2,246
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prolonged Carriage and Potential Onward Transmission of Carbapenemase-Producing Enterobacteriaceae in Dutch Travelers

, , , , , , , , , , , , & show all
Pages 857-864 | Received 08 Oct 2015, Accepted 21 Apr 2016, Published online: 30 Jun 2016

References

  • Ruppe E, Armand-Lefevre L, Estellat C et al. Acquisition of carbapenemase-producing Enterobacteriaceae by healthy travellers to India, France, February 2012 to March 2013. Euro Surveill. 19 (14 ), pii: 20768 (2014).
  • Kennedy K, Collignon P. Colonisation with Escherichia coli resistant to “critically important” antibiotics: a high risk for international travellers. Eur. J. Clin. Microbiol. Infect. Dis. 29 (12 ), 1501 – 1506 (2010).
  • Tangden T, Cars O, Melhus A et al. Foreign travel is a major risk factor for colonization with Escherichia coli producing CTX-M-type extended-spectrum beta-lactamases: a prospective study with Swedish volunteers. Antimicrob. Agents Chemother. 54 (9 ), 3564 – 3568 (2010).
  • Weisenberg SA, Mediavilla JR, Chen L et al. Extended spectrum beta-lactamase-producing Enterobacteriaceae in international travelers and non-travelers in New York City. PLoS ONE 7 (9 ), e45141 (2012).
  • Paltansing S, Vlot JA, Kraakman MEM et al. Extended-spectrum β-lactamase-producing Enterobacteriaceae among travelers from The Netherlands. Emerg. Infect. Dis. 19 (8 ), 1206 – 1213 (2013).
  • Ostholm-Balkhed A, Tarnberg M, Nilsson M et al. Travel-associated faecal colonization with ESBL-producing Enterobacteriaceae: incidence and risk factors. J. Antimicrob. Chemother. 68 (9 ), 2144 – 2153 (2013).
  • Kuenzli E, Jaeger VK, Frei R et al. High colonization rates of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in Swiss travellers to south Asia – a prospective observational multicenter cohort study looking at epidemiology, microbiology and risk factors. BMC Infect. Dis. 14, 528 (2014).
  • Lubbert C, Straube L, Stein C et al. Colonization with extended-spectrum beta-lactamase-producing and carbapenemase-producing Enterobacteriaceae in international travelers returning to Germany. Int. J. Med. Microbiol. 305 (1 ), 148 – 156 (2015).
  • Kantele A, Laaveri T, Mero S et al. Antimicrobials increase travelers’ risk of colonization by extended-spectrum betalactamase-producing Enterobacteriaceae. Clin. Infect. Dis. 60 (6 ), 837 – 846 (2015).
  • Angelin M, Forsell J, Granlund M et al. Risk factors for colonization with extended-spectrum beta-lactamase producing Enterobacteriaceae in healthcare students on clinical assignment abroad: a prospective study. Travel Med. Infect. Dis. 13 (3 ), 223 – 229 (2015).
  • Arcilla MS, Van Hattem JM, Bootsma MC et al. The Carriage of Multiresistant Bacteria after Travel (COMBAT) prospective cohort study: methodology and design. BMC Public Health 14, 410 (2014).
  • Murk JL, Heddema ER, Hess DL et al. Enrichment broth improved detection of extended-spectrum-beta-lactamase-producing bacteria in throat and rectal surveillance cultures of samples from patients in intensive care units. J. Clin. Microbiol. 47 (6 ), 1885 – 1887 (2009).
  • Carrer A, Fortineau N, Nordmann P. Use of ChromID extended-spectrum beta-lactamase medium for detecting carbapenemase-producing Enterobacteriaceae. J. Clin. Microbiol. 48 (5 ), 1913 – 1914 (2010).
  • Bernards AT, Bonten MJ, Cohen Stuart J et al. NVMM Guideline Laboratory detection of highly resistant microorganisms (HRMO) (2 ), 25 – 46 (2012). www.nvmm.nl/richtlijnen/hrmo-laboratory-detection-highly-resistant-microorganisms.
  • Anjum MF, Choudhary S, Morrison V et al. Identifying antimicrobial resistance genes of human clinical relevance within Salmonella isolated from food animals in Great Britain. J. Antimicrob. Chemother. 66 (3 ), 550 – 559 (2011).
  • Card R, Zhang J, Das P et al. Evaluation of an expanded microarray for detecting antibiotic resistance genes in a broad range of gram-negative bacterial pathogens. Antimicrob. Agents Chemother. 57 (1 ), 458 – 465 (2013).
  • Pitout JD, Hossain A, Hanson ND. Phenotypic and molecular detection of CTX-M-beta-lactamases produced by Escherichia coli and Klebsiella spp. J. Clin. Microbiol. 42 (12 ), 5715 – 5721 (2004).
  • Paauw A, Fluit AC, Verhoef J et al. Enterobacter cloacae outbreak and emergence of quinolone resistance gene in Dutch hospital. Emerg. Infect. Dis. 12 (5 ), 807 – 812 (2006).
  • Eckert C, Gautier V, Saladin-Allard M et al. Dissemination of CTX-M-type -lactamases among clinical isolates of Enterobacteriaceae in Paris, France. Antimicrob. Agents Chemother. 48 (4 ), 1249 – 1255 (2004).
  • Aubron C, Poirel L, Ash RJ et al. Carbapenemase-producing Enterobacteriaceae U.S. rivers. Emerg. Infect. Dis. 11 (2 ), 260 – 264 (2005).
  • Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J. Antimicrob. Chemother. 67 (7 ), 1597 – 1606 (2012).
  • Poirel L, Dortet L, Bernabeu S et al. Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob. Agents Chemother. 55 (11 ), 5403 – 5407 (2011).
  • Pasteran F, Mendez T, Guerriero L et al. Sensitive screening tests for suspected class A carbapenemase production in species of Enterobacteriaceae. J. Clin. Microbiol. 47 (6 ), 1631 – 1639 (2009).
  • Wirth T, Falush D, Lan R et al. Sex and virulence in Escherichia coli: an evolutionary perspective. Mol. Microbiol. 60 (5 ), 1136 – 1151 (2006).
  • Diancourt L, Passet V, Verhoef J et al. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 43 (8 ), 4178 – 4182 (2005).
  • MLST website hosted at the Warwick University, UK. http://mlst.warwick.ac.uk/mlst/dbs/Ecoli.
  • MLST website hosted at Institut Pasteur, France. http://bigsdb.web.pasteur.fr/klebsiella/klebsiella.html.
  • Savelkoul PH, Aarts HJ, De Haas J et al. Amplified-fragment length polymorphism analysis: the state of an art. J. Clin. Microbiol. 37 (10 ), 3083 – 3091 (1999).
  • Van Hoek AH, Schouls L, Van Santen MG, Florijn A, De Greeff SC, Van Duijkeren E. Molecular characteristics of extended-spectrum cephalosporin-resistant Enterobacteriaceae from humans in the community. PLoS ONE 10 (6 ), e0129085 (2015).
  • Reuland EA, Overdevest IT, Al Naiemi N et al. High prevalence of ESBL-producing Enterobacteriaceae carriage in Dutch community patients with gastrointestinal complaints. Clin. Microbiol. Infect. 19 (6 ), 542 – 549 (2013).
  • NethMap. Consumption of antimicrobial agents and antimicrobial resistance among medically important bacteria in The Netherlands in 2014. www.swab.nl/swab/cms3.nsf/uploads/.
  • Huang L, Wang X, Feng Y et al. First identification of an IMI-1 carbapenemase-producing colistin-resistant Enterobacter cloacae in China. Ann. Clin. Microbiol. Antimicrob. 14 (1 ), 51 (2015).
  • Dupont H, Gaillot O, Goetgheluck AS et al. Molecular characterization of carbapenem-non-susceptible Enterobacterial isolates collected during a prospective interregional survey in France and susceptibility to the novel ceftazidime-avibactam and aztreonam-avibactam combinations. Antimicrob. Agents Chemother. 60 (1 ), 215 – 221 (2015).
  • Cuzon G, Bonnin RA, Nordmann P. First identification of novel NDM carbapenemase, NDM-7, in Escherichia coli in France. PLoS ONE 8 (4 ), e61322 (2013).
  • Nordmann P, Poirel L. The difficult-to-control spread of carbapenemase producers among Enterobacteriaceae worldwide. Clin. Microbiol. Infect. 20 (9 ), 821 – 830 (2014).
  • Rimrang B, Chanawong A, Lulitanond A et al. Emergence of NDM-1- and IMP-14a-producing Enterobacteriaceae in Thailand. J. Antimicrob. Chemother. 67 (11 ), 2626 – 2630 (2012).
  • Oteo J, Hernandez JM, Espasa M et al. Emergence of OXA-48-producing Klebsiella pneumoniae and the novel carbapenemases OXA-244 and OXA-245 in Spain. J. Antimicrob. Chemother. 68 (2 ), 317 – 321 (2013).
  • Potron A, Poirel L, Rondinaud E, Nordmann P. Intercontinental spread of OXA-48 beta-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. Euro Surveill. 18 (31 ), pii:20549 (2013).
  • Dimou V, Dhanji H, Pike R, Livermore DM, Woodford N. Characterization of Enterobacteriaceae producing OXA-48-like carbapenemases in the UK. J. Antimicrob. Chemother. 67 (7 ), 1660 – 1665 (2012).
  • Beyrouthy R, Robin F, Dabboussi F et al. Carbapenemase and virulence factors of Enterobacteriaceae in North Lebanon between 2008 and 2012: evolution via endemic spread of OXA-48. J. Antimicrob. Chemother. 69 (10 ), 2699 – 2705 (2014).
  • Zurfluh K, Nuesch-Inderbinen MT, Poirel L et al. Emergence of Escherichia coli producing OXA-48 beta-lactamase in the community in Switzerland. Antimicrob. Resist. Infect. Control 4, 9 (2015).
  • Potron A, Poirel L, Dortet L et al. Characterisation of OXA-244, a chromosomally-encoded OXA-48-like beta-lactamase from Escherichia coli. Int. J. Antimicrob. Agents 47 (1 ), 102 – 103 (2015).
  • Gottesman T, Agmon O, Shwartz O et al. Household transmission of carbapenemase-producing Klebsiella pneumoniae. Emerg. Infect. Dis. 14 (5 ), 859 – 860 (2008).
  • Blyth CC, Pereira L, Goire N. New Delhi metallo-beta-lactamase-producing enterobacteriaceae in an Australian child who had not traveled overseas. Med. J. Aust. 200 (7 ), 386 (2014).