198
Views
0
CrossRef citations to date
0
Altmetric
Special Report

Prognostic Factors, Predictive Markers and Cancer Biology: The Triad for Successful Oral Cancer Chemoprevention

&
Pages 2379-2386 | Received 01 Apr 2015, Accepted 07 Jun 2016, Published online: 22 Jun 2016

References

  • Ferlay J , SoerjomataramI, DikshitRet al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer136(5), E359–386 (2015).
  • Marron M , BoffettaP, ZhangZFet al. Cessation of alcohol drinking, tobacco smoking and the reversal of head and neck cancer risk. Int. J. Epidemiol.39(1), 182–196 (2010).
  • Patel SC , CarpenterWR, TyreeSet al. Increasing incidence of oral tongue squamous cell carcinoma in young white women, age 18 to 44 years. J. Clin. Oncol.29(11), 1488–1494 (2011).
  • Yanik EL , KatkiHA, SilverbergMJ, ManosMM, EngelsEA, ChaturvediAK. Leukoplakia, oral cavity cancer risk, and cancer survival in the U.S. elderly. Cancer Prev. Res. (Phila.)8(9), 857–863 (2015).
  • William WN Jr . Oral premalignant lesions: any progress with systemic therapies?Curr. Opin. Oncol.24(3), 205–210 (2012).
  • Warnakulasuriya KA , JohnsonNW. Sensitivity and specificity of OraScan (R) toluidine blue mouthrinse in the detection of oral cancer and precancer. J. Oral Pathol. Med.25(3), 97–103 (1996).
  • Pentenero M , DonadiniA, Di NalloEet al. Field effect in oral precancer as assessed by DNA flow cytometry and array-CGH. J. Oral Pathol. Med.41(2), 119–123 (2012).
  • Voravud N , ShinDM, RoJY, LeeJS, HongWK, HittelmanWN. Increased polysomies of chromosomes 7 and 17 during head and neck multistage tumorigenesis. Cancer Res.53(12), 2874–2883 (1993).
  • Tabor MP , BrakenhoffRH, Van HoutenVMet al. Persistence of genetically altered fields in head and neck cancer patients: biological and clinical implications. Clin. Cancer Res.7(6), 1523–1532 (2001).
  • Kelloff GJ , LippmanSM, DannenbergAJet al. Progress in chemoprevention drug development: the promise of molecular biomarkers for prevention of intraepithelial neoplasia and cancer – a plan to move forward. Clin. Cancer Res.12(12), 3661–3697 (2006).
  • Rosin MP , ChengX, PohCet al. Use of allelic loss to predict malignant risk for low-grade oral epithelial dysplasia. Clin. Cancer Res.6(2), 357–362 (2000).
  • Hong WK , EndicottJ, ItriLMet al. 13-Cis-retinoic acid in the treatment of oral leukoplakia. N. Engl. J. Med.315(24), 1501–1505 (1986).
  • Hong WK , LippmanSM, ItriLMet al. Prevention of second primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck. N. Engl. J. Med.323(12), 795–801 (1990).
  • Lippman SM , BatsakisJG, TothBBet al. Comparison of low-dose isotretinoin with beta carotene to prevent oral carcinogenesis. N. Engl. J. Med.328(1), 15–20 (1993).
  • Papadimitrakopoulou VA , WilliamWNJr, DannenbergAJet al. Pilot randomized Phase II study of celecoxib in oral premalignant lesions. Clin. Cancer Res.14(7), 2095–2101 (2008).
  • Armstrong WB , TaylorTH, KennedyARet al. Bowman birk inhibitor concentrate and oral leukoplakia: a randomized Phase IIb trial. Cancer Prev. Res. (Phila.)6(5), 410–418 (2013).
  • William WN Jr , PapadimitrakopoulouV, LeeJJet al. Erlotinib and the risk of oral cancer: the Erlotinib Prevention of Oral Cancer (EPOC) randomized clinical trial. JAMA Oncol.2(2), 209–216 (2016).
  • Papadimitrakopoulou VA , LeeJJ, WilliamWNJret al. Randomized trial of 13-cis retinoic acid compared with retinyl palmitate with or without beta-carotene in oral premalignancy. J. Clin. Oncol.27(4), 599–604 (2009).
  • William WN Jr , HeymachJV, KimES, LippmanSM. Molecular targets for cancer chemoprevention. Nat. Rev. Drug Discov.8(3), 213–225 (2009).
  • Warnakulasuriya S , ReibelJ, BouquotJ, DabelsteenE. Oral epithelial dysplasia classification systems: predictive value, utility, weaknesses and scope for improvement. J. Oral Pathol. Med.37(3), 127–133 (2008).
  • Kujan O , KhattabA, OliverRJ, RobertsSA, ThakkerN, SloanP. Why oral histopathology suffers inter-observer variability on grading oral epithelial dysplasia: an attempt to understand the sources of variation. Oral Oncol.43(3), 224–231 (2007).
  • Lee JJ , HongWK, HittelmanWNet al. Predicting cancer development in oral leukoplakia: ten years of translational research. Clin. Cancer Res.6(5), 1702–1710 (2000).
  • Mao L , LeeJS, FanYHet al. Frequent microsatellite alterations at chromosomes 9p21 and 3p14 in oral premalignant lesions and their value in cancer risk assessment. Nat. Med.2(6), 682–685 (1996).
  • Rosin MP , LamWL, PohCet al. 3P14 And 9P21 loss is a simple tool for predicting second oral malignancy at previously treated oral cancer sites. Cancer Res.62(22), 6447–6450 (2002).
  • Zhang L , PohCF, WilliamsMet al. Loss of heterozygosity (LOH) profiles – validated risk predictors for progression to oral cancer. Cancer Prev. Res. (Phila.)5(9), 1081–1089 (2012).
  • Kawaguchi H , El-NaggarAK, PapadimitrakopoulouVet al. Podoplanin: a novel marker for oral cancer risk in patients with oral premalignancy. J. Clin. Oncol.26(3), 354–360 (2008).
  • Izzo JG , PapadimitrakopoulouVA, LiuDDet al. Cyclin D1 genotype, response to biochemoprevention, and progression rate to upper aerodigestive tract cancer. J. Natl Cancer Inst.95(3), 198–205 (2003).
  • Saintigny P , ZhangL, FanYHet al. Gene expression profiling predicts the development of oral cancer. Cancer Prev. Res. (Phila.)4(2), 218–229 (2011).
  • Foy JP , PickeringCR, PapadimitrakopoulouVAet al. New DNA methylation markers and global DNA hypomethylation are associated with oral cancer development. Cancer Prev. Res. (Phila.)8(11), 1027–1035 (2015).
  • Maimaiti A , AbudoukeremuK, TieL, PanY, LiX. MicroRNA expression profiling and functional annotation analysis of their targets associated with the malignant transformation of oral leukoplakia. Gene558(2), 271–277 (2015).
  • Dorji T , MontiV, FellegaraGet al. Gain of hTERC: a genetic marker of malignancy in oral potentially malignant lesions. Hum. Pathol.46(9), 1275–1281 (2015).
  • Liu W , FengJQ, ShenXM, WangHY, LiuY, ZhouZT. Two stem cell markers, ATP-binding cassette, G2 subfamily (ABCG2) and BMI-1, predict the transformation of oral leukoplakia to cancer: a long-term follow-up study. Cancer118(6), 1693–1700 (2012).
  • Taoudi Benchekroun M , SaintignyP, ThomasSMet al. Epidermal growth factor receptor expression and gene copy number in the risk of oral cancer. Cancer Prev. Res. (Phila.)3(7), 800–809 (2010).
  • Vermorken JB , MesiaR, RiveraFet al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N. Engl. J. Med.359(11), 1116–1127 (2008).
  • Tsui IF , PohCF, GarnisC, RosinMP, ZhangL, LamWL. Multiple pathways in the FGF signaling network are frequently deregulated by gene amplification in oral dysplasias. Int. J. Cancer125(9), 2219–2228 (2009).
  • Bezawada N , SongM, WuKet al. Urinary PGE-M levels are associated with risk of colorectal adenomas and chemopreventive response to anti-inflammatory drugs. Cancer Prev. Res. (Phila.)7(7), 758–765 (2014).
  • Nan H , HutterCM, LinYet al. Association of aspirin and NSAID use with risk of colorectal cancer according to genetic variants. JAMA313(11), 1133–1142 (2015).
  • Allred DC , AndersonSJ, PaikSet al. Adjuvant tamoxifen reduces subsequent breast cancer in women with estrogen receptor-positive ductal carcinoma in situ: a study based on NSABP protocol B-24. J. Clin. Oncol.30(12), 1268–1273 (2012).
  • Supsavhad W , DirksenWP, MartinCK, RosolTJ. Animal models of head and neck squamous cell carcinoma. Vet J.210, 7–16 (2016).
  • Onken MD , WinklerAE, KanchiKLet al. A surprising cross-species conservation in the genomic landscape of mouse and human oral cancer identifies a transcriptional signature predicting metastatic disease. Clin. Cancer Res.20(11), 2873–2884 (2014).
  • Mou H , KennedyZ, AndersonDG, YinH, XueW. Precision cancer mouse models through genome editing with CRISPR-Cas9. Genome Med.7(1), 53 (2015).
  • Califano J , Van Der RietP, WestraWet al. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res.56(11), 2488–2492 (1996).
  • Ha PK , BenoitNE, YochemRet al. A transcriptional progression model for head and neck cancer. Clin. Cancer Res.9(8), 3058–3064 (2003).
  • Agrawal N , FrederickMJ, PickeringCRet al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science333(6046), 1154–1157 (2011).
  • Stransky N , EgloffAM, TwardADet al. The mutational landscape of head and neck squamous cell carcinoma. Science333(6046), 1157–1160 (2011).
  • Cancer Genome Atlas N . Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature517(7536), 576–582 (2015).
  • India Project Team of the International Cancer Genome Consortium . Mutational landscape of gingivo-buccal oral squamous cell carcinoma reveals new recurrently-mutated genes and molecular subgroups. Nat. Commun.4, 2873 (2013).
  • Pickering CR , ZhangJ, YooSYet al. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov.3(7), 770–781 (2013).
  • Campbell JD , MazzilliSA, ReidMEet al. The case for a Pre-Cancer Genome Atlas (PCGA). Cancer Prev. Res. (Phila.)9(2), 119–124 (2016).
  • Izumchenko E , SunK, JonesSet al. Notch1 mutations are drivers of oral tumorigenesis. Cancer Prev. Res. (Phila.)8(4), 277–286 (2015).
  • Yap LF , LeeD, KhairuddinAet al. The opposing roles of NOTCH signalling in head and neck cancer: a mini review. Oral Dis.21(7), 850–857 (2015).
  • Shain AH , YehI, KovalyshynIet al. The genetic evolution of melanoma from precursor lesions. N. Engl. J. Med.373(20), 1926–1936 (2015).
  • Martincorena I , RoshanA, GerstungMet al. Tumor evolution. High burden and pervasive positive selection of somatic mutations in normal human skin. Science348(6237), 880–886 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.