48 , 1347–1349 (2004).
  • Somani J , BhullarVB, WorkowskiKA, FarshyCE, BlackCM: Multiple drug-resistant Chlamydia trachomatis associated with clinical treatment failure.J. Infect. Dis.181 , 1421–1427 (2000).
  • Berger-Bachi B : Expression of resistance to methicillin.Trends Microbiol.2 , 389–393 (1994).
  • Niemeyer DM , PucciMJ, ThanassiJA, SharmaVK, ArcherGL: Role of mecA transcriptional regulation in the phenotypic expression of methicillin resistance in Staphylococcus aureus.J. Bacteriol.178 , 5464–5471 (1996).
  • Lewis K : Persister cells, dormancy and infectious disease.Nat. Rev. Microbiol.5 , 48–56 (2007).
  • Levin BR , RozenDE: Non-inherited antibiotic resistance.Nat. Rev. Microbiol.4 , 556–562 (2006).
  • Wang SA , PappJR, StammWEet al. : Evaluation of antimicrobial resistance and treatment failures for Chlamydia trachomatis: a meeting report.J. Infect. Dis.191 , 917–923 (2005).
  • Roblin PM , KutlinA, ReznikT, HammerschlagMR: Activity of grepafloxacin and other fluoroquinones and newer macrolides against recent clinical isolates of Chlamydia pneumoniae.Int. J. Antimicrob. Agents12 , 181–184 (1999).
  • Wyrick PB : Polarized epithelial cell culture for Chlamydia trachomatis.In: Chlamydia Genomics and Pathogenesis.BavoilPM, WyrickPB (Eds). Horizon Bioscience,Norfolk, UK,323–338 (2006).
  • Wyrick PB , DavisCH, KnightST, ChoongJ: In-vitro activity of azithromycin on Chlamydia trachomatis infected, polarized human endometrial epithelial cells.J. Antimicrob. Chemother.31 , 139–150 (1993).
  • Wyrick PB , DavisCH, RaulstonJE, KnightST, ChoongJ: Effect of clinically relevant culture conditions on antimicrobial susceptibility of Chlamydia trachomatis.Clin. Infect. Dis.19 , 931–936 (1994).
  • Labro MT : Intracellular bioactivity of macrolides.Clin. Microbiol. Infect.1(Suppl. 1) , S24–S30 (1996).
  • Suchland RJ , GeislerWM, StammWE: Methodologies and cell lines used for antimicrobial susceptibility testing of Chlamydia spp.Antimicrob. Agents Chemother.47 , 636–642 (2003).
  • Schachter J , MoncadaJ, LiskaS, ShayevichC, KlausnerJD: Nucleic acid amplification tests in the diagnosis of chlamydial and gonococcal infections of the oropharynx and rectum in men who have sex with men.Sex. Transm. Dis.35 , 637–642 (2008).
  • Shattock RM , PatrizioC, SimmondsP, SutherlandS: Detection of Chlamydia trachomatis in genital swabs: comparison of commercial and in house amplification methods with culture.Sex. Transm. Infect.74 , 289–293 (1998).
  • Lee HH , CherneskyMA, SchachterJet al. : Diagnosis of Chlamydia trachomatis genitourinary infection in women by ligase chain reaction assay of urine.Lancet345 , 213–216 (1995).
  • Schachter J , HookEW, MartinDHet al. : Confirming positive results of nucleic acid amplification tests (NAATs) for Chlamydia trachomatis: all NAATs are not created equal.J. Clin. Microbiol.43 , 1372–1373 (2005).
  • Johnson RE , NewhallWJ, PappJRet al. : Screening tests to detect Chlamydia trachomatis and Neisseria gonorrhoeae infections – 2002.MMWR Recomm. Rep.51 , 1–38; quiz CE31–34 (2002).
  • Dean D , KandelRP, AdhikariHK, HesselT: Multiple Chlamydiaceae species in trachoma: implications for disease pathogenesis and control.PLoS Med.5 , E14 (2008).
  • McCoy AJ , SandlinRC, MaurelliAT: In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance.J. Bacteriol.185 , 1218–1228 (2003).
  • Fan H , BrunhamRC, McClartyG: Acquisition and synthesis of folates by obligate intracellular bacteria of the genus Chlamydia.J. Clin. Invest.90 , 1803–1811 (1992).
  • Michalova E , NovotnaP, SchlegelovaJ: Tetracyclines in veterinary medicine and bacterial resistance to them.Vet. Med.49 , 79–100 (2004).
  • Chopra I , RobertsM: Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance.Microbiol. Mol. Biol. Rev.65 , 232–260 (2001).
  • Sarmah AK , MeyerMT, BoxallAB: A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment.Chemosphere65 , 725–759 (2006).
  • Piddock LJ : Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria.Clin. Microbiol. Rev.19 , 382–402 (2006).
  • Watanabe T : Infectious heredity of multiple drug resistance in bacteria.Bacteriol. Rev.27 , 87–115 (1963).
  • Roberts MC : Update on acquired tetracycline resistance genes.FEMS Microbiol. Lett.245 , 195–203 (2005).
  • Andersen AA , Rogers,DG: Resistance to tetracycline and sulfadiazine in swine C. trachomatis isolates.In: International Chlamydia Symposium.StephensRS (Ed.). San Francisco, CA, USA,313–316 (1998).
  • Lenart J , AndersenAA, RockeyDD: Growth and development of tetracycline-resistant Chlamydia suis.Antimicrob. Agents Chemother.45 , 2198–2203 (2001).
  • Dugan J , RockeyDD, JonesL, AndersenAA: Tetracycline resistance in Chlamydia suis mediated by genomic islands inserted into the chlamydial inv-like gene.Antimicrob. Agents Chemother.48 , 3989–3995 (2004).
  • Di Francesco A , DonatiM, RossiMet al. : Tetracycline-resistant Chlamydia suis isolates in Italy.Vet. Rec.163 , 251–252 (2008).
  • Ishiguro EE , KayWW, AinsworthTet al. : Loss of virulence during culture of Aeromonas salmonicida at high temperature.J. Bacteriol.148 , 333–340 (1981).
  • Lau SK , WongGK, LiMW, WooPC, YuenKY: Distribution and molecular characterization of tetracycline resistance in Laribacter hongkongensis.J. Antimicrob. Chemother.61 , 488–497 (2008).
  • Dugan J , AndersenAA, RockeyDD: Functional characterization of IScs605, an insertion element carried by tetracycline-resistant Chlamydia suis.Microbiology153 , 71–79 (2007).
  • Suchland RJ , BourillonA, DenamurE, StammWE, RothsteinDM: Rifampin-resistant RNA polymerase mutants of Chlamydia trachomatis remain susceptible to the ansamycin rifalazil.Antimicrob. Agents Chemother.49 , 1120–1126 (2005).
  • Rothstein DM , SuchlandRJ, XiaM, MurphyCK, StammWE: Rifalazil retains activity against rifampin-resistant mutants of Chlamydia pneumoniae.J. Antibiot. (Tokyo)61 , 489–495 (2008).
  • Xia M , SuchlandRJ, CarswellJAet al. : Activities of rifamycin derivatives against wild-type and rpoB mutants of Chlamydia trachomatis.Antimicrob. Agents Chemother.49 , 3974–3976 (2005).
  • Jacoby GA : Mechanisms of resistance to quinolones.Clin. Infect. Dis.41(Suppl. 2) , S120–S126 (2005).
  • Yokoi S , YasudaM, ItoSet al. : Uncommon occurrence of fluoroquinolone resistance-associated alterations in GyrA and ParC in clinical strains of Chlamydia trachomatis.J. Infect. Chemother.10 , 262–267 (2004).
  • Rupp J , GebertA, SolbachW, MaassM: Serine-to-asparagine substitution in the GyrA gene leads to quinolone resistance in moxifloxacin-exposed Chlamydia pneumoniae.Antimicrob. Agents Chemother.49 , 406–407 (2005).
  • Casson N , GreubG: Resistance of different Chlamydia-like organisms to quinolones and mutations in the quinoline resistance-determining region of the DNA gyrase A- and topoisomerase-encoding genes.Int. J. Antimicrob. Agents27 , 541–544 (2006).
  • Goy G , GreubG: Antibiotic susceptibility of Waddlia chondrophila in Acanthamoeba castellanii amoebae.Antimicrob. Agents Chemother.53 , 2663–2666 (2009).
  • Greub G : Parachlamydia acanthamoebae, an emerging agent of pneumonia.Clin. Microbiol. Infect.15 , 18–28 (2009).
  • Skold O : Resistance to trimethoprim and sulfonamides.Vet. Res.32 , 261–273 (2001).
  • Kohlhoff SA , RoblinPM, ReznikTet al. : In vitro activity of a novel diaminopyrimidine compound, iclaprim, against Chlamydia trachomatis and C. pneumoniae.Antimicrob. Agents Chemother.48 , 1885–1886 (2004).
  • Riska PF , KutlinA, AjiboyePet al. : Genetic and culture-based approaches for detecting macrolide resistance in Chlamydia pneumoniae.Antimicrob. Agents Chemother.48 , 3586–3590 (2004).
  • Tenson T , LovmarM, EhrenbergM: The mechanism of action of macrolides, lincosamides and streptogramin B reveals the nascent peptide exit path in the ribosome.J. Mol. Biol.330 , 1005–1014 (2003).
  • Jeffrey BM , SuchlandRJ, QuinnKLet al. Genome sequencing of recent clinical Chlamydia trachomatis strains identifies loci associated with tissue tropism and regions of apparent recombination. Infect. Immun. 78(6) , 2544–2553 (2010).
  • Fitch WM , PetersonEM, de laMaza LM: Phylogenetic analysis of the outer-membrane-protein genes of Chlamydiae, and its implication for vaccine development.Mol. Biol. Evol.10 , 892–913 (1993).
  • Gomes JP , BrunoWJ, BorregoMJ, DeanD: Recombination in the genome of Chlamydia trachomatis involving the polymorphic membrane protein C gene relative to ompA and evidence for horizontal gene transfer.J. Bacteriol.186 , 4295–4306 (2004).
  • Gomes JP , BrunoWJ, NunesAet al. : Evolution of Chlamydia trachomatis diversity occurs by widespread interstrain recombination involving hotspots.Genome Res.17 , 50–60 (2007).
  • Gomes JP , NunesA, BrunoWJet al. : Polymorphisms in the nine polymorphic membrane proteins of Chlamydia trachomatis across all serovars: evidence for serovar Da recombination and correlation with tissue tropism.J. Bacteriol.188 , 275–286 (2006).
  • Griffiths E , GuptaRS: Protein signatures distinctive of chlamydial species: horizontal transfers of cell wall biosynthesis genes glmU from archaea to chlamydiae and murA between chlamydiae and Streptomyces.Microbiology148 , 2541–2549 (2002).
  • Hayes LJ , YearsleyP, TreharneJDet al. : Evidence for naturally occurring recombination in the gene encoding the major outer membrane protein of lymphogranuloma venereum isolates of Chlamydia trachomatis.Infect. Immun.62 , 5659–5663 (1994).
  • Millman KL , TavareS, DeanD: Recombination in the ompA gene but not the omcB gene of Chlamydia contributes to serovar-specific differences in tissue tropism, immune surveillance, and persistence of the organism.J. Bacteriol.183 , 5997–6008 (2001).
  • Read TD , MyersGS, BrunhamRCet al. : Genome sequence of Chlamydophila caviae (Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae.Nucleic Acids Res.31 , 2134–2147 (2003).
  • Brunham R , YangC, MacleanIet al. : Chlamydia trachomatis from individuals in a sexually transmitted disease core group exhibit frequent sequence variation in the major outer membrane protein (omp1) gene.J. Clin. Invest.94 , 458–463 (1994).
  • Everson JS , GarnerSA, LambdenPR, FaneBA, ClarkeIN: Host range of chlamydiaphages phiCPAR39 and Chp3.J. Bacteriol.185 , 6490–6492 (2003).
  • Brunelle BW , SensabaughGF: The ompA gene in Chlamydia trachomatis differs in phylogeny and rate of evolution from other regions of the genome.Infect. Immun.74 , 578–585 (2006).
  • Gupta RS , GriffithsE: Chlamydiae-specific proteins and indels: novel tools for studies.Trends Microbiol.14 , 527–535 (2006).
  • Lampe MF , SuchlandRJ, StammWE: Nucleotide sequence of the variable domains within the major outer membrane protein gene from serovariants of Chlamydia trachomatis.Infect. Immun.61 , 213–219 (1993).
  • Rockey DD , LenartJ, StephensRS: Genome sequencing and our understanding of chlamydiae.Infect. Immun.68 , 5473–5479 (2000).
  • Suchland R , Jeffrey,BM, Sandoz,KM, Stamm,WE, Rockey,DD: Generation of recombinant C. trachomatis strains for associating individual genes with known phenotypes.Presented at: Proceedings of the 12th International Symposium on Human Chlamydial Infections.Salzburg, Austria 20–25 June2010.
  • Grayston JT : Immunisation against trachoma.Pan American Health Organization Scientific Publication147 , 549 (1965).
  • Starnbach MN , RoanNR: Conquering sexually transmitted diseases.Nat. Rev. Immunol.8 , 313–317 (2008).
  • Shima K , KuhlenbaumerG, RuppJ: Chlamydia pneumoniae infection and Alzheimer‘s disease: a connection to remember?Med. Microbiol. Immunol. DOI: 10.1007/s00430-010-0162-1 (2010) (Epub ahead of print).
  • Kern JM , MaassV, MaassM: Molecular pathogenesis of chronic Chlamydia pneumoniae infection: a brief overview.Clin. Microbiol. Infect.15 , 36–41 (2009).
  • Ieven MM , HoymansVY: Involvement of Chlamydia pneumoniae in atherosclerosis: more evidence for lack of evidence.J. Clin. Microbiol.43 , 19–24 (2005).
  • West SK , KohlheppSJ, JinRet al. : Detection of circulating Chlamydophila pneumoniae in patients with coronary artery disease and healthy control subjects.Clin. Infect. Dis.48 , 560–567 (2009).
  • Beeckman DS , VanrompayDC: Zoonotic Chlamydophila psittaci infections from a clinical perspective.Clin. Microbiol. Infect.15 , 11–17 (2009).
  • Everett KD : Chlamydia and Chlamydiales: more than meets the eye.Vet. Microbiol.75 , 109–126 (2000).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.