141
Views
5
CrossRef citations to date
0
Altmetric
Perspective

Neuro-Oncology Perspective of Treatment Options in Metastatic Breast Cancer

, &
Pages 1765-1774 | Received 12 Dec 2017, Accepted 09 Apr 2018, Published online: 29 Jun 2018

References

  • Goldhirsch A , WinerEP, CoatesASet al. Personalizing the treatment of women with early breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2013. Ann. Oncol.24(9), 2206–2223 (2013).
  • Kennecke H , YerushalmiR, WoodsRet al. Metastatic behavior of breast cancer subtypes. J. Clin. Oncol.28(20), 3271–3277 (2010).
  • Zagar TM , Van SwearingenAE, Kaidar-PersonO, EwendMG, AndersCK. Multidisciplinary management of breast cancer brain metastases. Oncology30(10), 923–933 (2016).
  • Mounsey LA , DealAM, KeithKCet al. Changing natural history of HER2-positive breast cancer metastatic to the brain in the era of new targeted therapies. Clin. Breast Cancer18(1), 29–37 (2018).
  • Morikawa A , JordanL, RoznerRet al. Characteristics and outcomes of patients with breast cancer with leptomeningeal metastasis. Clin. Breast Cancer17(1), 23–28 (2017).
  • Patchell RA , TibbsPA, WalshJWet al. A randomized trial of surgery in the treatment of single metastases to the brain. N. Engl. J. Med.322(8), 494–500 (1990).
  • Vecht CJ , Haaxma-ReicheH, NoordijkEMet al. Treatment of single brain metastasis: radiotherapy alone or combined with neurosurgery? Ann. Neurol. 33(6), 583–590 (1993).
  • Mintz AH , KestleJ, RathboneMPet al. A randomized trial to assess the efficacy of surgery in addition to radiotherapy in patients with a single cerebral metastasis. Cancer78(7), 1470–1476 (1996).
  • Pollock BE , BrownPD, FooteRL, StaffordSL, SchombergPJ. Properly selected patients with multiple brain metastases may benefit from aggressive treatment of their intracranial disease. J. Neurooncol.61(1), 73–80 (2003).
  • Vogelbaum MA , SuhJH. Resectable brain metastases. J. Clin. Oncol.24(8), 1289–1294 (2006).
  • Kamp MA , RappM, BuhnerJet al. Early postoperative magnet resonance tomography after resection of cerebral metastases. Acta Neurochir. (Wien)157(9), 1573–1580 (2015).
  • Kamp MA , FischerI, BuhnerJet al. 5-ALA fluorescence of cerebral metastases and its impact for the local-in-brain progression. Oncotarget7(41), 66776–66789 (2016).
  • Ferraro N , BarbariteE, AlbertTRet al. The role of 5-aminolevulinic acid in brain tumor surgery: a systematic review. Neurosurg. Rev.39(4), 545–555 (2016).
  • Soffietti R , AbaciogluU, BaumertBet al. Diagnosis and treatment of brain metastases from solid tumors: guidelines from the European Association of Neuro-Oncology (EANO). Neurooncology19(2), 162–174 (2017).
  • Patel AJ , SukiD, HatibogluMA, RaoVY, FoxBD, SawayaR. Impact of surgical methodology on the complication rate and functional outcome of patients with a single brain metastasis. J. Neurosurg.122(5), 1132–1143 (2015).
  • Brastianos PK , CarterSL, SantagataSet al. Genomic characterization of brain metastases reveals branched evolution and potential therapeutic targets. Cancer Discov.5(11), 1164–1177 (2015).
  • Pentsova EI , ShahRH, TangJet al. Evaluating cancer of the central nervous system through next-generation sequencing of cerebrospinal fluid. J. Clin. Oncol.34(20), 2404–2415 (2016).
  • Morikawa A , PeereboomDM, ThorsheimHRet al. Capecitabine and lapatinib uptake in surgically resected brain metastases from metastatic breast cancer patients: a prospective study. Neurooncology17(2), 289–295 (2015).
  • Lippitz B , LindquistC, PaddickI, PetersonD, O’NeillK, BeaneyR. Stereotactic radiosurgery in the treatment of brain metastases: the current evidence. Cancer Treat. Rev.40(1), 48–59 (2014).
  • Yamamoto M , SerizawaT, ShutoTet al. Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncol.15(4), 387–395 (2014).
  • Andrews DW , ScottCB, SperdutoPWet al. Whole brain radiation therapy with or without stereotactic radiosurgery boost for patients with one to three brain metastases: Phase III results of the RTOG 9508 randomised trial. Lancet363(9422), 1665–1672 (2004).
  • Kuhnol J , KuhnolC, VordermarkD. Radiotherapy of brain metastases from breast cancer: treatment results and prognostic factors. Oncol. Lett.11(5), 3223–3227 (2016).
  • Sperduto PW , ShanleyR, LuoXet al. Secondary analysis of RTOG 9508, a Phase 3 randomized trial of whole-brain radiation therapy versus WBRT plus stereotactic radiosurgery in patients with 1–3 brain metastases; poststratified by the graded prognostic assessment (GPA). Int. J. Radiat. Oncol. Biol. Phys.90(3), 526–531 (2014).
  • Yamamoto M , SerizawaT, HiguchiYet al. A multi-institutional prospective observational study of stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901 study update): irradiation-related complications and long-term maintenance of mini-mental state examination scores. Int. J. Radiat. Oncol. Biol. Phys.99(1), 31–40 (2017).
  • Auchter RM , LamondJP, AlexanderEet al. A multiinstitutional outcome and prognostic factor analysis of radiosurgery for resectable single brain metastasis. Int. J. Radiat. Oncol. Biol. Phys.35(1), 27–35 (1996).
  • Muacevic A , WowraB, SiefertA, TonnJC, SteigerHJ, KrethFW. Microsurgery plus whole brain irradiation versus Gamma Knife surgery alone for treatment of single metastases to the brain: a randomized controlled multicentre Phase III trial. J. Neurooncol.87(3), 299–307 (2008).
  • Eaton BR , LariviereMJ, KimSet al. Hypofractionated radiosurgery has a better safety profile than single fraction radiosurgery for large resected brain metastases. J. Neurooncol.123(1), 103–111 (2015).
  • Mahajan A , AhmedS, McAleerMFet al. Post-operative stereotactic radiosurgery versus observation for completely resected brain metastases: a single-centre, randomised, controlled, Phase 3 trial. Lancet Oncol.18(8), 1040–1048 (2017).
  • Brown PD , BallmanKV, CerhanJHet al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC.3): a multicentre, randomised, controlled, Phase 3 trial. Lancet Oncol.18(8), 1049–1060 (2017).
  • Suki D , AbouassiH, PatelAJ, SawayaR, WeinbergJS, GrovesMD. Comparative risk of leptomeningeal disease after resection or stereotactic radiosurgery for solid tumor metastasis to the posterior fossa. J. Neurosurg.108(2), 248–257 (2008).
  • Ahn JH , LeeSH, KimSet al. Risk for leptomeningeal seeding after resection for brain metastases: implication of tumor location with mode of resection. J. Neurosurg.116(5), 984–993 (2012).
  • Atalar B , ModlinLA, ChoiCYet al. Risk of leptomeningeal disease in patients treated with stereotactic radiosurgery targeting the postoperative resection cavity for brain metastases. Int. J. Radiat. Oncol. Biol. Phys.87(4), 713–718 (2013).
  • Johnson MD , AvkshtolV, BaschnagelAMet al. Surgical resection of brain metastases and the risk of leptomeningeal recurrence in patients treated with stereotactic radiosurgery. Int. J. Radiat. Oncol. Biol. Phys.94(3), 537–543 (2016).
  • Asher AL , BurriSH, WigginsWFet al. A new treatment paradigm: neoadjuvant radiosurgery before surgical resection of brain metastases with analysis of local tumor recurrence. Int. J. Radiat. Oncol. Biol. Phys.88(4), 899–906 (2014).
  • Patel KR , BurriSH, AsherALet al. Comparing preoperative with postoperative stereotactic radiosurgery for resectable brain metastases: a multi-institutional analysis. Neurosurgery79(2), 279–285 (2016).
  • Prabhu RS , PressRH, PatelKRet al. Single-fraction stereotactic radiosurgery (SRS) alone versus surgical resection and SRS for large brain metastases: a multi-institutional analysis. Int. J. Radiat. Oncol. Biol. Phys.99(2), 459–467 (2017).
  • Soffietti R , ChiavazzaC, RudaR. Imaging and clinical end points in brain metastases trials. CNS Oncol.6(4), 243–246 (2017).
  • Lin NU , LeeEQ, AoyamaHet al. Response assessment criteria for brain metastases: proposal from the RANO group. Lancet Oncol.16(6), e270–e278 (2015).
  • Chao ST , AhluwaliaMS, BarnettGHet al. Challenges with the diagnosis and treatment of cerebral radiation necrosis. Int. J. Radiat. Oncol. Biol. Phys.87(3), 449–457 (2013).
  • Chuang MT , LiuYS, TsaiYS, ChenYC, WangCK. Differentiating radiation-induced necrosis from recurrent brain tumor using MR perfusion and spectroscopy: a meta-analysis. PLoS ONE11(1), e0141438 (2016).
  • Hatzoglou V , YangTJ, OmuroAet al. A prospective trial of dynamic contrast-enhanced MRI perfusion and fluorine-18 FDG PET-CT in differentiating brain tumor progression from radiation injury after cranial irradiation. Neurooncology18(6), 873–880 (2016).
  • Wagner S , LanfermannH, EichnerG, GuflerH. Radiation injury versus malignancy after stereotactic radiosurgery for brain metastases: impact of time-dependent changes in lesion morphology on MRI. Neuro Oncol.19(4), 586–594 (2016).
  • Heinzel A , MullerD, Yekta-MichaelSSet al. O-(2–18F-fluoroethyl)-L-tyrosine PET for evaluation of brain metastasis recurrence after radiotherapy: an effectiveness and cost–effectiveness analysis. Neurooncology19(9), 1271–1278 (2017).
  • Minniti G , ScaringiC, BaldoniAet al. Health-related quality of life in elderly patients with newly diagnosed glioblastoma treated with short-course radiation therapy plus concomitant and adjuvant temozolomide. Int. J. Radiat. Oncol. Biol. Phys.86(2), 285–291 (2013).
  • Mathieu D , KondziolkaD, FlickingerJCet al. Tumor bed radiosurgery after resection of cerebral metastases. Neurosurgery62(4), 817–823; discussion 823–814 (2008).
  • Minniti G , ScaringiC, PaoliniSet al. Single-fraction versus multifraction (3 × 9 Gy) stereotactic radiosurgery for large (>2 cm) brain metastases: a comparative analysis of local control and risk of radiation-induced brain necrosis. Int. J. Radiat. Oncol. Biol. Phys.95(4), 1142–1148 (2016).
  • Boothe D , YoungR, YamadaY, PragerA, ChanT, BealK. Bevacizumab as a treatment for radiation necrosis of brain metastases post stereotactic radiosurgery. Neurooncology15(9), 1257–1263 (2013).
  • Aoyama H , TagoM, KatoNet al. Neurocognitive function of patients with brain metastasis who received either whole brain radiotherapy plus stereotactic radiosurgery or radiosurgery alone. Int. J. Radiat. Oncol. Biol. Phys.68(5), 1388–1395 (2007).
  • Kocher M , SoffiettiR, AbaciogluUet al. Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952–26001 study. J. Clin. Oncol.29(2), 134–141 (2011).
  • Soffietti R , KocherM, AbaciogluUMet al. A European Organisation for Research and Treatment of Cancer Phase III trial of adjuvant whole-brain radiotherapy versus observation in patients with one to three brain metastases from solid tumors after surgical resection or radiosurgery: quality-of-life results. J. Clin. Oncol.31(1), 65–72 (2013).
  • Wagner J , MarquartJ, RubyJet al. Frequency and level of evidence used in recommendations by the National Comprehensive Cancer Network guidelines beyond approvals of the US Food and Drug Administration: retrospective observational study. BMJ360, k668 (2018).
  • DeAngelis LM , DelattreJY, PosnerJB. Radiation-induced dementia in patients cured of brain metastases. Neurology39(6), 789–796 (1989).
  • Chang EL , WefelJS, HessKRet al. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol.10(11), 1037–1044 (2009).
  • Brown PD , JaeckleK, BallmanKVet al. Effect of radiosurgery alone vs radiosurgery with whole brain radiation therapy on cognitive function in patients with 1 to 3 brain metastases: a randomized clinical trial. JAMA316(4), 401–409 (2016).
  • Brown PD , PughS, LaackNNet al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neurooncology15(10), 1429–1437 (2013).
  • Rapp SR , CaseLD, PeifferAet al. Donepezil for irradiated brain tumor survivors: a Phase III randomized placebo-controlled clinical trial. J. Clin. Oncol.33(15), 1653–1659 (2015).
  • Gondi V , TomeWA, MehtaMP. Why avoid the hippocampus? A comprehensive review. Radiother. Oncol.97(3), 370–376 (2010).
  • Gondi V , PughSL, TomeWAet al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole-brain radiotherapy for brain metastases (RTOG 0933): a Phase II multi-institutional trial. J. Clin. Oncol.32(34), 3810–3816 (2014).
  • Suh JH . Hippocampal-avoidance whole-brain radiation therapy: a new standard for patients with brain metastases?J. Clin. Oncol.32(34), 3789–3791 (2014).
  • Cortes J , O’ShaughnessyJ, LoeschDet al. Eribulin monotherapy versus treatment of physician’s choice in patients with metastatic breast cancer (EMBRACE): a Phase 3 open-label randomised study. Lancet377(9769), 914–923 (2011).
  • Byun KD , AhnSG, BaikHJet al. Eribulin mesylate combined with local treatment for brain metastasis from breast cancer: two case reports. J. Breast Cancer19(2), 214–217 (2016).
  • Cortes J , RugoHS, AwadaAet al. Prolonged survival in patients with breast cancer and a history of brain metastases: results of a preplanned subgroup analysis from the randomized Phase III BEACON trial. Breast Cancer Res. Treat.165(2), 329–341 (2017).
  • Regina A , DemeuleM, CheCet al. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new brain delivery vector Angiopep-2. Br. J. Pharmacol.155(2), 185–197 (2008).
  • Chamberlain M , SoffiettiR, RaizerJet al. Leptomeningeal metastasis: a response assessment in neuro-oncology critical review of endpoints and response criteria of published randomized clinical trials. Neuro. Oncol.16(9), 1176–1185 (2014).
  • Costa R , CarneiroBA, WainwrightDAet al. Developmental therapeutics for patients with breast cancer and central nervous system metastasis: current landscape and future perspectives. Ann. Oncol.28(1), 44–56 (2017).
  • Pestalozzi BC , BrignoliS. Trastuzumab in CSF. J. Clin. Oncol.18(11), 2349–2351 (2000).
  • Kurihara H , HamadaA, YoshidaMet al. (64)Cu-DOTA-trastuzumab PET imaging and HER2 specificity of brain metastases in HER2-positive breast cancer patients. EJNMMI Res.5, 8 (2015).
  • Lin NU , ProwellT, TanARet al. Modernizing clinical trial eligibility criteria: recommendations of the American Society of Clinical Oncology-Friends of Cancer Research Brain Metastases Working Group. J. Clin. Oncol.35(33), 3753–3759 (2017).
  • Jacot W , PonsE, FrenelJSet al. Efficacy and safety of trastuzumab emtansine (T-DM1) in patients with HER2-positive breast cancer with brain metastases. Breast Cancer Res. Treat.157(2), 307–318 (2016).
  • Oliveira M , BragaS, Passos-CoelhoJL, FonsecaR, OliveiraJ. Complete response in HER2+ leptomeningeal carcinomatosis from breast cancer with intrathecal trastuzumab. Breast Cancer Res. Treat.127(3), 841–844 (2011).
  • Dumitrescu C , LossignolD. Intrathecal trastuzumab treatment of the neoplastic meningitis due to breast cancer: a case report and review of the literature. Case Rep. Oncol. Med.2013, 154674 (2013).
  • Martens J , VenuturumilliP, CorbetsL, BestulD. Rapid clinical and radiographic improvement after intrathecal trastuzumab and methotrexate in a patient with HER-2 positive leptomeningeal metastases. Acta Oncol.52(1), 175–178 (2013).
  • Zagouri F , SergentanisTN, BartschRet al. Intrathecal administration of trastuzumab for the treatment of meningeal carcinomatosis in HER2-positive metastatic breast cancer: a systematic review and pooled analysis. Breast Cancer Res. Treat.139(1), 13–22 (2013).
  • Lin NU , DierasV, PaulDet al. Multicenter Phase II study of lapatinib in patients with brain metastases from HER2-positive breast cancer. Clin. Cancer Res.15(4), 1452–1459 (2009).
  • Bachelot T , RomieuG, CamponeMet al. Lapatinib plus capecitabine in patients with previously untreated brain metastases from HER2-positive metastatic breast cancer (LANDSCAPE): a single-group Phase 2 study. Lancet. Oncol.14(1), 64–71 (2013).
  • Cameron D , CaseyM, PressMet al. A Phase III randomized comparison of lapatinib plus capecitabine versus capecitabine alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res. Treat.112(3), 533–543 (2008).
  • Pivot X , ManikhasA, ZurawskiBet al. CEREBEL (EGF111438): a Phase III, randomized, open-label study of lapatinib plus capecitabine versus trastuzumab plus capecitabine in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer. J. Clin. Oncol.33(14), 1564–1573 (2015).
  • Krop IE , LinNU, BlackwellKet al. Trastuzumab emtansine (T-DM1) versus lapatinib plus capecitabine in patients with HER2-positive metastatic breast cancer and central nervous system metastases: a retrospective, exploratory analysis in EMILIA. Ann. Oncol.26(1), 113–119 (2015).
  • Polli JW , HumphreysJE, HarmonKAet al. The role of efflux and uptake transporters in [N-{3-chloro-4-[(3-fluorobenzyl)oxy]phenyl}-6-[5-({[2-(methylsulfonyl)ethyl]amino}methyl)-2-furyl]-4-quinazolinamine (GW572016, lapatinib) disposition and drug interactions. Drug Metab. Dispos.36(4), 695–701 (2008).
  • Taskar KS , RudrarajuV, MittapalliRKet al. Lapatinib distribution in HER2 overexpressing experimental brain metastases of breast cancer. Pharm. Res.29(3), 770–781 (2012).
  • Swain SM , ImYH, ImSAet al. Safety profile of pertuzumab with trastuzumab and docetaxel in patients from Asia with human epidermal growth factor receptor 2-positive metastatic breast cancer: results from the Phase III trial CLEOPATRA. Oncologist19(7), 693–701 (2014).
  • Zhao XQ , XieJD, ChenXGet al. Neratinib reverses ATP-binding cassette B1-mediated chemotherapeutic drug resistance in vitro, in vivo, and ex vivo. Mol. Pharmacol.82(1), 47–58 (2012).
  • Bose R , KavuriSM, SearlemanACet al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov.3(2), 224–237 (2013).
  • Canonici A , GijsenM, MulloolyMet al. Neratinib overcomes trastuzumab resistance in HER2 amplified breast cancer. Oncotarget4(10), 1592–1605 (2013).
  • Freedman RA , GelmanRS, WefelJSet al. Translational Breast Cancer Research Consortium (TBCRC) 022: a Phase II trial of neratinib for patients with human epidermal growth factor receptor 2-positive breast cancer and brain metastases. J. Clin. Oncol.34(9), 945–952 (2016).
  • Freedman RA , GelmanRS, MeliskoMEet al. TBCRC 022: Phase II trial of neratinib + capecitabine for patients (Pts) with human epidermal growth factor receptor 2 (HER2+) breast cancer brain metastases (BCBM). J. Clin. Oncol.35(15 Suppl.), 1005–1005 (2017).
  • Awada A , ColomerR, InoueKet al. Neratinib plus paclitaxel vs trastuzumab plus paclitaxel in previously untreated metastatic ERBB2-positive breast cancer: the NEfERT-T randomized clinical trial. JAMA Oncol.2(12), 1557–1564 (2016).
  • Moulder SL , BorgesVF, BaetzTet al. Phase I study of ONT-380, a HER2 inhibitor, in patients with HER2+-advanced solid tumors, with an expansion cohort in HER2+ metastatic breast cancer (MBC). Clin. Cancer Res.23(14), 3529–3536 (2017).
  • Sahebjam S , RhunEL, KulanthaivelPet al. Assessment of concentrations of abemaciclib and its major active metabolites in plasma, CSF, and brain tumor tissue in patients with brain metastases secondary to hormone receptor positive (HR+) breast cancer. J. Clin. Oncol.34(15 Suppl.), 526–526 (2016).
  • Chopra N , TurnerNC. Targeting PIK3CA-mutant advanced breast cancer in the clinical setting. Lancet Oncol.18(7), 842–843 (2017).
  • Robson ME , ImS-A, SenkusEet al. OlympiAD: Phase III trial of olaparib monotherapy versus chemotherapy for patients (pts) with HER2-negative metastatic breast cancer (mBC) and a germline BRCA mutation (gBRCAm). J. Clin. Oncol.35(18 Suppl.), LBA4–LBA4 (2017).
  • Lu YS , ChenTW, LinCHet al. Bevacizumab preconditioning followed by etoposide and cisplatin is highly effective in treating brain metastases of breast cancer progressing from whole-brain radiotherapy. Clin. Cancer Res.21(8), 1851–1858 (2015).
  • Camidge DR , LeeEQ, LinNUet al. Clinical trial design for systemic agents in patients with brain metastases from solid tumours: a guideline by the Response Assessment in Neuro-Oncology Brain Metastases working group. Lancet Oncol.19(1), e20–e32 (2018).
  • Martin AM , CagneyDN, CatalanoPJet al. Brain metastases in newly diagnosed breast cancer: a population-based study. JAMA Oncol.3(8), 1069–1077 (2017).
  • Duchnowska R , JassemJ, GoswamiCPet al. Predicting early brain metastases based on clinicopathological factors and gene expression analysis in advanced HER2-positive breast cancer patients. J. Neurooncol.122(1), 205–216 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.