277
Views
0
CrossRef citations to date
0
Altmetric
Review

Defense at the Border: The Blood–Brain Barrier Versus Bacterial Foreigners

&
Pages 383-394 | Published online: 06 Mar 2012

References

  • Baraff LJ , LeeSI, SchrigerDL. Outcomes of bacterial meningitis in children: a meta-analysis. Pediatr. Infect. Dis. J.12(5) , 389–394 (1993).
  • Grimwood K , AndersonP, AndersonV, TanL, NolanT. Twelve year outcomes following bacterial meningitis: further evidence for persisting effects. Arch. Dis. Child.83(2) , 111–116 (2000).
  • Eskola J , PeltolaH, TakalaAK et al. Efficacy of Haemophilus influenzae type b polysaccharide-diphtheria toxoid conjugate vaccine in infancy. N. Engl. J. Med. 317(12) , 717–722 (1987).
  • Peltola H . Worldwide Haemophilus influenzae type b disease at the beginning of the 21st century: global analysis of the disease burden 25 years after the use of the polysaccharide vaccine and a decade after the advent of conjugates. Clin. Microbiol. Rev.13(2) , 302–317 (2000).
  • Watt JP , WolfsonLJ, O‘BrienKL et al. Burden of disease caused by Haemophilus influenzae type b in children younger than 5 years: global estimates. Lancet 374(9693) , 903–911 (2009).
  • O‘Brien KL , WolfsonLJ, WattJP et al. Burden of disease caused by Streptococcus pneumoniae in children younger than 5 years: global estimates. Lancet 374(9693) , 893–902 (2009).
  • Thigpen MC , WhitneyCG, MessonnierNE et al. Bacterial meningitis in the United States, 1998–2007. N. Engl. J. Med. 364(21) , 2016–2025 (2011).
  • Kaplan SL , MasonEO Jr, Wald ER et al. Decrease of invasive pneumococcal infections in children among 8 children‘s hospitals in the United States after the introduction of the 7-valent pneumococcal conjugate vaccine. Pediatrics113(3 Pt 1) , 443–449 (2004).
  • Nakhla I , FrenckRW Jr, Teleb NA et al. The changing epidemiology of meningococcal meningitis after introduction of bivalent A/C polysaccharide vaccine into school-based vaccination programs in Egypt. Vaccine23(25) , 3288–3293 (2005).
  • Gray SJ , TrotterCL, RamsayME et al. Epidemiology of meningococcal disease in England and Wales 1993/94 to 2003/04: contribution and experiences of the Meningococcal Reference Unit. J. Med. Microbiol. 55(Pt 7) , 887–896 (2006).
  • Molyneux EM , MankhamboLA, PhiriA et al. The outcome of non-typhoidal Salmonella meningitis in Malawian children, 1997–2006. Ann. Trop. Paediatr. 29(1) , 13–22 (2009).
  • Molyneux EM , WalshAL, MalengaG, RogersonS, MolyneuxME. Salmonella meningitis in children in Blantyre, Malawi, 1996–1999. Ann. Trop. Paediatr.20(1) , 41–44 (2000).
  • Vaagland H , BlombergB, KrugerC, NamanN, JureenR, LangelandN. Nosocomial outbreak of neonatal Salmonella enterica serotype Enteritidis meningitis in a rural hospital in northern Tanzania. BMC Infect. Dis.4 , 35 (2004).
  • Iriso R , OcakaconR, AcayoJA, MawandaMA, KisaykeA. Bacterial meningitis following introduction of Hib conjugate vaccine in northern Uganda. Ann. Trop. Paediatr.28(3) , 211–216 (2008).
  • Gordon MA , GrahamSM, WalshAL et al. Epidemics of invasive Salmonella enterica serovar enteritidis and S. enterica serovar Typhimurium infection associated with multidrug resistance among adults and children in Malawi. Clin. Infect. Dis. 46(7) , 963–969 (2008).
  • Owusu-Ofori A , ScheldWM. Treatment of Salmonella meningitis: two case reports and a review of the literature. Int. J. Infect. Dis.7(1) , 53–60 (2003).
  • Brouwer MC , TunkelAR, Van De Beek D. Epidemiology, diagnosis, and antimicrobial treatment of acute bacterial meningitis. Clin. Microbiol. Rev.23(3) , 467–492 (2010).
  • Dawson KG , EmersonJC, BurnsJL. Fifteen years of experience with bacterial meningitis. Pediatr. Infect. Dis. J.18(9) , 816–822 (1999).
  • Nigrovic LE , KuppermannN, MalleyR. Children with bacterial meningitis presenting to the emergency department during the pneumococcal conjugate vaccine era. Acad. Emerg. Med.15(6) , 522–528 (2008).
  • Group TWYIS. Bacterial etiology of serious infections in young infants in developing countries: results of a multicenter study. Pediatr. Infect. Dis. J.18(10 Suppl.) , S17–S22 (1999).
  • Zaidi AK , ThaverD, AliSA, KhanTA. Pathogens associated with sepsis in newborns and young infants in developing countries. Pediatr. Infect. Dis. J.28(1 Suppl) , S10–S18 (2009).
  • Phares CR , LynfieldR, FarleyMM et al. Epidemiology of invasive group B streptococcal disease in the United States, 1999–2005. JAMA 299(17) , 2056–2065 (2008).
  • Van Dyke MK , PharesCR, LynfieldR et al. Evaluation of universal antenatal screening for group B Streptococcus. N. Engl. J. Med. 360(25) , 2626–2636 (2009).
  • Stoll BJ , HansenN, FanaroffAA et al. Changes in pathogens causing early-onset sepsis in very-low-birth-weight infants. N. Engl. J. Med. 347(4) , 240–247 (2002).
  • Stoll BJ , HansenNI, SanchezPJ et al. Early onset neonatal sepsis: the burden of group B Streptococcal and E. coli disease continues. Pediatrics 127(5) , 817–826 (2011).
  • Bekondi C , BernedeC, PassoneN et al. Primary and opportunistic pathogens associated with meningitis in adults in Bangui, Central African Republic, in relation to human immunodeficiency virus serostatus. Int. J. Infect. Dis. 10(5) , 387–395 (2006).
  • Swe KS , NagelG, Van Der Westhuizen M, Hoosen AA. Salmonella Typhimurium meningitis in an adult patient with AIDS. J. Clin. Pathol.61(1) , 138–139 (2008).
  • Fernandez Guerrero ML , RamosJM, NunezA, De Gorgolas M. Focal infections due to non-typhi Salmonella in patients with AIDS: report of 10 cases and review. Clin. Infect. Dis.25(3) , 690–697 (1997).
  • Lun ZR , WangQP, ChenXG, LiAX, ZhuXQ. Streptococcus suis: an emerging zoonotic pathogen. Lancet Infect. Dis.7(3) , 201–209 (2007).
  • Gottschalk M , XuJ, CalzasC, SeguraM. Streptococcus suis: a new emerging or an old neglected zoonotic pathogen? Future Microbiol.5(3) , 371–391 (2010).
  • Aguilar J , Urday-CornejoV, DonabedianS, PerriM, TibbettsR, ZervosM. Staphylococcus aureus meningitis: case series and literature review. Medicine89(2) , 117–125 (2010).
  • Pintado V , MeseguerMA, FortunJ et al. Clinical study of 44 cases of Staphylococcus aureus meningitis. Eur. J. Clin. Microbiol. Infect. Dis. 21(12) , 864–868 (2002).
  • Lerche A , RasmussenN, WandallJH, BohrVA. Staphylococcus aureus meningitis: a review of 28 consecutive community-acquired cases. Scand. J. Infect. Dis.27(6) , 569–573 (1995).
  • Brouwer MC , KeizerweerdGD, De Gans J, Spanjaard L, Van De Beek D. Community acquired Staphylococcus aureus meningitis in adults. Scand. J. Infect. Dis.41(5) , 375–377 (2009).
  • Jernigan JA , StephensDS, AshfordDA et al. Bioterrorism-related inhalational anthrax: the first 10 cases reported in the United States. Emerg. Infect. Dis. 7(6) , 933–944 (2001).
  • Bales ME , DannenbergAL, BrachmanPS, KaufmannAF, KlatskyPC, AshfordDA. Epidemiologic response to anthrax outbreaks: field investigations, 1950–2001. Emerg. Infect. Dis.8(10) , 1163–1174 (2002).
  • Ramsay CN , StirlingA, SmithJ et al. An outbreak of infection with Bacillus anthracis in injecting drug users in Scotland. EuroSurveill. 15(2) , (2010).
  • Lanska DJ . Anthrax meningoencephalitis. Neurology59(3) , 327–334 (2002).
  • Stephens DS . Uncloaking the meningococcus: dynamics of carriage and disease. Lancet353(9157) , 941–942 (1999).
  • Kim KS , ItabashiH, GemskiP, SadoffJ, WarrenRL, CrossAS. The K1 capsule is the critical determinant in the development of Escherichia coli meningitis in the rat. J. Clin. Invest.90(3) , 897–905 (1992).
  • Moxon ER , OstrowPT. Haemophilus influenzae meningitis in infant rats: role of bacteremia in pathogenesis of age-dependent inflammatory responses in cerebrospinal fluid. J. Infect. Dis.135(2) , 303–307 (1977).
  • La Scolea LJ Jr, Dryja D. Quantitation of bacteria in cerebrospinal fluid and blood of children with meningitis and its diagnostic significance. J. Clin. Microbiol.19(2) , 187–190 (1984).
  • Petersdorf RG , SwarnerDR, GarciaM. Studies on the pathogenesis of meningitis. II. Development of meningitis during pneumococcal bacteremia. J. Clin. Invest.41 , 320–327 (1962).
  • Ferrieri P , BurkeB, NelsonJ. Production of bacteremia and meningitis in infant rats with group B streptococcal serotypes. Infect. Immun.27(3) , 1023–1032 (1980).
  • Bell LM , AlpertG, CamposJM, PlotkinSA. Routine quantitative blood cultures in children with Haemophilus influenzae or Streptococcus pneumoniae bacteremia. Pediatrics76(6) , 901–904 (1985).
  • Nakamura S , ShchepetovM, DaliaAB et al. Molecular basis of increased serum resistance among pulmonary isolates of non-typeable Haemophilus influenzae. PLoS Pathog. 7(1) , E1001247 (2011).
  • Mereghetti L , SitkiewiczI, GreenNM, MusserJM. Extensive adaptive changes occur in the transcriptome of Streptococcus agalactiae (group B Streptococcus) in response to incubation with human blood. PLoS One3(9) , E3143 (2008).
  • Echenique-Rivera H , MuzziA, Del Tordello E et al. Transcriptome analysis of Neisseria meningitidis in human whole blood and mutagenesis studies identify virulence factors involved in blood survival. PLoS Pathog.7(5) , E1002027 (2011).
  • Santi I , ScarselliM, MarianiM et al. BibA: a novel immunogenic bacterial adhesin contributing to group B Streptococcus survival in human blood. Mol. Microbiol. 63(3) , 754–767 (2007).
  • Sukumaran SK , ShimadaH, PrasadaraoNV. Entry and intracellular replication of Escherichia coli K1 in macrophages require expression of outer membrane protein A. Infect. Immun.71(10) , 5951–5961 (2003).
  • Mittal R , PrasadaraoNV. gp96 expression in neutrophils is critical for the onset of Escherichia coli K1 (RS218) meningitis. Nat. Commun.2 , 552 (2011).
  • Mittal R , SukumaranSK, SelvarajSK et al. Fcgamma receptor I alpha chain (CD64) expression in macrophages is critical for the onset of meningitis by Escherichia coli K1. PLoS Pathog. 6(11) , E1001203 (2010).
  • Mittal R , KrishnanS, Gonzalez-GomezI, PrasadaraoNV. Deciphering the roles of outer membrane protein A extracellular loops in the pathogenesis of Escherichia coli K1 meningitis. J. Biol. Chem.286(3) , 2183–2193 (2011).
  • Pfister HW , BorasioGD, DirnaglU, BauerM, EinhauplKM. Cerebrovascular complications of bacterial meningitis in adults. Neurology42(8) , 1497–1504 (1992).
  • Koedel U , FrankenbergT, KirschnekS et al. Apoptosis is essential for neutrophil functional shutdown and determines tissue damage in experimental pneumococcal meningitis. PLoS Pathog. 5(5) , E1000461 (2009).
  • Banerjee A , KimBJ, CarmonaEM et al. Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood–brain barrier penetration. Nat. Commun. 2 , 462 (2011).
  • Nguyen TH , TranTH, ThwaitesG et al. Dexamethasone in Vietnamese adolescents and adults with bacterial meningitis. N. Engl. J. Med. 357(24) , 2431–2440 (2007).
  • Peltola H , RoineI, FernandezJ et al. Adjuvant glycerol and/or dexamethasone to improve the outcomes of childhood bacterial meningitis: a prospective, randomized, double-blind, placebo-controlled trial. Clin. Infect. Dis. 45(10) , 1277–1286 (2007).
  • Van De Beek D , FarrarJJ, De Gans J et al. Adjunctive dexamethasone in bacterial meningitis: a meta-analysis of individual patient data. Lancet Neurol.9(3) , 254–263 (2010).
  • Scarborough M , GordonSB, WhittyCJ et al. Corticosteroids for bacterial meningitis in adults in sub-Saharan Africa. N. Engl. J. Med. 357(24) , 2441–2450 (2007).
  • Brouwer MC , McintyreP, De Gans J, Prasad K, Van De Beek D. Corticosteroids for acute bacterial meningitis. Cochrane Database Syst. Rev. (9) , CD004405 (2010).
  • Abbott NJ , RonnbackL, HanssonE. Astrocyte–endothelial interactions at the blood–brain barrier. Nat. Rev. Neurosci.7(1) , 41–53 (2006).
  • Rubin LL , StaddonJM. The cell biology of the blood–brain barrier. Annu. Rev. Neurosci.22 , 11–28 (1999).
  • Pulzova L , BhideMR, AndrejK. Pathogen translocation across the blood–brain barrier. FEMS Immunol. Med. Microbiol.57(3) , 203–213 (2009).
  • Dejana E , CoradaM, LampugnaniMG. Endothelial cell-to-cell junctions. FASEB9(10) , 910–918 (1995).
  • Hawkins RA , O‘KaneRL, SimpsonIA, VinaJR. Structure of the blood–brain barrier and its role in the transport of amino acids. J. Nutr.136(1 Suppl.) , 218S–226S (2006).
  • Schulze C , FirthJA. Immunohistochemical localization of adherens junction components in blood–brain barrier microvessels of the rat. Cell Sci.104(Pt 3) , 773–782 (1993).
  • Wolburg H , LippoldtA. Tight junctions of the blood–brain barrier: development, composition and regulation. Vascul. Pharmacol.38(6) , 323–337 (2002).
  • Gumbiner BM . Cell adhesion: the molecular basis of tissue architecture and morphogenesis. Cell84(3) , 345–357 (1996).
  • Furuse M , ItohM, HiraseT, NagafuchiA, YonemuraS, TsukitaS. Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J. Cell. Biol.127(6 Pt 1) , 1617–1626 (1994).
  • Martin-Padura I , LostaglioS, SchneemannM et al. Junctional adhesion molecule, a novel member of the immunoglobulin superfamily that distributes at intercellular junctions and modulates monocyte transmigration. J. Cell. Biol. 142(1) , 117–127 (1998).
  • Braga VM . Cell-cell adhesion and signalling. Curr. Opin. Cell Biol.14(5) , 546–556 (2002).
  • Matter K , BaldaMS. Signalling to and from tight junctions. Nat. Rev. Mol. Cell Biol.4(3) , 225–236 (2003).
  • Wheelock MJ , JohnsonKR. Cadherin-mediated cellular signaling. Curr. Opin. Cell Biol.15(5) , 509–514 (2003).
  • Taddei A , GiampietroC, ContiA et al. Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat. Cell Biol. 10(8) , 923–934 (2008).
  • Stins MF , PrasadaraoNV, IbricL, WassCA, LuckettP, KimKS. Binding characteristics of S fimbriated Escherichia coli to isolated brain microvascular endothelial cells. Am. J. Pathol.145(5) , 1228–1236 (1994).
  • Weksler BB , SubileauEA, PerriereN et al. Blood–brain barrier-specific properties of a human adult brain endothelial cell line. FASEB 19(13) , 1872–1874 (2005).
  • Greiffenberg L , GoebelW, KimKS et al. Interaction of Listeria monocytogenes with human brain microvascular endothelial cells: InlB-dependent invasion, long-term intracellular growth, and spread from macrophages to endothelial cells. Infect. Immun. 66(11) , 5260–5267 (1998).
  • Wickham ME , BrownNF, ProviasJ, FinlayBB, CoombesBK. Oral infection of mice with Salmonella enterica serovar Typhimurium causes meningitis and infection of the brain. BMC Infect. Dis.7 , 65 (2007).
  • Doran KS , LiuGY, NizetV. Group B streptococcal beta-hemolysin/cytolysin activates neutrophil signaling pathways in brain endothelium and contributes to development of meningitis. J. Clin. Invest.112(5) , 736–744. (2003).
  • Smith AL , SmithDH, AverillDR Jr, Marino J, Moxon ER. Production of Haemophilus influenzae b meningitis in infant rats by intraperitoneal inoculation. Infect. Immun.8(2) , 278–290 (1973).
  • Uchiyama S , CarlinAF, KhosraviA et al. The surface-anchored NanA protein promotes pneumococcal brain endothelial cell invasion. J. Exp. Med. 206(9) , 1845–1852 (2009).
  • Sheen TR , EbrahimiCM, HiemstraIH, BarlowSB, PeschelA, DoranKS. Penetration of the blood–brain barrier by Staphylococcus aureus: contribution of membrane-anchored lipoteichoic acid. J. Mol. Med.88(6) , 633–639 (2010).
  • Nizet V , KimKS, StinsM et al. Invasion of brain microvascular endothelial cells by group B streptococci. Infect. Immun. 65(12) , 5074–5081 (1997).
  • Stins MF , BadgerJ, Sik Kim K. Bacterial invasion and transcytosis in transfected human brain microvascular endothelial cells. Microb. Pathog.30(1) , 19–28 (2001).
  • Ring A , WeiserJN, TuomanenEI. Pneumococcal trafficking across the blood–brain barrier. Molecular analysis of a novel bidirectional pathway. J. Clin. Invest.102(2) , 347–360 (1998).
  • Jain SK , Paul-SatyaseelaM, LamichhaneG, KimKS, BishaiWR. Mycobacterium tuberculosis invasion and traversal across an in vitro human blood–brain barrier as a pathogenic mechanism for central nervous system tuberculosis. J. Infect. Dis.193(9) , 1287–1295 (2006).
  • Nikulin J , PanznerU, FroschM, Schubert-UnkmeirA. Intracellular survival and replication of Neisseria meningitidis in human brain microvascular endothelial cells. Int. J. Med. Microbiol.296(8) , 553–558 (2006).
  • Van Sorge NM , ZialcitaPA, BrowneSH, QuachD, GuineyDG, DoranKS. Penetration and activation of brain endothelium by Salmonella enterica serovar Typhimurium. J. Infect. Dis.203(3) , 401–405 (2011).
  • Prasadarao NV , WassCA, StinsMF, ShimadaH, KimKS. Outer membrane protein A-promoted actin condensation of brain microvascular endothelial cells is required for Escherichia coli invasion. Infect. Immun.67(11) , 5775–5783 (1999).
  • Das A , AsatryanL, ReddyMA et al. Differential role of cytosolic phospholipase A2 in the invasion of brain microvascular endothelial cells by Escherichia coli and Listeria monocytogenes. J. Infect. Dis. 184(6) , 732–737 (2001).
  • Kim KS . Mechanisms of microbial traversal of the blood–brain barrier. Nat. Rev. Microbiol.6(8) , 625–634 (2008).
  • Kim KS . Acute bacterial meningitis in infants and children. Lancet Infect. Dis.10(1) , 32–42 (2010).
  • Badger JL , WassCA, WeissmanSJ, KimKS. Application of signature-tagged mutagenesis for identification of Escherichia coli K1 genes that contribute to invasion of human brain microvascular endothelial cells. Infect. Immun.68(9) , 5056–5061 (2000).
  • Doran KS , EngelsonEJ, KhosraviA et al. Blood–brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid. J. Clin. Invest. 115(9) , 2499–2507. (2005).
  • Dietrich G , KurzS, HubnerC et al. Transcriptome analysis of Neisseria meningitidis during infection. J. Bacteriol. 185(1) , 155–164 (2003).
  • Teng CH , CaiM, ShinS et al. Escherichia coli K1 RS218 interacts with human brain microvascular endothelial cells via type 1 fimbria bacteria in the fimbriated state. Infect. Immun.73(5) , 2923–2931 (2005).
  • Badger JL , WassCA, KimKS. Identification of Escherichia coli K1 genes contributing to human brain microvascular endothelial cell invasion by differential fluorescence induction. Mol. Microbiol.36(1) , 174–182 (2000).
  • Tazi A , DissonO, BellaisS et al. The surface protein HvgA mediates group B Streptococcus hypervirulence and meningeal tropism in neonates. J. Exp. Med. 207(11) , 2313–2322 (2010).
  • Mairey E , GenovesioA, DonnadieuE et al. Cerebral microcirculation shear stress levels determine Neisseria meningitidis attachment sites along the blood–brain barrier. J. Exp. Med. 203(8) , 1939–1950 (2006).
  • Maisey HC , HenslerM, NizetV, DoranKS. Group B streptococcal pilus proteins contribute to adherence to and invasion of brain microvascular endothelial cells. J. Bacteriol.189(4) , 1464–1467 (2007).
  • Van Sorge NM , QuachD, GurneyMA, SullamPM, NizetV, DoranKS. The group B streptococcal serine-rich repeat 1 glycoprotein mediates penetration of the blood–brain barrier. J. Infect. Dis.199(10) , 1479–1487 (2009).
  • Kirchner M , MeyerTF. The PilC adhesin of the Neisseria type IV pilus-binding specificities and new insights into the nature of the host cell receptor. Mol. Microbiol.56(4) , 945–957 (2005).
  • Telford JL , BarocchiMA, MargaritI, RappuoliR, GrandiG. Pili in Gram-positive pathogens. Nat. Rev. Microbiol.4(7) , 509–519 (2006).
  • Barocchi MA , RiesJ, ZogajX et al. A pneumococcal pilus influences virulence and host inflammatory responses. Proc. Natl Acad. Sci. USA 103(8) , 2857–2862 (2006).
  • Bagnoli F , MoschioniM, DonatiC et al. A second pilus type in Streptococcus pneumoniae is prevalent in emerging serotypes and mediates adhesion to host cells. J. Bacteriol. 190(15) , 5480–5492 (2008).
  • St Geme JW 3rd, Cutter D. Influence of pili, fibrils, and capsule on in vitro adherence by Haemophilus influenzae type b. Mol. Microbiol.21(1) , 21–31 (1996).
  • St. Geme JW 3rd, Cutter D. Evidence that surface fibrils expressed by Haemophilus influenzae type b promote attachment to human epithelial cells. Mol. Microbiol.15(1) , 77–85 (1995).
  • Unkmeir A , LatschK, DietrichG et al. Fibronectin mediates Opc-dependent internalization of Neisseria meningitidis in human brain microvascular endothelial cells. Mol. Microbiol. 46(4) , 933–946 (2002).
  • Kim KJ , ElliottSJ, Di Cello F, Stins MF, Kim KS. The K1 capsule modulates trafficking of E. coli-containing vacuoles and enhances intracellular bacterial survival in human brain microvascular endothelial cells. Cell. Microbiol.5(4) , 245–252 (2003).
  • St Geme JW 3rd, Falkow S. Loss of capsule expression by Haemophilus influenzae type b results in enhanced adherence to and invasion of human cells. Infect. Immun.59(4) , 1325–1333 (1991).
  • Hammerschmidt S , MullerA, SillmannH et al. Capsule phase variation in Neisseria meningitidis serogroup B by slipped-strand mispairing in the polysialyltransferase gene (siaD): correlation with bacterial invasion and the outbreak of meningococcal disease. Mol. Microbiol. 20(6) , 1211–1220 (1996).
  • Khan NA , WangY, KimKJ, ChungJW, WassCA, KimKS. Cytotoxic necrotizing factor-1 contributes to Escherichia coli K1 invasion of the central nervous system. J. Biol. Chem.277(18) , 15607–15612 (2002).
  • Zysk G , Schneider-WaldBK, HwangJH et al. Pneumolysin is the main inducer of cytotoxicity to brain microvascular endothelial cells caused by Streptococcus pneumoniae. Infect. Immun. 69(2) , 845–852 (2001).
  • Patrick D , BettsJ, FreyEA, PrameyaR, Dorovini-ZisK, FinlayBB. Haemophilus influenzae lipopolysaccharide disrupts confluent monolayers of bovine brain endothelial cells via a serum-dependent cytotoxic pathway. J. Infect. Dis.165(5) , 865–872 (1992).
  • Wellmer A , ZyskG, GerberJ et al. Decreased virulence of a pneumolysin-deficient strain of Streptococcus pneumoniae in murine meningitis. Infect. Immun. 70(11) , 6504–6508 (2002).
  • Orihuela CJ , MahdaviJ, ThorntonJ et al. Laminin receptor initiates bacterial contact with the blood brain barrier in experimental meningitis models. J. Clin. Invest. 119(6) , 1638–1646 (2009).
  • Swords WE , KettererMR, ShaoJ, CampbellCA, WeiserJN, ApicellaMA. Binding of the non-typeable Haemophilus influenzae lipooligosaccharide to the PAF receptor initiates host cell signalling. Cell. Microbiol.3(8) , 525–536 (2001).
  • Virji M , SaundersJR, SimsG, MakepeaceK, MaskellD, FergusonDJ. Pilus-facilitated adherence of Neisseria meningitidis to human epithelial and endothelial cells: modulation of adherence phenotype occurs concurrently with changes in primary amino acid sequence and the glycosylation status of pilin. Mol. Microbiol.10(5) , 1013–1028 (1993).
  • Kim KJ , ChungJW, KimKS. 67-kDa laminin receptor promotes internalization of cytotoxic necrotizing factor 1-expressing Escherichia coli K1 into human brain microvascular endothelial cells. J. Biol. Chem.280(2) , 1360–1368 (2005).
  • Chung JW , HongSJ, KimKJ et al. 37-kDa laminin receptor precursor modulates cytotoxic necrotizing factor 1-mediated RhoA activation and bacterial uptake. J. Biol. Chem. 278(19) , 16857–16862 (2003).
  • Radin JN , OrihuelaCJ, MurtiG, GuglielmoC, MurrayPJ, TuomanenEI. Beta-Arrestin 1 participates in platelet-activating factor receptor-mediated endocytosis of Streptococcus pneumoniae. Infect. Immun.73(12) , 7827–7835 (2005).
  • Rijneveld AW , WeijerS, FlorquinS et al. Improved host defense against pneumococcal pneumonia in platelet-activating factor receptor-deficient mice. J. Infect. Dis. 189(4) , 711–716 (2004).
  • Kolberg J , HoibyEA, JantzenE. Detection of the phosphorylcholine epitope in Streptococci, Haemophilus and pathogenic Neisseriae by immunoblotting. Microb. Pathog.22(6) , 321–329 (1997).
  • Weiser JN , PanN, McGowanKL, MusherD, MartinA, RichardsJ. Phosphorylcholine on the lipopolysaccharide of Haemophilus influenzae contributes to persistence in the respiratory tract and sensitivity to serum killing mediated by C-reactive protein. J. Exp. Med.187(4) , 631–640 (1998).
  • Swords WE , BuscherBA, Ver Steeg Ii K et al. Non-typeable Haemophilus influenzae adhere to and invade human bronchial epithelial cells via an interaction of lipooligosaccharide with the PAF receptor. Mol. Microbiol.37(1) , 13–27 (2000).
  • Kim SH , TurnbullJ, GuimondS. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol.209(2) , 139–151 (2011).
  • Chang YC , WangZ, FlaxLA et al. Glycosaminoglycan binding facilitates entry of a bacterial pathogen into central nervous systems. PLoS Pathog. 7(6) , e1002082 (2011).
  • Fida NM , Al-MughalesJ, FarouqM. Interleukin-1alpha, interleukin-6 and tumor necrosis factor-alpha levels in children with sepsis and meningitis. Pediatr. Int.48(2) , 118–124 (2006).
  • Tang RB , LeeBH, ChungRL, ChenSJ, WongTT. Interleukin-1beta and tumor necrosis factor-alpha in cerebrospinal fluid of children with bacterial meningitis. Childs Nerv. Syst.17(8) , 453–456 (2001).
  • Lehmann AK , HalstensenA, SornesS, RokkeO, WaageA. High levels of interleukin 10 in serum are associated with fatality in meningococcal disease. Infect. Immun.63(6) , 2109–2112 (1995).
  • Leist TP , FreiK, Kam-HansenS, ZinkernagelRM, FontanaA. Tumor necrosis factor alpha in cerebrospinal fluid during bacterial, but not viral, meningitis. Evaluation in murine model infections and in patients. J. Exp. Med.167(5) , 1743–1748 (1988).
  • Waage A , BrandtzaegP, HalstensenA, KierulfP, EspevikT. The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. J. Exp. Med.169(1) , 333–338 (1989).
  • Nagesh Babu G , KumarA, KalitaJ, MisraUK. Proinflammatory cytokine levels in the serum and cerebrospinal fluid of tuberculous meningitis patients. Neurosci. Lett.436(1) , 48–51 (2008).
  • Cundell DR , GerardNP, GerardC, Idanpaan-HeikkilaI, TuomanenEI. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature377(6548) , 435–438 (1995).
  • Banerjee A , Van Sorge NM, Sheen TR, Uchiyama S, Mitchell TJ, Doran KS. Activation of brain endothelium by pneumococcal neuraminidase NanA promotes bacterial internalization. Cell. Microbiol.12(11) , 1576–1588 (2010).
  • Zhang WG , KhanAN, KimKJ, StinsM, KimKS. Transforming growth factor-beta increases Escherichia coli K1 adherence, invasion, and transcytosis in human brain microvascular endothelial cells. Cell. Tissue Res.309(2) , 281–286 (2002).
  • Lembo A , GurneyMA, BurnsideK et al. Regulation of CovR expression in group B Streptococcus impacts blood–brain barrier penetration. Mol. Microbiol. 77(2) , 431–443 (2010).
  • Sharief MK , CiardiM, ThompsonEJ. Blood–brain barrier damage in patients with bacterial meningitis: association with tumor necrosis factor-alpha but not interleukin-1 beta. J. Infect. Dis.166(2) , 350–358 (1992).
  • Barichello T , PereiraJS, SaviGD et al. A kinetic study of the cytokine/chemokines levels and disruption of blood–brain barrier in infant rats after pneumococcal meningitis. J. Neuroimmunol. 233(1–2) , 12–17 (2011).
  • Kim KS , WassCA, CrossAS. Blood–brain barrier permeability during the development of experimental bacterial meningitis in the rat. Exp. Neurol.145(1) , 253–257 (1997).
  • Mittal R , PrasadaraoNV. Nitric oxide/cGMP signalling induces Escherichia coli K1 receptor expression and modulates the permeability in human brain endothelial cell monolayers during invasion. Cell Microbiol.12(1) , 67–83 (2010).
  • Winkler F , KoedelU, KastenbauerS, PfisterHW. Differential expression of nitric oxide synthases in bacterial meningitis: role of the inducible isoform for blood–brain barrier breakdown. J. Infect. Dis.183(12) , 1749–1759 (2001).
  • Leib SL , KimYS, BlackSM, TureenJH, TauberMG. Inducible nitric oxide synthase and the effect of aminoguanidine in experimental neonatal meningitis. J. Infect. Dis.177(3) , 692–700 (1998).
  • Koedel U , BernatowiczA, PaulR, FreiK, FontanaA, PfisterHW. Experimental pneumococcal meningitis: cerebrovascular alterations, brain edema, and meningeal inflammation are linked to the production of nitric oxide. Ann. Neurol.37(3) , 313–323 (1995).
  • Mittal R , Gonzalez-GomezI, GothKA, PrasadaraoNV. Inhibition of inducible nitric oxide controls pathogen load and brain damage by enhancing phagocytosis of Escherichia coli K1 in neonatal meningitis. Am. J. Pathol.176(3) , 1292–1305 (2010).
  • Coureuil M , LecuyerH, ScottMG et al. Meningococcus Hijacks a beta2-adrenoceptor/beta-Arrestin pathway to cross brain microvasculature endothelium. Cell 143(7) , 1149–1160 (2010).
  • Coureuil M , MikatyG, MillerF et al. Meningococcal type IV pili recruit the polarity complex to cross the brain endothelium. Science 325(5936) , 83–87 (2009).
  • Schubert-Unkmeir A , KonradC, SlaninaH, CzapekF, HeblingS, FroschM. Neisseria meningitidis induces brain microvascular endothelial cell detachment from the matrix and cleavage of occludin: a role for MMP-8. PLoS Pathog.6(4) , e1000874 (2010).
  • Sukumaran SK , PrasadaraoNV. Escherichia coli K1 invasion increases human brain microvascular endothelial cell monolayer permeability by disassembling vascular-endothelial cadherins at tight junctions. J. Infect. Dis.188(9) , 1295–1309 (2003).
  • Ebrahimi CM , KernJW, SheenTR et al. Penetration of the blood–brain barrier by Bacillus anthracis requires the pXO1-encoded BslA protein. J. Bacteriol. 191(23) , 7165–7173 (2009).
  • Ebrahimi CM , SheenTR, RenkenCW, GottliebRA, DoranKS. Contribution of lethal toxin and edema toxin to the pathogenesis of anthrax meningitis. Infect. Immun.79(7) , 2510–2518 (2011).
  • Mukherjee DV , TonryJH, KimKS et al. Bacillus anthracis protease InhA increases blood–brain barrier permeability and contributes to cerebral hemorrhages. PLoS One6(3) , E17921 (2011).
  • Guichard A , McGillivraySM, Cruz-MorenoB, Van Sorge NM, Nizet V, Bier E. Anthrax toxins cooperatively inhibit endocytic recycling by the Rab11/Sec15 exocyst. Nature467(7317) , 854–858 (2010).
  • Saez-Llorens X , JafariHS, SeverienC et al. Enhanced attenuation of meningeal inflammation and brain edema by concomitant administration of anti-CD18 monoclonal antibodies and dexamethasone in experimental Haemophilus meningitis. J. Clin. Invest. 88(6) , 2003–2011 (1991).
  • Tuomanen EI , SaukkonenK, SandeS, CioffeC, WrightSD. Reduction of inflammation, tissue damage, and mortality in bacterial meningitis in rabbits treated with monoclonal antibodies against adhesion-promoting receptors of leukocytes. J. Exp. Med.170(3) , 959–969 (1989).
  • Galanakis E , Di Cello F, Paul-Satyaseela M, Kim KS. Escherichia coli K1 induces IL-8 expression in human brain microvascular endothelial cells. Eur. Cytokine Netw.17(4) , 260–265 (2006).
  • Vadeboncoeur N , SeguraM, Al-NumaniD, VanierG, GottschalkM. Pro-inflammatory cytokine and chemokine release by human brain microvascular endothelial cells stimulated by Streptococcus suis serotype 2. FEMS Immunol. Med. Microbiol.35(1) , 49–58 (2003).
  • Wilson SL , DrevetsDA. Listeria monocytogenes infection and activation of human brain microvascular endothelial cells. J. Infect. Dis.178(6) , 1658–1666 (1998).
  • Sokolova O , HeppelN, JagerhuberR et al. Interaction of Neisseria meningitidis with human brain microvascular endothelial cells: role of MAP- and tyrosine kinases in invasion and inflammatory cytokine release. Cell. Microbiol. 6(12) , 1153–1166. (2004).
  • Schubert-Unkmeir A , SokolovaO, PanznerU, EigenthalerM, FroschM. Gene expression pattern in human brain endothelial cells in response to Neisseria meningitidis. Infect. Immun.75(2) , 899–914. (2007).
  • Krishnan V , GasparAH, YeN, MandlikA, Ton-ThatH, NarayanaSV. An IgG-like domain in the minor pilin GBS52 of Streptococcus agalactiae mediates lung epithelial cell adhesion. Structure15(8) , 893–903 (2007).
  • Van Sorge NM , EbrahimiCM, McGillivraySM et al. Anthrax toxins inhibit neutrophil signaling pathways in brain endothelium and contribute to the pathogenesis of meningitis. PLoS One 3(8) , e2964 (2008).
  • Reddy MA , WassCA, KimKS, SchlaepferDD, PrasadaraoNV. Involvement of focal adhesion kinase in Escherichia coli invasion of human brain microvascular endothelial cells. Infect. Immun.68(11) , 6423–6430 (2000).
  • Sukumaran SK , PrasadaraoNV. Regulation of protein kinase C in Escherichia coli K1 invasion of human brain microvascular endothelial cells. J. Biol. Chem.277(14) , 12253–12262 (2002).
  • Tenenbaum T , BloierC, AdamR, ReinscheidDJ, SchrotenH. Adherence to and invasion of human brain microvascular endothelial cells are promoted by fibrinogen-binding protein FbsA of Streptococcus agalactiae. Infect. Immun.73(7) , 4404–4409 (2005).
  • Tenenbaum T , SpellerbergB, AdamR, VogelM, KimKS, SchrotenH. Streptococcus agalactiae invasion of human brain microvascular endothelial cells is promoted by the laminin-binding protein Lmb. Microbes Infect.9(6) , 714–720 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.