1,294
Views
0
CrossRef citations to date
0
Altmetric
Review

ROS1 Fusions in Cancer: A Review

&
Pages 1911-1928 | Received 25 Jan 2016, Accepted 06 May 2016, Published online: 03 Jun 2016

References

  • Bongarzone I , MonziniN, BorrelloMGet al. Molecular characterization of a thyroid tumor-specific transforming sequence formed by the fusion of ret tyrosine kinase and the regulatory subunit RI alpha of cyclic AMP-dependent protein kinase A. Mol. Cell Biol.13, 358–366 (1993).
  • Tognon C , KnezevichSR, HuntsmanDet al. Expression of the ETV6–NTRK3 gene fusion as a primary event in human secretory breast carcinoma. Cancer Cell2, 367–376 (2002).
  • Rikova K , GuoA, ZengQet al. Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell131, 1190–1203 (2007).
  • Shaw AT , HsuPP, AwadMM, EngelmanJA. Tyrosine kinase gene rearrangements in epithelial malignancies. Nat. Rev. Cancer13, 772–787 (2013).
  • El-Deeb IM , YooKH, LeeSH. ROS receptor tyrosine kinase: a new potential target for anticancer drugs. Med. Res. Rev.31, 794–818 (2011).
  • Gainor JF , ShawAT. Novel targets in non-small cell lung cancer: ROS1 and RET fusions. Oncologist18, 865–875 (2013).
  • Khoo C , RogersTM, FellowesA, BellA, FoxS. Molecular methods for somatic mutation testing in lung adenocarcinoma: EGFR and beyond. Transl. Lung Cancer Res.4, 126–141 (2015).
  • Acquaviva J , WongR, CharestA. The multifaceted roles of the receptor tyrosine kinase ROS in development and cancer. Biochim. Biophys. Acta1795, 37–52 (2009).
  • Shibuya M , HanafusaH, BalduzziPC. Cellular sequences related to three new onc genes of avian sarcoma virus (FPS, yes, and ros) and their expression in normal and transformed cells. J. Virol.42, 143–152 (1982).
  • Matsushime H , WangLH, ShibuyaM. Human c-ros-1 gene homologous to the v-ros sequence of UR2 sarcoma virus encodes for a transmembrane receptorlike molecule. Mol. Cell Biol.6, 3000–3004 (1986).
  • Nagarajan L , LouieE, TsujimotoY, BalduzziPC, HuebnerK, CroceCM. The human c-ros gene (ROS) is located at chromosome region 6q16–6q22. Proc. Natl Acad. Sci. USA83, 6568–6572 (1986).
  • Satoh H , YoshidaMC, MatsushimeH, ShibuyaM, SasakiM. Regional localization of the human c-ros-1 on 6q22 and flt on 13q12. Jpn. J. Cancer Res.78, 772–775 (1987).
  • Zong CS , ZengL, JiangY, SadowskiHB, WangLH. Stat3 plays an important role in oncogenic Ros- and insulin-like growth factor I receptor-induced anchorage-independent growth. J. Biol. Chem.273, 28065–28072 (1998).
  • Birchmeier C , O’NeillK, RiggsM, WiglerM. Characterization of ROS1 cDNA from a human glioblastoma cell line. Proc. Natl Acad. Sci. USA87, 4799–4803 (1990).
  • Zeng L , SachdevP, YanLet al. Vav3 mediates receptor protein tyrosine kinase signaling, regulates GTPase activity, modulates cell morphology, and induces cell transformation. Mol. Cell Biol.20, 9212–9224 (2000).
  • Nguyen KT , ZongCS, UttamsinghSet al. The role of phosphatidylinositol 3-kinase, rho family GTPases, and STAT3 in Ros-induced cell transformation. J. Biol. Chem.277, 11107–11115 (2002).
  • Zong CS , ChanJL, YangSK, WangLH. Mutations of Ros differentially effecting signal transduction pathways leading to cell growth versus transformation. J. Biol. Chem.272, 1500–1506 (1997).
  • Keilhack H , MullerM, BohmerSAet al. Negative regulation of Ros receptor tyrosine kinase signaling. An epithelial function of the SH2 domain protein tyrosine phosphatase SHP-1. J. Cell Biol.152, 325–334 (2001).
  • Charest A , WilkerEW, McLaughlinMEet al. ROS fusion tyrosine kinase activates a SH2 domain-containing phosphatase-2/phosphatidylinositol 3-kinase/mammalian target of rapamycin signaling axis to form glioblastoma in mice. Cancer Res.66, 7473–7481 (2006).
  • Poole AW , JonesML. A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Cell Signal.17, 1323–1332 (2005).
  • Robinson DR , WuYM, LinSF. The protein tyrosine kinase family of the human genome. Oncogene19, 5548–5557 (2000).
  • Palmer RH , VernerssonE, GrabbeC, HallbergB. Anaplastic lymphoma kinase: signalling in development and disease. Biochem. J.420, 345–361 (2009).
  • De Braekeleer M , De BraekeleerE, Douet-GuilbertN. Whole genome/exome sequencing in acute leukemia: from research to clinics. In: Next Generation Sequencing in Cancer Research, Volume 2 From Basepairs to Bedsides. WuW, ChoudhryH ( Eds). Springer Publisher, Cham, Switzerland, 381–400 (2015).
  • Giacomini CP , SunS, VarmaSet al. Breakpoint analysis of transcriptional and genomic profiles uncovers novel gene fusions spanning multiple human cancer types. PLoS. Genet.9, e1003464 (2013).
  • Pan Y , ZhangY, LiYet al. ALK, ROS1 and RET fusions in 1139 lung adenocarcinomas: a comprehensive study of common and fusion pattern-specific clinicopathologic, histologic and cytologic features. Lung Cancer84, 121–126 (2014).
  • Wang R , HuH, PanYet al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J. Clin. Oncol30, 4352–4359 (2012).
  • Wang R , PanY, LiCet al. The use of quantitative real-time reverse transcriptase PCR for 5’ and 3’ portions of ALK transcripts to detect ALK rearrangements in lung cancers. Clin. Cancer Res.18, 4725–4732 (2012).
  • Yoshida A , KohnoT, TsutaKet al. ROS1-rearranged lung cancer: a clinicopathologic and molecular study of 15 surgical cases. Am. J. Surg. Pathol.37, 554–562 (2013).
  • Cai W , LiX, SuCet al. ROS1 fusions in Chinese patients with non-small-cell lung cancer. Ann. Oncol.24, 1822–1827 (2013).
  • Chen YF , HsiehMS, WuSGet al. Clinical and the prognostic characteristics of lung adenocarcinoma patients with ROS1 fusion in comparison with other driver mutations in east Asian populations. J. Thorac. Oncol.9, 1171–1179 (2014).
  • Rimkunas VM , CrosbyKE, LiDet al. Analysis of receptor tyrosine kinase ROS1-positive tumors in non-small cell lung cancer: identification of a FIG–ROS1 fusion. Clin. Cancer Res.18, 4449–4457 (2012).
  • Sholl LM , SunH, ButaneyMet al. ROS1 immunohistochemistry for detection of ROS1-rearranged lung adenocarcinomas. Am. J. Surg. Pathol.37, 1441–1449 (2013).
  • Yoshida A , TsutaK, WakaiSet al. Immunohistochemical detection of ROS1 is useful for identifying ROS1 rearrangements in lung cancers. Mod. Pathol.27, 711–720 (2014).
  • Boyle TA , MasagoK, EllisonKE, YatabeY, HirschFR. ROS1 immunohistochemistry among major genotypes of non-small-cell lung cancer. Clin. Lung Cancer16, 106–111 (2015).
  • Rogers TM , RussellPA, WrightGet al. Comparison of methods in the detection of ALK and ROS1 rearrangements in lung cancer. J. Thorac. Oncol.10, 611–618 (2015).
  • Hornick JL , ShollLM, DalCP, ChildressMA, LovlyCM. Expression of ROS1 predicts ROS1 gene rearrangement in inflammatory myofibroblastic tumors. Mod. Pathol.28, 732–739 (2015).
  • Shan L , LianF, GuoLet al. Detection of ROS1 gene rearrangement in lung adenocarcinoma: comparison of IHC, FISH and real-time RT-PCR. PLoS ONE10, e0120422 (2015).
  • Uguen A , MarcorellesP, De BraekeleerM. Searching for ROS1 rearrangements in lung cancer by fluorescent in situ hybridization: the importance of probe design. J. Thorac. Oncol.10, e83–e85 (2015).
  • Takeuchi K , SodaM, TogashiYet al. RET, ROS1 and ALK fusions in lung cancer. Nat. Med.18, 378–381 (2012).
  • Antonescu CR , SuurmeijerAJ, ZhangLet al. Molecular characterization of inflammatory myofibroblastic tumors with frequent ALK and ROS1 gene fusions and rare novel RET rearrangement. Am. J. Surg. Pathol.39, 957–967 (2015).
  • Davies KD , LeAT, TheodoroMFet al. Identifying and targeting ROS1 gene fusions in non-small cell lung cancer. Clin. Cancer Res.18, 4570–4579 (2012).
  • Bergethon K , ShawAT, OuSHet al. ROS1 rearrangements define a unique molecular class of lung cancers. J. Clin. Oncol.30, 863–870 (2012).
  • Wiesner T , HeJ, YelenskyRet al. Kinase fusions are frequent in Spitz tumours and spitzoid melanomas. Nat. Commun.5, 3116 (2014).
  • Go H , KimDW, KimDet al. Clinicopathologic analysis of ROS1-rearranged non-small-cell lung cancer and proposal of a diagnostic algorithm. J. Thorac. Oncol8, 1445–1450 (2013).
  • Mescam-Mancini L , LantuejoulS, Moro-SibilotDet al. On the relevance of a testing algorithm for the detection of ROS1-rearranged lung adenocarcinomas. Lung Cancer83, 168–173 (2014).
  • Kim MH , ShimHS, KangDRet al. Clinical and prognostic implications of ALK and ROS1 rearrangements in never-smokers with surgically resected lung adenocarcinoma. Lung Cancer83, 389–395 (2014).
  • Warth A , MuleyT, DienemannHet al. ROS1 expression and translocations in non-small-cell lung cancer: clinicopathological analysis of 1478 cases. Histopathology65, 187–194 (2014).
  • Okamoto I , SakaiK, MoritaSet al. Multiplex genomic profiling of non-small cell lung cancers from the LETS Phase III trial of first-line S-1/carboplatin versus paclitaxel/carboplatin: results of a West Japan Oncology Group study. Oncotarget5, 2293–2304 (2014).
  • Scheffler M , SchultheisA, TeixidoCet al. ROS1 rearrangements in lung adenocarcinoma: prognostic impact, therapeutic options and genetic variability. Oncotarget6, 10577–10585 (2015).
  • Birchmeier C , SharmaS, WiglerM. Expression and rearrangement of the ROS1 gene in human glioblastoma cells. Proc. Natl Acad. Sci. USA84, 9270–9274 (1987).
  • De Braekeleer M , De BraekeleerE, Douet-GuilbertN. Geographic/ethnic variability of chromosomal and molecular abnormalities in leukemia. Expert Rev. Anticancer Ther.15, 1093–1102 (2015).
  • Lee J , LeeSE, KangSYet al. Identification of ROS1 rearrangement in gastric adenocarcinoma. Cancer119, 1627–1635 (2013).
  • Aisner DL , NguyenTT, PaskulinDDet al. ROS1 and ALK fusions in colorectal cancer, with evidence of intratumoral heterogeneity for molecular drivers. Mol. Cancer Res.12, 111–118 (2014).
  • Peraldo-Neia C , CavalloniG, BalsamoAet al. Screening for the FIG–ROS1 fusion in biliary tract carcinomas by nested PCR. Genes Chromosomes Cancer53, 1033–1040 (2014).
  • Graham RP , Barr FritcherEG, PestovaEet al. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma. Hum. Pathol.45, 1630–1638 (2014).
  • Liu P , WuY, SunL, ZuoQ, ShiM. ROS kinase fusions are not common in Chinese patients with cholangiocarcinoma. J. South Med. Univ.33, 474–478 (2013).
  • Gu TL , DengX, HuangFet al. Survey of tyrosine kinase signaling reveals ROS kinase fusions in human cholangiocarcinoma. PLoS ONE6, e15640 (2011).
  • Lovly CM , GuptaA, LipsonDet al. Inflammatory myofibroblastic tumors harbor multiple potentially actionable kinase fusions. Cancer Discov.4, 889–895 (2014).
  • Lee HJ , SeolHS, KimJYet al. ROS1 receptor tyrosine kinase, a druggable target, is frequently overexpressed in non-small cell lung carcinomas via genetic and epigenetic mechanisms. Ann. Surg. Oncol.20, 200–208 (2013).
  • Charest A , LaneK, McMahonK, HousmanDE. Association of a novel PDZ domain-containing peripheral Golgi protein with the Q-SNARE (Q-soluble N-ethylmaleimide-sensitive fusion protein (NSF) attachment protein receptor) protein syntaxin 6. J. Biol. Chem.276, 29456–29465 (2001).
  • Charest A , LaneK, McMahonKet al. Fusion of FIG to the receptor tyrosine kinase ROS in a glioblastoma with an interstitial del(6)(q21q21). Genes Chromosomes Cancer37, 58–71 (2003).
  • Suehara Y , ArcilaM, WangLet al. Identification of KIF5B–RET and GOPC–ROS1 fusions in lung adenocarcinomas through a comprehensive mRNA-based screen for tyrosine kinase fusions. Clin. Cancer Res.18, 6599–6608 (2012).
  • Charest A , KheifetsV, ParkJet al. Oncogenic targeting of an activated tyrosine kinase to the Golgi apparatus in a glioblastoma. Proc. Natl Acad. Sci. USA100, 916–921 (2003).
  • Murer H , ForsterI, BiberJ. The sodium phosphate cotransporter family SLC34. Pflugers Arch.447, 763–767 (2004).
  • Shaw AT , OuSH, BangYJet al. Crizotinib in ROS1-rearranged non-small-cell lung cancer. N. Engl. J. Med.371, 1963–1971 (2014).
  • The Cancer Genome Atlas Research Network . Comprehensive molecular profiling of lung adenocarcinoma. Nature511, 543–550 (2014).
  • Lee SE , LeeB, HongMet al. Comprehensive analysis of RET and ROS1 rearrangement in lung adenocarcinoma. Mod. Pathol.28, 468–479 (2015).
  • Jun HJ , JohnsonH, BronsonRT, deFS, WhiteF, CharestA. The oncogenic lung cancer fusion kinase CD74-ROS activates a novel invasiveness pathway through E-Syt1 phosphorylation. Cancer Res.72, 3764–3774 (2012).
  • Leng L , MetzCN, FangYet al. MIF signal transduction initiated by binding to CD74. J. Exp. Med.197, 1467–1476 (2003).
  • Li C , FangR, SunYet al. Spectrum of oncogenic driver mutations in lung adenocarcinomas from east Asian never smokers. PLoS ONE6, e28204 (2011).
  • Kim HR , LimSM, KimHJet al. The frequency and impact of ROS1 rearrangement on clinical outcomes in never smokers with lung adenocarcinoma. Ann. Oncol.24, 2364–2370 (2013).
  • Min SW , ChangWP, SudhofTC. E-Syts, a family of membranous Ca2+-sensor proteins with multiple C2 domains. Proc. Natl Acad. Sci. USA104, 3823–3828 (2007).
  • Majewski IJ , MittempergherL, DavidsonNMet al. Identification of recurrent FGFR3 fusion genes in lung cancer through kinome-centred RNA sequencing. J. Pathol.230, 270–276 (2013).
  • Parker BC , AnnalaMJ, CogdellDEet al. The tumorigenic FGFR3–TACC3 gene fusion escapes miR-99a regulation in glioblastoma. J. Clin. Invest.123, 855–865 (2013).
  • Spath-Schwalbe E , FlathB, KaufmannOet al. An unusual case of leukemic non-Hodgkin’s lymphoma with blastic transformation. Ann. Hematol.79, 217–221 (2000).
  • Neri A , ChangCC, LombardiLet al. B cell lymphoma-associated chromosomal translocation involves candidate oncogene lyt-10, homologous to NF-kappa B p50. Cell67, 1075–1087 (1991).
  • Crescenzo R , AbateF, LasorsaEet al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell27, 516–532 (2015).
  • Ordentlich P , DownesM, XieW, GeninA, SpinnerNB, EvansRM. Unique forms of human and mouse nuclear receptor corepressor SMRT. Proc. Natl Acad. Sci. USA96, 2639–2644 (1999).
  • Li J , WangJ, WangJet al. Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J.19, 4342–4350 (2000).
  • Park EJ , SchroenDJ, YangM, LiH, LiL, ChenJD. SMRTe, a silencing mediator for retinoid and thyroid hormone receptors-extended isoform that is more related to the nuclear receptor corepressor. Proc. Natl Acad. Sci. USA96, 3519–3524 (1999).
  • Joshi P , GrecoTM, GuiseAJet al. The functional interactome landscape of the human histone deacetylase family. Mol. Syst. Biol.9, 672 (2013).
  • Jiang Q , Galiegue-ZouitinaS, RoumierC, HildebrandMP, ThomasS, CoignetLJ. Genomic organization and refined mapping of the human nuclear corepressor 2 (NCOR2)/silencing mediator of retinoid and thyroid hormone receptor (SMRT) gene on chromosome 12q24.3. Cytogenet. Cell Genet.92, 217–220 (2001).
  • Lewis MJ , PelhamHR. Sequence of a second human KDEL receptor. J. Mol. Biol.226, 913–916 (1992).
  • Govindan R , DingL, GriffithMet al. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell150, 1121–1134 (2012).
  • Elfenbein A , SimonsM. Syndecan-4 signaling at a glance. J. Cell Sci.126, 3799–3804 (2013).
  • Huang CP , ChengCM, SuHL, LinYW. Syndecan-4 promotes epithelial tumor cells spreading and regulates the turnover of PKCalpha activity under mechanical stimulation on the elastomeric substrates. Cell Physiol. Biochem.36, 1291–1304 (2015).
  • Woods A , CouchmanJR. Syndecan-4 and focal adhesion function. Curr. Opin. Cell Biol.13, 578–583 (2001).
  • Echtermeyer F , BertrandJ, DreierRet al. Syndecan-4 regulates ADAMTS-5 activation and cartilage breakdown in osteoarthritis. Nat. Med.15, 1072–1076 (2009).
  • Choi Y , KangD, HanIO, OhES. Hierarchy between the transmembrane and cytoplasmic domains in the regulation of syndecan-4 functions. Cell Signal.24, 1522–1530 (2012).
  • Grieco M , CerratoA, SantoroM, FuscoA, MelilloRM, VecchioG. Cloning and characterization of H4 (D10S170), a gene involved in RET rearrangements in vivo. Oncogene9, 2531–2535 (1994).
  • Merolla F , PentimalliF, PacelliRet al. Involvement of H4(D10S170) protein in ATM-dependent response to DNA damage. Oncogene26, 6167–6175 (2007).
  • Leone V , MansuetoG, PierantoniGMet al. CCDC6 represses CREB1 activity by recruiting histone deacetylase 1 and protein phosphatase 1. Oncogene29, 4341–4351 (2010).
  • Kulkarni S , HeathC, ParkerSet al. Fusion of H4/D10S170 to the platelet-derived growth factor receptor beta in BCR–ABL-negative myeloproliferative disorders with a t(5;10)(q33;q21). Cancer Res.60, 3592–3598 (2000).
  • Celetti A , CerratoA, MerollaF, VitaglianoD, VecchioG, GriecoM. H4(D10S170), a gene frequently rearranged with RET in papillary thyroid carcinomas: functional characterization. Oncogene23, 109–121 (2004).
  • Matsubara D , KanaiY, IshikawaSet al. Identification of CCDC6–RET fusion in the human lung adenocarcinoma cell line, LC-2/ad. J. Thorac. Oncol.7, 1872–1876 (2012).
  • Seo JS , JuYS, LeeWCet al. The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res.22, 2109–2119 (2012).
  • Thanasopoulou A , StravopodisDJ, DimasKS, SchwallerJ, AnastasiadouE. Loss of CCDC6 affects cell cycle through impaired intra-S-phase checkpoint control. PLoS ONE7, e31007 (2012).
  • Staibano S , IlardiG, LeoneVet al. Critical role of CCDC6 in the neoplastic growth of testicular germ cell tumors. BMC Cancer13, 433 (2013).
  • Gould KL , BretscherA, EschFS, HunterT. cDNA cloning and sequencing of the protein-tyrosine kinase substrate, ezrin, reveals homology to band 4.1. EMBO J.8, 4133–4142 (1989).
  • Tsukita S , YonemuraS. Cortical actin organization: lessons from ERM (ezrin/radixin/moesin) proteins. J. Biol. Chem.274, 34507–34510 (1999).
  • Fehon RG , McClatcheyAI, BretscherA. Organizing the cell cortex: the role of ERM proteins. Nat. Rev. Mol. Cell Biol.11, 276–287 (2010).
  • Wang X , LiuM, ZhaoCY. Expression of ezrin and moesin related to invasion, metastasis and prognosis of laryngeal squamous cell carcinoma. Genet. Mol. Res.13, 8002–8013 (2014).
  • Arai Y , TotokiY, TakahashiHet al. Mouse model for ROS1-rearranged lung cancer. PLoS ONE8, e56010 (2013).
  • Tort F , PinyolM, PulfordKet al. Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab. Invest.81, 419–426 (2001).
  • Karube K , CampoE. MYC alterations in diffuse large B-cell lymphomas. Semin. Hematol.52, 97–106 (2015).
  • Chmielecki J , PeiferM, VialeAet al. Systematic screen for tyrosine kinase rearrangements identifies a novel C6orf204–PDGFRB fusion in a patient with recurrent T-ALL and an associated myeloproliferative neoplasm. Genes Chromosomes Cancer51, 54–65 (2012).
  • Lang CM , FellererK, SchwenkBMet al. Membrane orientation and subcellular localization of transmembrane protein 106B (TMEM106B), a major risk factor for frontotemporal lobar degeneration. J. Biol. Chem.287, 19355–19365 (2012).
  • Brady OA , ZhengY, MurphyK, HuangM, HuF. The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. Hum. Mol. Genet.22, 685–695 (2013).
  • Stagi M , KleinZA, GouldTJ, BewersdorfJ, StrittmatterSM. Lysosome size, motility and stress response regulated by fronto-temporal dementia modifier TMEM106B. Mol. Cell Neurosci.61, 226–240 (2014).
  • Ou SH , ChalmersZR, AzadaMCet al. Identification of a novel TMEM106B-ROS1 fusion variant in lung adenocarcinoma by comprehensive genomic profiling. Lung Cancer88, 352–354 (2015).
  • Dodge GR , KovalszkyI, McBrideOWet al. Human clathrin heavy chain (CLTC): partial molecular cloning, expression, and mapping of the gene to human chromosome 17q11-qter. Genomics11, 174–178 (1991).
  • Royle SJ , BrightNA, LagnadoL. Clathrin is required for the function of the mitotic spindle. Nature434, 1152–1157 (2005).
  • Bridge JA , KanamoriM, MaZet al. Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am. J. Pathol.159, 411–415 (2001).
  • Patel AS , MurphyKM, HawkinsALet al. RANBP2 and CLTC are involved in ALK rearrangements in inflammatory myofibroblastic tumors. Cancer Genet. Cytogenet.176, 107–114 (2007).
  • De Paepe P , BaensM, van KriekenHet al. ALK activation by the CLTC–ALK fusion is a recurrent event in large B-cell lymphoma. Blood102, 2638–2641 (2003).
  • McManus DT , CatherwoodMA, CareyPD, CuthbertRJ, AlexanderHD. ALK-positive diffuse large B-cell lymphoma of the stomach associated with a clathrin-ALK rearrangement. Hum. Pathol.35, 1285–1288 (2004).
  • Wang WY , GuL, LiuWP, LiGD, LiuHJ, MaZG. ALK-positive extramedullary plasmacytoma with expression of the CLTC–ALK fusion transcript. Pathol. Res. Pract.207, 587–591 (2011).
  • Tokuda K , Eguchi-IshimaeM, YagiCet al. CLTC–ALK fusion as a primary event in congenital blastic plasmacytoid dendritic cell neoplasm. Genes Chromosomes Cancer53, 78–89 (2014).
  • Argani P , LuiMY, CouturierJ, BouvierR, FournetJC, LadanyiM. A novel CLTC–TFE3 gene fusion in pediatric renal adenocarcinoma with t(X;17)(p11.2;q23). Oncogene22, 5374–5378 (2003).
  • Carnahan J , BeltranPJ, BabijCet al. Selective and potent Raf inhibitors paradoxically stimulate normal cell proliferation and tumor growth. Mol. Cancer Ther.9, 2399–2410 (2010).
  • Maul RS , ChangDG. EPLIN, epithelial protein lost in neoplasm. Oncogene18, 7838–7841 (1999).
  • Han MY , KosakoH, WatanabeT, HattoriS. Extracellular signal-regulated kinase/mitogen-activated protein kinase regulates actin organization and cell motility by phosphorylating the actin cross-linking protein EPLIN. Mol. Cell Biol.27, 8190–8204 (2007).
  • Zhang S , WangX, IqbalSet al. Epidermal growth factor promotes protein degradation of epithelial protein lost in neoplasm (EPLIN), a putative metastasis suppressor, during epithelial-mesenchymal transition. J. Biol. Chem.288, 1469–1479 (2013).
  • Espindola FS , EspreaficoEM, CoelhoMVet al. Biochemical and immunological characterization of p190-calmodulin complex from vertebrate brain: a novel calmodulin-binding myosin. J. Cell Biol.118, 359–368 (1992).
  • Pastural E , BarratFJ, Dufourcq-LagelouseRet al. Griscelli disease maps to chromosome 15q21 and is associated with mutations in the myosin-Va gene. Nat. Genet.16, 289–292 (1997).
  • Izidoro-Toledo TC , BorgesAC, AraujoDDet al. A myosin-Va tail fragment sequesters dynein light chains leading to apoptosis in melanoma cells. Cell Death. Dis.4, e547 (2013).
  • Roberts KG , LiY, Payne-TurnerDet al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N. Engl. J. Med.371, 1005–1015 (2014).
  • Kriajevska M , Fischer-LarsenM, MoertzEet al. Liprin beta 1, a member of the family of LAR transmembrane tyrosine phosphatase-interacting proteins, is a new target for the metastasis-associated protein S100A4 (Mts1). J. Biol. Chem.277, 5229–5235 (2002).
  • Takeuchi K , SodaM, TogashiYet al. Pulmonary inflammatory myofibroblastic tumor expressing a novel fusion, PPFIBP1-ALK: reappraisal of anti-ALK immunohistochemistry as a tool for novel ALK fusion identification. Clin. Cancer Res.17, 3341–3348 (2011).
  • Yokota T , NakataT, MinamiS, InazawaJ, EmiM. Genomic organization and chromosomal mapping of ELKS, a gene rearranged in a papillary thyroid carcinoma. J. Hum. Genet.45, 6–11 (2000).
  • Ko J , NaM, KimS, LeeJR, KimE. Interaction of the ERC family of RIM-binding proteins with the liprin-alpha family of multidomain proteins. J. Biol. Chem.278, 42377–42385 (2003).
  • Astro V , ChiarettiS, MagistratiE, FivazM, deC I. Liprin-alpha1, ERC1 and LL5 define polarized and dynamic structures that are implicated in cell migration. J. Cell Sci.127, 3862–3876 (2014).
  • Nakata T , KitamuraY, ShimizuKet al. Fusion of a novel gene, ELKS, to RET due to translocation t(10;12)(q11;p13) in a papillary thyroid carcinoma. Genes Chromosomes Cancer25, 97–103 (1999).
  • Gorello P , LaSR, BrandimarteLet al. A PDGFRB-positive acute myeloid malignancy with a new t(5;12)(q33;p13.3) involving the ERC1 gene. Leukemia22, 216–218 (2008).
  • Stec I , NaglSB, Van OmmenGJ, den DunnenJT. The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation?FEBS Lett.473, 1–5 (2000).
  • Vermeulen M , EberlHC, MatareseFet al. Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell142, 967–980 (2010).
  • Qin S , MinJ. Structure and function of the nucleosome-binding PWWP domain. Trends Biochem. Sci.39, 536–547 (2014).
  • Pierre P , ScheelJ, RickardJE, KreisTE. CLIP-170 links endocytic vesicles to microtubules. Cell70, 887–900 (1992).
  • Slep KC . Structural and mechanistic insights into microtubule end-binding proteins. Curr. Opin. Cell Biol.22, 88–95 (2010).
  • Galjart N . CLIPs and CLASPs and cellular dynamics. Nat. Rev. Mol. Cell Biol.6, 487–498 (2005).
  • Gustafson MP , WelckerM, HwangHC, ClurmanBE. Zcchc8 is a glycogen synthase kinase-3 substrate that interacts with RNA-binding proteins. Biochem. Biophys. Res. Commun.338, 1359–1367 (2005).
  • Toriyama M , ShimadaT, KimKBet al. Shootin1: A protein involved in the organization of an asymmetric signal for neuronal polarization. J. Cell Biol.175, 147–157 (2006).
  • Shimada T , ToriyamaM, UemuraKet al. Shootin1 interacts with actin retrograde flow and L1-CAM to promote axon outgrowth. J. Cell Biol.181, 817–829 (2008).
  • Sapir T , LevyT, SakakibaraA, RabinkovA, MiyataT, ReinerO. Shootin1 acts in concert with KIF20B to promote polarization of migrating neurons. J. Neurosci.33, 11932–11948 (2013).
  • MacLeod AR , HoulkerC, ReinachFC, TalbotK. The mRNA and RNA-copy pseudogenes encoding TM30nm, a human cytoskeletal tropomyosin. Nucleic Acids Res.14, 8413–8426 (1986).
  • Lehman W , HatchV, KormanVet al. Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments. J. Mol. Biol.302, 593–606 (2000).
  • Butti MG , BongarzoneI, FerraresiG, MondelliniP, BorrelloMG, PierottiMA. A sequence analysis of the genomic regions involved in the rearrangements between TPM3 and NTRK1 genes producing TRK oncogenes in papillary thyroid carcinomas. Genomics28, 15–24 (1995).
  • Martin-Zanca D , HughesSH, BarbacidM. A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature319, 743–748 (1986).
  • Ardini E , BosottiR, BorgiaALet al. The TPM3–NTRK1 rearrangement is a recurring event in colorectal carcinoma and is associated with tumor sensitivity to TRKA kinase inhibition. Mol. Oncol.8, 1495–1507 (2014).
  • Lawrence B , Perez-AtaydeA, HibbardMKet al. TPM3–ALK and TPM4–ALK oncogenes in inflammatory myofibroblastic tumors. Am. J. Pathol.157, 377–384 (2000).
  • Lamant L , DastugueN, PulfordK, DelsolG, MariameB. A new fusion gene TPM3–ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood93, 3088–3095 (1999).
  • Li Z , YangR, ZhaoJet al. Molecular diagnosis and targeted therapy of a pediatric chronic eosinophilic leukemia patient carrying TPM3–PDGFRB fusion. Pediatr. Blood Cancer56, 463–466 (2011).
  • Rosati R , LaSR, LucianoLet al. TPM3/PDGFRB fusion transcript and its reciprocal in chronic eosinophilic leukemia. Leukemia20, 1623–1624 (2006).
  • Amano Y , IshikawaR, SakataniTet al. Oncogenic TPM3–ALK activation requires dimerization through the coiled-coil structure of TPM3. Biochem. Biophys. Res. Commun.457, 457–460 (2015).
  • Guo D , HolmlundC, HenrikssonR, HedmanH. The LRIG gene family has three vertebrate paralogs widely expressed in human and mouse tissues and a homolog in Ascidiacea. Genomics84, 157–165 (2004).
  • Cai M , HanL, ChenRet al. Inhibition of LRIG3 gene expression via RNA interference modulates the proliferation, cell cycle, cell apoptosis, adhesion and invasion of glioblastoma cell (GL15). Cancer Lett.278, 104–112 (2009).
  • Sumimoto H , KamakuraS, ItoT. Structure and function of the PB1 domain, a protein interaction module conserved in animals, fungi, amoebas, and plants. Sci. STKE2007, re6 (2007).
  • Miranda C , RoccatoE, RahoG, PagliardiniS, PierottiMA, GrecoA. The TFG protein, involved in oncogenic rearrangements, interacts with TANK and NEMO, two proteins involved in the NF-kappaB pathway. J. Cell Physiol208, 154–160 (2006).
  • Dutton-Regester K , AoudeLG, NancarrowDJet al. Identification of TFG (TRK-fused gene) as a putative metastatic melanoma tumor suppressor gene. Genes Chromosomes Cancer51, 452–461 (2012).
  • Greco A , MarianiC, MirandaCet al. The DNA rearrangement that generates the TRK-T3 oncogene involves a novel gene on chromosome 3 whose product has a potential coiled-coil domain. Mol. Cell Biol.15, 6118–6127 (1995).
  • Mencinger M , PanagopoulosI, AndreassonP, LassenC, MitelmanF, AmanP. Characterization and chromosomal mapping of the human TFG gene involved in thyroid carcinoma. Genomics41, 327–331 (1997).
  • Hernandez L , PinyolM, HernandezSet al. TRK-fused gene (TFG) is a new partner of ALK in anaplastic large cell lymphoma producing two structurally different TFG–ALK translocations. Blood94, 3265–3268 (1999).
  • Hisaoka M , IshidaT, ImamuraT, HashimotoH. TFG is a novel fusion partner of NOR1 in extraskeletal myxoid chondrosarcoma. Genes Chromosomes. Cancer40, 325–328 (2004).
  • Fujita H , YoshidaA, TaniguchiH, KataiH, SekineS. Adult-onset inflammatory myofibroblastic tumour of the stomach with a TFG–ROS1 fusion. Histopathology66, 610–612 (2015).
  • Greco A , FusettiL, MirandaCet al. Role of the TFG N-terminus and coiled-coil domain in the transforming activity of the thyroid TRK–T3 oncogene. Oncogene16, 809–816 (1998).
  • Roccato E , PagliardiniS, ClerisLet al. Role of TFG sequences outside the coiled-coil domain in TRK-T3 oncogenic activation. Oncogene22, 807–818 (2003).
  • Che XH , ChenH, XuZM, ShangC, SunKL, FuWN. 14-13-3epsilon contributes to tumour suppression in laryngeal carcinoma by affecting apoptosis and invasion. BMC Cancer10, 306 (2010).
  • Han D , YeG, LiuTet al. Functional identification of a novel 14-13-3 epsilon splicing variant suggests dimerization is not necessary for 14-13-3 epsilon to inhibit UV-induced apoptosis. Biochem. Biophys. Res. Commun.396, 401–406 (2010).
  • Wilker E , YaffeMB. 14-13-3 proteins – a focus on cancer and human disease. J. Mol. Cell Cardiol.37, 633–642 (2004).
  • Aitken A , BaxterH, DuboisTet al. Specificity of 14-13-3 isoform dimer interactions and phosphorylation. Biochem. Soc. Trans.30, 351–360 (2002).
  • Fu H , SubramanianRR, MastersSC. 14-13-3 proteins: structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol.40, 617–647 (2000).
  • Yang X , LeeWH, SobottFet al. Structural basis for protein–protein interactions in the 14-13-3 protein family. Proc. Natl Acad. Sci. USA103, 17237–17242 (2006).
  • Lee CH , OuWB, Marino-EnriquezAet al. 14-13-3 fusion oncogenes in high-grade endometrial stromal sarcoma. Proc. Natl Acad. Sci. USA109, 929–934 (2012).
  • Kruse AJ , CroceS, KruitwagenRFet al. Aggressive behavior and poor prognosis of endometrial stromal sarcomas with YWHAE–FAM22 rearrangement indicate the clinical importance to recognize this subset. Int. J. Gynecol. Cancer24, 1616–1622 (2014).
  • O’Meara E , StackD, LeeCHet al. Characterization of the chromosomal translocation t(10;17)(q22;p13) in clear cell sarcoma of kidney. J. Pathol.227, 72–80 (2012).
  • Chmielecki J , PeiferM, JiaPet al. Targeted next-generation sequencing of DNA regions proximal to a conserved GXGXXG signaling motif enables systematic discovery of tyrosine kinase fusions in cancer. Nucleic Acids Res.38, 6985–6996 (2010).
  • Mauro MJ , O’DwyerME, DrukerBJ. ST1571, a tyrosine kinase inhibitor for the treatment of chronic myelogenous leukemia: validating the promise of molecularly targeted therapy. Cancer Chemother. Pharmacol.48(Suppl. 1), S77–S78 (2001).
  • Kwak EL , BangYJ, CamidgeDRet al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N. Engl. J. Med.363, 1693–1703 (2010).
  • Mazieres J , ZalcmanG, CrinoLet al. Crizotinib therapy for advanced lung adenocarcinoma and a ROS1 rearrangement: results from the EUROS1 cohort. J. Clin. Oncol.33, 992–999 (2015).
  • Awad MM , KatayamaR, McTigueMet al. Acquired resistance to crizotinib from a mutation in CD74–ROS1. N. Engl. J. Med.368, 2395–2401 (2013).
  • Song A , KimTM, KimDWet al. Molecular changes associated with acquired resistance to crizotinib in ROS1-rearranged non-small cell lung cancer. Clin. Cancer Res.21, 2379–2387 (2015).
  • Davies KD , MahaleS, AstlingDPet al. Resistance to ROS1 inhibition mediated by EGFR pathway activation in non-small cell lung cancer. PLoS ONE8, e82236 (2013).
  • Cargnelutti M , CorsoS, PergolizziMet al. Activation of RAS family members confers resistance to ROS1 targeting drugs. Oncotarget6, 5182–5194 (2015).
  • Katayama R , KobayashiY, FribouletLet al. Cabozantinib overcomes crizotinib resistance in ROS1 fusion-positive cancer. Clin. Cancer Res.21, 166–174 (2015).
  • Davare MA , SaborowskiA, EideCAet al. Foretinib is a potent inhibitor of oncogenic ROS1 fusion proteins. Proc. Natl Acad. Sci. USA110, 19519–19524 (2013).
  • Awad MM , ShawAT. ALK inhibitors in non-small cell lung cancer: crizotinib and beyond. Clin. Adv. Hematol. Oncol.12, 429–439 (2014).
  • Narayanan R , YepuruM, CossCCet al. Discovery and preclinical characterization of novel small molecule TRK and ROS1 tyrosine kinase inhibitors for the treatment of cancer and inflammation. PLoS ONE8, e83380 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.