96
Views
0
CrossRef citations to date
0
Altmetric
Priority Paper Evaluation

Azithromycin Paradox in the Treatment of Cystic Fibrosis Airway Disease

, , &
Pages 1315-1319 | Published online: 22 Sep 2010

Bibliography

  • Saiman L , AnsteadM, Mayer-HamblettNet al. : Effect of azithromycin on pulmonary function in patients with cystic fibrosis uninfected with Pseudomonas aeruginosa: a randomized controlled trial.JAMA303(17) , 1707–1715 (2010).
  • Saiman L , MarshallBC, Mayer-HamblettNet al. : Azithromycin in patients with cystic fibrosis chronically infected with Pseudomonas aeruginosa: a randomized controlled trial.JAMA290(13) , 1749–1756 (2003).
  • Wolter J , SeeneyS, BellS, BowlerS, MaselP, McCormackJ: Effect of long term treatment with azithromycin on disease parameters in cystic fibrosis: a randomised trial.Thorax57(3) , 212–216 (2002).
  • Clement A , TamaletA, LerouxE, RavillyS, FaurouxB, JaisJ: Long term effects of azithromycin in patients with cystic fibrosis: a double blind, placebo controlled trial.Thorax61(10) , 895–902 (2006).
  • Tramper-Stranders GA , WolfsTFW, FleerA, KimpenJLL, van der Ent CK: Maintenance azithromycin treatment in pediatric patients with cystic fibrosis: long-term outcomes related to macrolide resistance and pulmonary function. Pediatr. Infect. Dis. J.26(1) , 8–12 (2007).
  • Florescu DF , MurphyPJ, KalilAC: Effects of prolonged use of azithromycin in patients with cystic fibrosis: a meta-analysis.Pulm. Pharmacol. Ther.22(6) , 467–472 (2009).
  • Main E , PrasadA, SchansC: Conventional chest physiotherapy compared to other airway clearance techniques for cystic fibrosis.Cochrane Database Syst. Rev.(1) , CD002011 (2005).
  • Fuchs HJ , BorowitzDS, ChristiansenDHet al. : Effect of aerosolized recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. The Pulmozyme Study Group.N. Engl. J. Med.331(10) , 637–642 (1994).
  • Donaldson SH , BennettWD, ZemanKL, KnowlesMR, TarranR, BoucherRC: Mucus clearance and lung function in cystic fibrosis with hypertonic saline.N. Engl. J. Med.354(3) , 241–250 (2006).
  • Koyama H , GeddesDM: Erythromycin and diffuse panbronchiolitis.Thorax52(10) , 915–918 (1997).
  • Tateda K , IshiiY, MatsumotoTet al. : Direct evidence for antipseudomonal activity of macrolides: exposure-dependent bactericidal activity and inhibition of protein synthesis by erythromycin, clarithromycin, and azithromycin.Antimicrob. Agents Chemother.40(10) , 2271–2275 (1996).
  • Imamura Y , HigashiyamaY, TomonoKet al. : Azithromycin exhibits bactericidal effects on Pseudomonas aeruginosa through interaction with the outer membrane.Antimicrob. Agents Chemother.49(4) , 1377–1380 (2005).
  • Baumann U , KingM, AppEMet al. : Long term azithromycin therapy in cystic fibrosis patients: a study on drug levels and sputum properties.Can. Respir. J.11(2) , 151–155 (2004).
  • Giamarellos-Bourboulis EJ : Macrolides beyond the conventional antimicrobials: a class of potent immunomodulators.Int. J. Antimicrob. Agents31(1) , 12–20 (2008).
  • Saiman L , ChenY, GabrielPS, KnirschC: Synergistic activities of macrolide antibiotics against Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, and Alcaligenes xylosoxidans isolated from patients with cystic fibrosis.Antimicrob. Agents Chemother.46(4) , 1105–1107 (2002).
  • Howe RA , SpencerRC: Macrolides for the treatment of Pseudomonas aeruginosa infections?J. Antimicrob. Chemother.40(2) , 153–155 (1997).
  • Kawamura-Sato K , IinumaY, HasegawaT, HoriiT, YamashinoT, OhtaM: Effect of subinhibitory concentrations of macrolides on expression of flagellin in Pseudomonas aeruginosa and Proteus mirabilis.Antimicrob. Agents Chemother.44(10) , 2869–2872 (2000).
  • Hirakata Y , KakuM, MizukaneRet al. : Potential effects of erythromycin on host defense systems and virulence of Pseudomonas aeruginosa.Antimicrob. Agents Chemother.36(9) , 1922–1927 (1992).
  • Kita E , SawakiM, OkuDet al. : Suppression of virulence factors of Pseudomonas aeruginosa by erythromycin.J. Antimicrob. Chemother.27(3) , 273–284 (1991).
  • Mizukane R , HirakataY, KakuMet al. : Comparative in vitro exoenzyme-suppressing activities of azithromycin and other macrolide antibiotics against Pseudomonas aeruginosa.Antimicrob. Agents Chemother.38(3) , 528–533 (1994).
  • Molinari G , GuzmánCA, PesceA, SchitoGC: Inhibition of Pseudomonas aeruginosa virulence factors by subinhibitory concentrations of azithromycin and other macrolide antibiotics.J. Antimicrob. Chemother.31(5) , 681–688 (1993).
  • Wagner T , SoongG, SokolS, SaimanL, PrinceA: Effects of azithromycin on clinical isolates of Pseudomonas aeruginosa from cystic fibrosis patients.Chest128(2) , 912–919 (2005).
  • Nagino K , KobayashiH: Influence of macrolides on mucoid alginate biosynthetic enzyme from Pseudomonas aeruginosa.Clin. Microbiol. Infect.3(4) , 432–439 (1997).
  • Ichimiya T , TakeokaK, HiramatsuK, HiraiK, YamasakiT, NasuM: The influence of azithromycin on the biofilm formation of Pseudomonas aeruginosain vitro.Chemotherapy42(3) , 186–191 (1996).
  • Yasuda H , AjikiY, KogaT, KawadaH, YokotaT: Interaction between biofilms formed by Pseudomonas aeruginosa and clarithromycin.Antimicrob. Agents Chemother.37(9) , 1749–1755 (1993).
  • Ichimiya T , YamasakiT, NasuM: In-vitro effects of antimicrobial agents on Pseudomonas aeruginosa biofilm formation.J. Antimicrob. Chemother.34(3) , 331–341 (1994).
  • Kobayashi H : Biofilm disease: its clinical manifestation and therapeutic possibilities of macrolides.Am. J. Med.99(6A) , S26–S30 (1995).
  • Tamaoki J : The effects of macrolides on inflammatory cells.Chest125(2 Suppl.) , S41–S50 (2004).
  • Tsai WC , RodriguezML, YoungKSet al. : Azithromycin blocks neutrophil recruitment in Pseudomonas endobronchial infection.Am. J. Respir. Crit. Care Med.170(12) , 1331–1339 (2004).
  • Takizawa H , DesakiM, OhtoshiTet al. : Erythromycin modulates IL-8 expression in normal and inflamed human bronchial epithelial cells.Am. J. Respir. Crit. Care Med.156(1) , 266–271 (1997).
  • Khan AA , SliferTR, AraujoFG, RemingtonJS: Effect of clarithromycin and azithromycin on production of cytokines by human monocytes.Int. J. Antimicrob. Agents11(2) , 121–132 (1999).
  • Abe S , NakamuraH, InoueSet al. : Interleukin-8 gene repression by clarithromycin is mediated by the activator protein-1 binding site in human bronchial epithelial cells.Am. J. Respir. Cell Mol. Biol.22(1) , 51–60 (2000).
  • Morikawa K , WatabeH, AraakeM, MorikawaS: Modulatory effect of antibiotics on cytokine production by human monocytes in vitro.Antimicrob. Agents Chemother.40(6) , 1366–1370 (1996).
  • Gant TW , O‘ConnorCK, CorbittR, ThorgeirssonU, ThorgeirssonSS: In vivo induction of liver P-glycoprotein expression by xenobiotics in monkeys.Toxicol. Appl. Pharmacol.133(2) , 269–276 (1995).
  • Jaffé A , FrancisJ, RosenthalM, BushA: Long-term azithromycin may improve lung function in children with cystic fibrosis.Lancet351(9100) , 420 (1998).
  • Equi A , Balfour-LynnIM, BushA, RosenthalM: Long term azithromycin in children with cystic fibrosis: a randomised, placebo-controlled crossover trial.Lancet360(9338) , 978–984 (2002).
  • Ramsey BW , PepeMS, QuanJMet al. : Intermittent administration of inhaled tobramycin in patients with cystic fibrosis. cystic fibrosis inhaled tobramycin study group.N. Engl. J. Med.340(1) , 23–30 (1999).
  • Saiman L , Mayer-HamblettN, CampbellP, MarshallBC, GroupMS: Heterogeneity of treatment response to azithromycin in patients with cystic fibrosis.Am. J. Respir. Crit. Care Med.172(8) , 1008–1012 (2005).
  • Equi AC , DaviesJC, PainterHet al. : Exploring the mechanisms of macrolides in cystic fibrosis.Respir. Med.100(4) , 687–697 (2006).
  • Sibley CD , RabinH, SuretteMG: Cystic fibrosis: a polymicrobial infectious disease.Future Microbiol.1(1) , 53–61 (2006).
  • Duan K , DammelC, SteinJ, RabinH, SuretteMG: Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication.Mol. Microbiol.50(5) , 1477–1491 (2003).
  • Sibley CD , DuanK, FischerCet al. : Discerning the complexity of community interactions using a Drosophila model of polymicrobial infections.PLoS Pathog.4(10) , e1000184 (2008).
  • Sibley CD , ParkinsMD, RabinHR, DuanK, NorgaardJC, SuretteMG: A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients.Proc. Natl Acad. Sci. USA105(39) , 15070–15075 (2008).
  • Ergin A , ErcisS, CelikGH: Macrolide resistance mechanisms and in vitro susceptibility patterns of viridans group streptococci isolated from blood cultures.J. Antimicrob. Chemother.57(1) , 139–141 (2006).
  • Gordon KA , BeachML, BiedenbachDJ, JonesRN, RhombergPR, MutnickAH: Antimicrobial susceptibility patterns of beta-hemolytic and viridans group streptococci: report from the SENTRY antimicrobial surveillance program (1997–2000).Diagn. Microbiol. Infect. Dis.43(2) , 157–162 (2002).
  • Asmah N , EberspächerB, RegnathT, ArvandM: Prevalence of erythromycin and clindamycin resistance among clinical isolates of the Streptococcus anginosus group in Germany.J. Med. Microbiol.58(Pt 2) , 222–227 (2009).
  • Seppälä H , HaanperäM, Al-JuhaishM, JärvinenH, JalavaJ, HuovinenP: Antimicrobial susceptibility patterns and macrolide resistance genes of viridans group streptococci from normal flora.J. Antimicrob. Chemother.52(4) , 636–644 (2003).
  • Malhotra-Kumar S , LammensC, MartelAet al. : Oropharyngeal carriage of macrolide-resistant viridans group streptococci: a prevalence study among healthy adults in Belgium.J. Antimicrob. Chemother.53(2) , 271–276 (2004).
  • Aracil B , MinambresM, OteoJ, TorresC, Gómez-GarcésJL, AlósJI: High prevalence of erythromycin-resistant and clindamycin-susceptible (M phenotype) viridans group streptococci from pharyngeal samples: a reservoir of mef genes in commensal bacteria.J. Antimicrob. Chemother.48(4) , 592–594 (2001).
  • Eisenblätter M , KlausC, PletzMWRet al. : Influence of azithromycin and clarithromycin on macrolide susceptibility of viridans streptococci from the oral cavity of healthy volunteers.Eur. J. Clin. Microbiol. Infect. Dis.27(11) , 1087–1092 (2008).
  • Tazumi A , MaedaY, GoldsmithCEet al. : Molecular characterization of macrolide resistance determinants [erm(B) and mef(A)] in Streptococcus pneumoniae and viridans group streptococci (VGS) isolated from adult patients with cystic fibrosis (CF).J. Antimicrob. Chemother.64(3) , 501–506 (2009).
  • Grinwis ME , SibleyCD, ParkinsMD, EshaghurshanCS, RabinHR, SuretteMG: Macrolide and clindamycin resistance in Streptococcus milleri group isolates from cystic fibrosis airways.Antimicrob. Agents Chemother.54(7) , 2823–2829 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.