1,410
Views
0
CrossRef citations to date
0
Altmetric
Review

Molecular Mechanisms of β-Lactam Resistance in Streptococcus Pneumoniae

, , &
Pages 395-410 | Published online: 06 Mar 2012

References

  • Gunnison JB , FraherMA, PelcherEA, JawetzE. Penicillin-resistant variants of pneumococci. Appl. Microbiol.16 , 311–314 (1968).
  • Kislak JW , RazaviLM, DalyAK, FinlandM. Susceptibility of pneumococci to nine antibiotics. Am. J. Med. Sci.250 , 261–268 (1965).
  • Hansman D . Antibiotic sensitivity pattern of pneumococci relatively insensitive to penicillin and cephalosporin antibiotics. Med. J. Aust.2 , 740–742 (1975).
  • Jacobs MR , KoornhofHJ, Robins-BrowneRM et al. Emergence of multiply resistant pneumococci. N. Engl. J. Med. 299 , 735–740 (1978).
  • Henriques-Normark B . Molecular epidemiology and mechanisms for antibiotic resistance in Streptococcus pneumoniae. In: Molecular Biology of Streptococci. Hakenbeck R, Chhatwal GS (Eds). Horizon Press, Wymondham, Norfolk, UK, 269–290. (2007).
  • Granizo JJ , AguilarL, CasalJ, Garcia-ReyC, Dal-ReR, BaqueroF. Streptococcus pneumoniae resistance to erythromycin and penicillin in relation to macrolide and beta-lactam consumption in Spain (1979–1997). J. Antimicrob. Chemother.46 , 767–773 (2000).
  • McDougal LK , RasheedJK, BiddleJW, TenoverFC. Identification of multiple clones of extended-spectrum cephalosporin-resistant Streptococcus pneumoniae isolates in the United States. Antimicrob. Agents Chemother.39 , 2282–2288 (1995).
  • Smith AM , BothaRF, KoornhofHJ, KlugmanKP. Emergence of a pneumococcal clone with cephalosporin resistance and penicillin susceptibility. Antimicrob. Agents Chemother.45 , 2648–2650 (2001).
  • CDC. Effects of new penicillin susceptibility breakpoints for Streptococcus pneumoniae - United States, 2006–2007. Morb. Mort. Weekly Report57 , 1353–1355 (2008).
  • Doern GV , FerraroMJ, BrueggemannAB, RuoffKL. Emergence of high rates of antimicrobial resistance among viridans group streptococci in the United States. Antimicrob. Agents Chemother.40 , 891–894 (1996).
  • Potgieter E , CarmichaelM, KoornhofHJ, ChalkleyLJ. In vitro antimicrobial susceptibility of viridans streptococci isolated from blood cultures. Eur. J. Clin. Microbiol. Infect. Dis.11 , 543–546 (1992).
  • Carratalà J , AlcaideF, Fernández-SevillaA, CorbellaX, LiñaresJ, GudiolF. Bacteremia due to viridans streptococci that are highly resistant to penicillin: increase among neutropenic patients with cancer. Clin. Infect. Dis.20 , 1169–1173 (1995).
  • Dowson CG , HutchisonA, SprattBG. Extensive re-modelling of the transpeptidase domain of penicillin-binding protein 2b of a penicillin-resistant South African isolate of Streptococcus pneumoniae. Mol. Microbiol.3 , 95–102 (1989).
  • Laible G , SprattBG, HakenbeckR. Inter-species recombinational events during the evolution of altered PBP 2x genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Mol. Microbiol.5 , 1993–2002 (1991).
  • Maiden MCJ , BygravesJA, FeilE et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc. Natl Acad. Sci. USA 95 , 3140–3145 (1998).
  • McGee L , McDougalL, ZhouJ et al. Nomenclature of major antimicrobial-resistant clones of Streptococcus pneumoniae defined by the Pneumococcal Molecular Epidemiological Network (PMEN). J. Clin. Microbiol. 39 , 2565–2571 (2001).
  • Croucher NJ , HarrisSR, FraserC et al. Rapid pneumococcal evolution in response to clinical interventions. Science 331 , 430–434 (2011).
  • Gasc AM , GeslinP, SicardAM. Relatedness of penicillin-resistant Streptococcus pneumoniae serogroup 9 strains from France and Spain. Microbiology141 , 623–627 (1995).
  • Reichmann P , VaronE, GüntherE et al. Penicillin-resistant Streptococcus pneumoniae in Germany: genetic relationship to clones from other European countries. J. Med. Microbiol. 43 , 377–385 (1995).
  • Karnezis TT , SmithA, WhittierS, HaddadJ, SaimanL. Antimicrobial resistance among isolates causing invasive pneumococcal disease before and after licensure of heptavalent conjugate pneumococcal vaccine. PLoS ONE4 , E5965 (2009).
  • Morand B , MuhlemannK. Heteroresistance to penicillin in Streptococcus pneumoniae. Proc. Natl Acad. Sci. USA104 , 14098–14103 (2007).
  • Goffin C , Ghuysen J-M. Biochemistry and comparative genomics of SXXK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Microbiol. Mol. Biol. Rev.66 , 706–738 (2002).
  • Sauvage E , KerffF, TerrakM, AyalaJ, CharlierP. The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol. Rev.32 , 234–258 (2008).
  • Suzuki H , van Heijenoort Y, Tamura T, Mizoguchi J, Hirota Y, Van Heijenoort J. In vitro peptidoglycan polymerization catalysed by penicillin-binding protein 1b of Escherichia coli K 12. FEBS Lett.110 , 245–249 (1980).
  • Stanhope MJ , LefebureT, WalshSL et al. Positive selection in penicillin-binding proteins 1a, 2b, and 2x from Streptococcus pneumoniae and its correlation with amoxicillin resistance development. Infect. Genet. Evol. 8 , 331–339 (2008).
  • Frère J -M, Joris B. Penicillin-sensitive enzymes in peptidoglycan biosynthesis. Crit. Rev. Microbiol.11 , 299–396 (1985).
  • Adam M , DamblonC, JaminM et al. Acyltransferase activities of the high-molecular-mass essential penicillin-binding proteins. Biochem. J. 279 , 601–604 (1991).
  • Jamin M , HakenbeckR, Frère J-M. Penicillin binding protein 2x as a major contributor to intrinsic β-lactam resistance of Streptococcus pneumoniae. FEBS Lett.331 , 101–104 (1992).
  • Briese T , EllerbrokH, Schier H-M, Hakenbeck R. Reactivity of anti-β-lactam antibodies with β-lactam-penicillin-binding protein complexes. In: Antibiotic Inhibition of Bacterial Cell Surface Assembly and Function. Actor P, Daneo-Moore L, Higgins ML, Salton MRJ, Shockman GD (Eds). American Society for Microbiology, WA, USA, 404–409 (1988).
  • Hakenbeck R , BrieseT, EllerbrokH. Antibodies against the benzylpenicilloyl moiety as a probe for penicillin-binding proteins. Eur. J. Biochem.157 , 101–106 (1986).
  • Hakenbeck R , BrieseT, ChalkleyL et al. Antigenic variation of penicillin-binding proteins from penicillin resistant clinical strains of Streptococcus pneumoniae. J. Infect. Dis. 164 , 313–319 (1991).
  • Rutschmann J , MaurerP, HakenbeckR. Detection of penicillin-binding proteins. In: Molecular Biology of Streptococci. Hakenbeck R, Chhatwal GS (Eds). Horizon Bioscience, Wymondham, Norfolk, UK, 537–542. (2007).
  • Denapaite D , ChiF, MaurerP, NolteO, HakenbeckR. Mechanism of penicillin resistance in Streptococcus pneumoniae: targets, gene transfer, and mutations. In: Molecular Biology of Streptococci. Hakenbeck R, Chhatwal GS (Eds). Horizon Bioscience, Wymondham, Norfolk UK, 290–303 (2007).
  • Zapun A , Contreras-MartelC, VernetT. Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol. Rev.32 , 361–385 (2008).
  • Kell CM , SharmaUK, DowsonCG, TownC, BalganeshTS, SprattBG. Deletion analysis of the essentiality of penicillin-binding proteins 1a, 2b and 2x of Streptococcus pneumoniae. FEMS Microbiol. Lett.106 , 171–175 (1993).
  • Paik J , KernI, LurzR, HakenbeckR. Mutational analysis of the Streptococcus pneumoniae bimodular class A penicillin-binding proteins. J. Bacteriol.181 , 3852–3856 (1999).
  • Hoskins J , MatsushimaP, MullenDL et al. Gene disruption studies of penicillin-binding proteins 1a, 1b and 2a in Streptococcus pneumoniae. J. Bacteriol. 181 , 6552–6555 (1999).
  • Di Guilmi AM , DessenA, DidebergO, VernetT. The glycosyltransferase domain of penicillin-binding protein 2a from Streptococcus pneumoniae catalyzes the polymerization of murein glycan chains. J. Bacteriol.185 , 4418–4423 (2003).
  • Di Guilmi AM , DessenA, DidebergO, VernetT. Functional characterization of penicillin-binding protein 1b from Streptococcus pneumoniae. J. Bacteriol.185 , 1650–1658 (2003).
  • Schuster C , DobrinskiB, HakenbeckR. Unusual septum formation in Streptococcus pneumoniae mutants with an alteration in the D,D-carboxypeptidase penicillin-binding protein 3. J. Bacteriol.172 , 6499–6505 (1990).
  • Severin A , SchusterC, HakenbeckR, TomaszA. Altered murein composition in a DD-carboxypeptidase mutant of Streptococcus pneumoniae. J. Bacteriol.174 , 5125–5155 (1992).
  • Morlot C , ZapunA, DidebergO, VernetT. Growth and division of Streptococcus pneumoniae: localization of the high molecular weight penicillin-binding proteins during the cell cycle. Mol. Microbiol.50 , 845–855 (2003).
  • Zapun A , VernetT, PinhoMG. The different shapes of cocci. FEMS Microbiol. Rev.32 , 345–360 (2008).
  • Hakenbeck R , EllerbrokH, MartinC et al. Penicillin-binding protein 1a and 3 in Streptococcus pneumoniae: what are essential PBP‘s. In: Bacterial Growth and Lysis Metabolism and Structure of the Bacterial Sacculus. De Pedro MA, Höltje J-V, Löffelhardt W (Eds). Plenum Press, New York, NY, USA 335–340. (1993).
  • Morlot C , Noirclerc-SavoyeM, ZapunA, DidebergO, VernetT. The D,D-carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae. Mol. Microbiol.51 , 1641–1648 (2004).
  • Mattei PJ , NevesD, DessenA. Bridging cell wall biosynthesis and bacterial morphogenesis. Curr. Opin. Struct. Biol.20 , 749–755 (2010).
  • Hakenbeck R , TornetteS, AdkinsonNF. Interaction of non-lytic β-lactams with penicillin-binding proteins in Streptococcus pneumoniae. J. Gen. Microbiol.133 , 755–760 (1987).
  • Grebe T , HakenbeckR. Penicillin-binding proteins 2b and 2x of Streptococcus pneumoniae are primary resistance determinants for different classes of β-lactam antibiotics. Antimicrob. Agents Chemother.40 , 829–834 (1996).
  • Laible G , HakenbeckR. Five independent combinations of mutations can result in low-affinity penicillin-binding protein 2x of Streptococcus pneumoniae. J. Bacteriol.173 , 6986–6990 (1991).
  • Sifaoui F , Kitzis M-D, Gutmann L. In vitro selection of one-step mutants of Streptococcus pneumoniae resistant to different oral β-lactam antibiotics is associated with alterations of PBP2x. Antimicrob. Agents Chemother.40 , 152–156 (1996).
  • Negri MC , MorosiniMI, BaqueroMR, del Campo R, Blázquez J, Baquero F. Very low cefotaxime concentrations select for hypermutable Streptococcus pneumoniae populations. Antimicrob. Agents Chemother.46 , 528–530 (2002).
  • Liu HH , TomaszA. Penicillin tolerance in multiply drug-resistant natural isolates of Streptococcus pneumoniae. J. Infect. Dis.152 , 365–372 (1985).
  • Reichmann P , KönigA, LiñaresJ et al. A global gene pool for high-level cephalosporin resistance in commensal Streptococcus spp. and Streptococcus pneumoniae. J. Infect. Dis. 176 , 1001–1012 (1997).
  • Muñóz R , DowsonCG, DanielsM et al. Genetics of resistance to third-generation cephalosporins in clinical isolates of Streptococcus pneumoniae. Mol. Microbiol. 6 , 2461–2465 (1992).
  • Rieux V , CarbonC, Zoulay-DupuisE. Complex relationship between acquisition of beta-lactam resistance and loss of virulence in Streptococcus pneumoniae. J. Infect. Dis.184 , 66–72 (2001).
  • Albarracin Orio AG , PinasGE, CortesPR, CianMB, EcheniqueJ. Compensatory evolution of pbp mutations restores the fitness cost imposed by beta-lactam resistance in Streptococcus pneumoniae. PLoS Pathog.7 , E1002000 (2011).
  • Zerfass I , HakenbeckR, DenapaiteD. An important site in PBP2x of penicillin-resistant clinical isolates of Streptococcus pneumoniae: mutational analysis of Thr338. Antimicrob. Agents Chemother.53 , 1107–1115 (2009).
  • Job V , CarapitoR, VernetT, DessenA, ZapunA. Common alterations in PBP1a from resistant Streptococcus pneumoniae decrease its reactivity toward beta-lactams: structural insights. J. Biol. Chem.283 , 4886–4894 (2008).
  • Dowson CG , HutchisonA, BranniganJA et al. Horizontal transfer of penicillin-binding protein genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Proc. Natl Acad. Sci. USA 86 , 8842–8846 (1989).
  • Martin C , SiboldC, HakenbeckR. Relatedness of penicillin-binding protein 1a genes from different clones of penicillin-resistant Streptococcus pneumoniae isolated in South Africa and Spain. EMBO J.11 , 3831–3836 (1992).
  • Sibold C , HenrichsenJ, KönigA, MartinC, ChalkleyL, HakenbeckR. Mosaic pbpXgenes of major clones of penicillin-resistant Streptococcus pneumoniae have evolved from pbpX genes of a penicillin-sensitive Streptococcus oralis. Mol. Microbiol.12 , 1013–1023 (1994).
  • Enright MC , SprattBG. Extensive variation in the ddlgene of penicillin-resistant Streptococcus pneumoniae results from a hitchhiking effect driven by the penicillin-binding protein 2b gene. Mol. Biol. Evol.16 , 1687–1695 (2004).
  • Coffey TJ , EnrightMC, DanielsM et al. Recombinational exchanges at the capsular polysaccharide biosynthetic locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Mol. Microbiol. 27 , 73–83 (1998).
  • Trzcinski K , ThompsonCM, LipsitchM. Single-step capsular transformation and acquisition of penicillin resistance in Streptococcus pneumoniae. J. Bacteriol.186 , 3227–3452 (2006).
  • Hakenbeck R , KönigA, KernI et al. Acquisition of five high-Mr penicillin-binding protein variants during transfer of high-level β-lactam resistance from Streptococcus mitis to Streptococcus pneumoniae. J. Bacteriol. 180 , 1831–1840 (1998).
  • Chi F , NolteO, BergmannC, IpM, HakenbeckR. Crossing the barrier: evolution and spread of a major class of mosaic pbp2x in S. pneumoniae, S. mitis and S. oralis. Int. J. Med. Microbiol.297 , 503–512 (2007).
  • Izdebski R , RutschmannJ, FiettJ et al. Highly variable penicillin resistance determinants PBP 2x, PBP 2b, and PBP 1a in isolates of two Streptococcus pneumoniae clonal groups, Poland23F-16 and Poland6B-20. J. Bacteriol. 52 , 1021–1027 (2008).
  • Dowson CG , CoffeyTJ, KellC, WhileyRA. Evolution of penicillin resistance in Streptococcus pneumoniae; the role of Streptococcus mitis in the formation of a low affinity PBP2b in S. pneumoniae. Mol. Microbiol.9 , 635–643 (1993).
  • Pares S , MouzN, PétillotY, HakenbeckR, DidebergO. X-ray structure of Streptococcus pneumoniae PBP2x, a primary penicillin target enzyme. Nat. Struct. Biol.3 , 284–289 (1996).
  • Krauss J , van der Linden M, Grebe T, Hakenbeck R. Penicillin-binding proteins 2x and 2b as primary PBP-targets in Streptococcus pneumoniae. Microb. Drug Resist.2 , 183–186 (1996).
  • Maurer P , KochB, ZerfassI et al. Penicillin-Binding Protein 2x of Streptococcus pneumoniae: Three new mutational pathways for remodelling an essential enzyme into a resistance determinant. J. Mol. Biol. 376 , 1403–1416 (2008).
  • Laible G , HakenbeckR. Penicillin-binding proteins in β-lactam-resistant laboratory mutants of Streptococcus pneumoniae. Mol. Microbiol.1 , 355–363 (1987).
  • Coffey TJ , DanielsM, McDougalLK, DowsonCG, TenoverFC, SprattBG. Genetic analysis of clinical isolates of Streptococcus pneumoniae with high-level resistance to expanded-spectrum cephalosporins. Antimicrob. Agents Chemother.39 , 1306–1313 (1995).
  • Sanbongi Y , IdaT, IshikawaM et al. Complete sequences of six penicillin-binding protein genes from 40 Streptococcus pneumoniae clinical isolates collected in Japan. Antimicrob. Agents Chemother. 48 , 2244–2250 (2004).
  • Asahi Y , TakeuchiY, UbukataK. Diversity of substitutions within or adjacent to conserved amino acid motifs of penicillin-binding protein 2x in cephalosporin-resistant Streptococcus pneumoniae isolates. Antimicrob. Agents Chemother.43 , 1252–1255 (1999).
  • Nagai K , DaviesTA, JacobsMR, AppelbaumPC. Effects of amino acid alterations in penicillin-binding proteins (PBPs) 1a, 2b, and 2x on PBP affinities of penicillin, ampicillin, amoxicillin, cefditoren, cefuroxime, cefprozil, and cefaclor in 18 clinical isolates of penicillin-susceptible, -intermediate, and -resistant pneumococci. Antimicrob. Agents Chemother.46 , 1273–1280 (2002).
  • Mouz N , Di Guilmi AM, Gordon E, Hakenbeck R, Dideberg O, Vernet T. Mutations in the active site of penicillin-binding protein PBP2x from Streptococcus pneumoniae. Role in the specificity for β-lactam antibiotics. J. Biol. Chem.274 , 19175–19180 (1999).
  • Gordon E , MouzN, DueeE, DidebergO. The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance. J. Mol. Biol.299 , 477–485 (2000).
  • Mouz N , GordonE, Di Guilmi D-M et al. Identification of a structural determinant for resistance to β-lactam antibiotics in Gram-positive bacteria. Proc. Natl Acad. Sci. USA95 , 13403–13406 (1998).
  • Hakenbeck R , KaminskiK, KönigA et al. Penicillin-binding proteins in β-lactam-resistant Streptococcus pneumoniae. Microb. Drug Resist. 5 , 91–99 (1999).
  • Dessen A , MouzN, GordonE, HopkinsJ, DidebergO. Crystal structure of PBP2x from a highly penicillin-resistant Streptococcus pneumoniae clinical isolate: a mosaic framework containing 83 mutations. J. Biol. Chem.276 , 45105–45112 (2001).
  • Chesnel L , PernotL, LemaireD et al. The structural modifications induced by the M339F substitution in PBP2x from Streptococcus pneumoniae further decreases the susceptibility to beta-lactams of resistant strains. J. Biol. Chem. 278 , 44448–44456 (2003).
  • Pernot L , ChesnelL, Le Gouellec A et al. A PBP2x from a clinical isolate of Streptococcus pneumoniae exhibits an alternative mechanism for reduction of susceptibility to beta-lactam antibiotics. J. Biol. Chem.279 , 16463–16470 (2004).
  • Carapito R , ChesnelL, VernetT, ZapunA. Pneumococcal beta-lactam resistance due to a conformational change in penicillin-binding protein 2x. J. Biol. Chem.281 , 1771–1777 (2006).
  • Smith AM , KlugmanKP. Amino acid mutations essential to production of an altered PBP 2x conferring high-level beta-lactam resistance in a clinical isolate of Streptococcus pneumoniae. Antimicrob. Agents Chemother.49 , 4622–4627 (2005).
  • Lu W -P, Kincaid E, Sun Y, Bauer MD. Kinetics of beta-lactam interactions with penicillin-susceptible and -resistant penicillin-binding protein 2x proteins from Streptococcus pneumoniae. Involvement of acylation and deacylation in beta-lactam resistance. J. Biol. Chem.276 , 31494–31501 (2001).
  • Di Guilmi AM , MouzN, PetillotY, ForestE, DidebergO, VernetT. Deacylation kinetics analysis of Streptococcus pneumoniae penicillin-binding protein 2x mutants resistant to beta-lactam antibiotics using electrospray ionization- mass spectrometry. Anal. Biochem.10 , 240–246 (2000).
  • Jamin M , DamblonC, MillierS, HakenbeckR, Frère J-M. Penicillin-binding protein 2x of Streptococcus pneumoniae: enzymic activities and interactions with β-lactams. Biochem. J.292 , 735–741 (1993).
  • Hakenbeck R , MartinC, DowsonC, GrebeT. Penicillin-binding protein 2b of Streptococcus pneumoniae in piperacillin-resistant laboratory mutants. J. Bacteriol.176 , 5574–5577 (1994).
  • Smith AM , KlugmanKP. Alterations in penicillin-binding protein 2b from penicillin-resistant wild-type strains of Streptococcus pneumoniae. Antimicrob. Agents Chemother.39 , 859–867 (1995).
  • Ferroni A , BercheP. Alterations to penicillin-binding proteins 1a, 2b and 2x amongst penicillin-resistant clinical isolates of Streptococcus pneumoniae serotype 23F from the nasopharyngeal flora of children. J. Med. Microbiol.50 , 828–832 (2001).
  • Pagliero E , ChesnelL, HopkinsJ et al. Biochemical characterization of Streptococcus pneumoniae penicillin-binding protein 2b and its implication in beta-lactam resistance. Antimicrob. Agents Chemother. 48 , 1848–1855 (2004).
  • Song JH , YangJW, JinJH et al. Molecular characterization of multidrug-resistant Streptococcus pneumoniae isolates in Korea. The Asian Network for Surveillance of Resistant Pathogens (ANSORP) Study Group. J. Clin. Microbiol. 38 , 1641–1644 (2000).
  • Kell CM , JordensJZ, DanielsM et al. Molecular epidemiology of penicillin-resistant pneumococci isolated in Nairobi, Kenya. Infect. Immun. 61 , 4382–4391 (1993).
  • du Plessis M , BingenE, KlugmanKP. Analysis of penicillin-binding protein genes of clinical isolates of Streptococcus pneumoniae with reduced susceptibility to amoxicillin. Antimicrob. Agents Chemother.46 , 2349–2357 (2002).
  • Kosowska K , JacobsMR, BajaksouzianS, KoethL, AppelbaumPC. Alterations of penicillin-binding proteins 1a, 2x, and 2b in Streptococcus pneumoniae isolates for which amoxicillin MICs are higher than penicillin MICs. Antimicrob. Agents Chemother.48 , 4020–4022 (2004).
  • Cafini F , del Campo R, Alou L et al. Alterations of the penicillin-binding proteins and murM alleles of clinical Streptococcus pneumoniae isolates with high-level resistance to amoxicillin in Spain. J. Antimicrob. Chemother.57 , 224–229 (2006).
  • Yamane A , NakanoH, AsahiY, UbukataK, KonnoM. Directly repeated insertion of 9-nucleotide sequence detected in penicillin-binding protein 2b gene of penicillin-resistant Streptococcus pneumoniae. Antimicrob. Agents Chemother.40 , 1257–1259 (1996).
  • Contreras-Martel C , Dahout-GonzalezC, Martins Ados S, Kotnik M, Dessen A. PBP active site flexibility as the key mechanism for beta-lactam resistance in pneumococci. J. Mol. Biol.387 , 899–909 (2009).
  • Smith AM , KlugmanKP. Alterations in PBP1a essential for high-level penicillin resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother.42 , 1329–1333 (1998).
  • Smith AM , KlugmanKP. Site-specific mutagenesis analysis of PBP 1a from a penicillin-cephalosporin-resistant pneumococcal isolate. Antimicrob. Agents Chemother.48 , 387–389 (2003).
  • Job V , Di Guilmi AM, Martin L, Vernet T, Dideberg O, Dessen A. Structural studies of the transpeptidase domain of PBP1a from Streptococcus pneumoniae. Acta Crystallogr. D Biol. Crystallogr.59 , 1067–1069 (2003).
  • Contreras-Martel C , JobV, Di Guilmi AM, Vernet T, Dideberg O, Dessen A. Crystal structure of penicillin-binding protein 1a (PBP1a) reveals a mutational hotspot implicated in beta-lactam resistance in Streptococcus pneumoniae. J. Mol. Biol.355 , 684–696 (2006).
  • du Plessis M , SmithAM, KlugmanKP. Analysis of penicillin-binding protein lb and 2a genes from Streptococcus pneumoniae. Microb. Drug Resist.6 , 127–131 (2000).
  • Carapito R , GalletB, ZapunA, VernetT. Automated high-throughput process for site-directed mutagenesis, production, purification, and kinetic characterization of enzymes. Anal. Biochem.355 , 110–116 (2006).
  • Smith AM , FeldmanC, MassiddaO, McCarthyK, NdiweniD, KlugmanKP. Altered PBP 2a and its role in the development of penicillin, cefotaxime, and ceftriaxone resistance in a clinical isolate of Streptococcus pneumoniae. Antimicrob. Agents Chemother.49 , 2002–2007 (2005).
  • Zhao G , MeierTI, HoskinsJ, McAllisterKA. Identification and characterization of the penicillin-binding protein 2a of Streptococcus pneumoniae and its possible role in resistance to beta-lactam antibiotics. Antimicrob. Agents Chemother.44 , 1745–1748 (2000).
  • Krauss J , HakenbeckR. A mutation in the D,D-carboxypeptidase penicillin-binding protein 3 of Streptococcus pneumoniae contributes to cefotaxime resistance of the laboratory mutant C604. Antimicrob. Agents Chemother.41 , 936–942 (1997).
  • Selakovitch-Chenu L , SeroudeL, SicardAM. The role of penicillin-binding protein 3 (PBP 3) in cefotaxime resistance in Streptococcus pneumoniae.Mol. Gen. Genet.239 , 77–80 (1993).
  • Denapaite D , BrücknerR, NuhnM et al. The genome of Streptococcus mitis B6 – what is a commensal? PLoS ONE 5 , E9426 (2010).
  • Garcia-Bustos JF , ChaitBT, TomaszA. Structure of the peptide network of pneumococcal peptidoglycan. J. Biol. Chem.262 , 15400–15405 (1987).
  • Lloyd AJ , GilbeyAM, BlewettAM et al. Characterization of tRNA-dependent peptide bond formation by MurM in the synthesis of Streptococcus pneumoniae peptidoglycan. J. Biol. Chem. 283 , 6402–6417 (2008).
  • De Pascale G , LloydAJ, SchoutenJA et al. Kinetic characterization of lipid II-Ala:alanyl-tRNA ligase (MurN) from Streptococcus pneumoniae using semisynthetic aminoacyl-lipid II substrates. J. Biol. Chem. 283 , 34571–34579 (2008).
  • Garcia-Bustos J , TomaszA. A biological price of antibiotic resistance: major changes in the peptidoglycan structure of penicillin-resistant pneumococci. Proc. Natl Acad. Sci. USA87 , 5415–5419 (1990).
  • Smith AM , KlugmanKP. Alterations in MurM, a cell wall muropeptide branching enzyme, increase high-level penicillin and cephalosporin resistance in Streptococcus pneumoniae.Antimicrob. Agents Chemother.45 , 2393–2396 (2001).
  • Filipe SR , SeverinaE, TomaszA. The murMN operon: a functional link between antibiotic resistance and antibiotic tolerance in Streptococcus pneumoniae. Proc. Natl Acad. Sci. USA99 , 1550–1555 (2002).
  • Weber B , EhlertK, DiehlA, ReichmannP, LabischinskiH, HakenbeckR. The fiblocus in Streptococcus pneumoniae is required for peptidoglycan crosslinking and PBP-mediated beta-lactam resistance. FEMS Microbiol. Lett.188 , 81–85 (2000).
  • Filipe SR , TomaszA. Inhibition of the expression of penicillin-resistance in Streptococcus pneumoniae by inactivation of cell wall muropeptide branching genes. Proc. Natl Acad. Sci. USA97 , 4891–4896 (2000).
  • Severin A , FigueiredoAMS, TomaszA. Separation of abnormal cell wall composition from penicillin resistance through genetic transformation of Streptococcus pneumoniae.J. Bacteriol.178 , 1788–1792 (1996).
  • Chesnel L , CarapitoR, CroizéJ, DidebergO, VernetT, ZapunA. Identical penicillin-binding domains in penicillin-binding proteins of Streptococcus pneumoniae clinical isolates with different levels of beta-lactam resistance. Antimicrob. Agents Chemother.49 , 2895–2902 (2005).
  • Tait-Kamradt AG , CronanM, DoughertyTJ. Comparative genome analysis of high-level penicillin resistance in Streptococcus pneumoniae.Microb. Drug Resist.15 , 69–75 (2009).
  • Crisostomo MI , VollmerW, KharatAS et al. Attenuation of penicillin resistance in a peptidoglycan O-acetyl transferase mutant of Streptococcus pneumoniae. Mol. Microbiol. 61 , 1497–1509 (2006).
  • Soualhine H , BrochuV, MenardF et al. A proteomic analysis of penicillin resistance in Streptococcus pneumoniae reveals a novel role for PstS, a subunit of the phosphate ABC transporter. Mol. Microbiol. 58 , 1430–1440 (2005).
  • Hakenbeck R , GrebeT, ZähnerD, StockJB. β-Lactam resistance in Streptococcus pneumoniae: penicillin-binding proteins and non penicillin-binding proteins. Mol. Microbiol.33 , 673–678 (1999).
  • Grebe T , PaikJ, HakenbeckR. A novel resistance mechanism for β-lactams in Streptococcus pneumoniae involves CpoA, a putative glycosyltransferases. J. Bacteriol.179 , 3342–3349 (1997).
  • Edman M , BergS, StormP et al. Structural features of glycosyltransferases synthesizing major bilayer and nonbilayer-prone membrane lipids in Acholeplasma laidlawii and Streptococcus pneumoniae. J. Biol. Chem. 278 , 8420–8428 (2003).
  • Seo HS , CarteeRT, PritchardDG, NahmMH. A new model of pneumococcal lipoteichoic acid structure resolves biochemical, biosynthetic, and serologic inconsistencies of the current model. J. Bacteriol.190 , 2379–2387 (2008).
  • Guenzi E , GascAM, SicardMA, HakenbeckR. A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae.Mol. Microbiol.12 , 505–515 (1994).
  • Moscoso M , DomenechM, GarcíaE. Vancomycin tolerance in clinical and laboratory Streptococcus pneumoniae isolates depends on reduced enzyme activity of the major LytA autolysin or cooperation between CiaH histidine kinase and capsular polysaccharide. Mol. Microbiol.77 , 1052–1064 (2010).
  • Müller M , MarxP, HakenbeckR, BrücknerR. Effect of new alleles of the histidine kinase gene ciaH on the activity of the response regulator CiaR in Streptococcus pneumoniae R6. Microbiology157 , 3104–3112 (2011).
  • Mascher T , HeintzM, ZähnerD, MeraiM, HakenbeckR. The CiaRH system of Streptococcus pneumoniae prevents lysis during stress induced by treatment with cell wall inhibitors and mutations in pbp2x involved in beta-lactam resistance. J. Bacteriol.188 , 1959–1968 (2006).
  • Halfmann A , SchnorpfeilA, MüllerM et al. Activity of the two-component regulatory system CiaRH in Streptococcus pneumoniae R6. J. Mol. Microbiol. Biotechnol. 20 , 96–104 (2011).
  • Marra A , AsundiJ, BartilsonM et al. Differential fluorescence induction analysis of Streptococcus pneumoniae identifies genes involved in pathogenesis. Infect. Immun. 70 , 1422–1433 (2002).
  • Sebert ME , PalmerLM, RosenbergM, WeiserJN. Microarray-based identification of htrA, a Streptococcus pneumoniae gene that is regulated by the CiaRH two-component system and contributes to nasopharyngeal colonization. Infect. Immun.70 , 4059–4067 (2002).
  • Throup JP , KoretkeKK, BryantAP et al. A genomic analysis of two-component signal transduction in Streptococcus pneumoniae. Mol. Microbiol. 35 , 566–576 (2000).
  • Ibrahim YM , KerrAR, McCluskeyJ, MitchellTJ. Control of virulence by the two-component system CiaR/H is mediated via HtrA, a major virulence factor of Streptococcus pneumoniae.J. Bacteriol.186 , 5258–5266 (2004).
  • Halfmann A , KovácsM, HakenbeckR, BrücknerR. Identification of the genes directly controlled by the response regulator CiaR in Streptococcus pneumoniae: five out of fifteen promoters drive expression of small noncoding RNAs. Mol. Microbiol.66 , 110–126 (2007).
  • Dias R , FelixD, CanicaM, TrombeMC. The highly conserved serine threonine kinase StkP of Streptococcus pneumoniae contributes to penicillin susceptibility independently from genes encoding penicillin-binding proteins. BMC Microbiol.9 , 121 (2009).
  • Maestro B , NovakováL, HesekD et al. Recognition of peptidoglycan and β-lactam antibiotics by the extracellular domain of the Ser/Thr protein kinase StkP from Streptococcus pneumoniae. FEBS Lett. 585 , 357–363 (2011).
  • Giefing C , JelencsicsKE, GelbmannD, SennBM, NagyE. The pneumococcal eukaryotic-type serine/threonine protein kinase StkP co-localizes with the cell division apparatus and interacts with FtsZ in vitro. Microbiology156 , 1697–1707 (2011).
  • Tran TD , KwonHY, KimEH et al. Decrease in penicillin susceptibility due to heat shock protein ClpL in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 55 , 2714–2728 (2011).
  • Macheboeuf P , FischerD, ZervosenA et al. Structural and mechanistic basis of penicillin-binding protein inhibition by lactivicins. Nat. Chem. Biol. 3 , 565–569 (2007).
  • Miguet L , ZervosenA, GerardsT et al. Discovery of new inhibitors of resistant Streptococcus pneumoniae penicillin binding protein (PBP) 2x by structure-based virtual screening. J. Med. Chem. 52 , 5926–5936 (2009).
  • Oliva M , DidebergO, FieldMJ. Understanding the acylation mechanisms of active-site serine penicillin-recognizing proteins: a molecular dynamics simulation study. Proteins53 , 88–100 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.