12,706
Views
49
CrossRef citations to date
0
Altmetric
Special Report

Understanding the Nuances of Microwave Ablation for More Accurate Post-Treatment Assessment

Pages 1755-1764 | Received 28 Dec 2017, Accepted 29 Jan 2018, Published online: 14 Feb 2018

References

  • Hines-Peralta AU , PiraniN, CleggPet al. Microwave ablation: results with a 2.45-GHz applicator in ex vivo bovine and in vivo porcine liver. Radiology239(1), 94–102 (2006).
  • Simo KA , TsirlineVB, SindramDet al. Microwave ablation using 915-MHz and 2.45-GHz systems: what are the differences? HPB (Oxford) 15(12), 991–996 (2013).
  • Wright AS , SampsonLA, WarnerTF, MahviDM, LeeFTJr. Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology236(1), 132–139 (2005).
  • Lubner MG , BraceCL, HinshawJL, LeeFTJr. Microwave tumor ablation: mechanism of action, clinical results, and devices. J. Vasc. Interv. Radiol.21(8 Suppl.), S192–S203 (2010).
  • Hong K , GeorgiadesC. Radiofrequency ablation: mechanism of action and devices. J. Vasc. Interv. Radiol.21(8 Suppl.), S179–S186 (2010).
  • Schramm W , YangD, HaemmerichD. Contribution of direct heating, thermal conduction and perfusion during radiofrequency and microwave ablation. Conf. Proc. IEEE Eng. Med. Biol. Soc.1, 5013–5016 (2006).
  • Ringe KI , LutatC, RiederC, SchenkA, WackerF, RaatschenHJ. Experimental evaluation of the heat sink effect in hepatic microwave ablation. PLoS ONE10(7), e0134301 (2015).
  • Yu NC , RamanSS, KimYJ, LassmanC, ChangX, LuDS. Microwave liver ablation: influence of hepatic vein size on heat-sink effect in a porcine model. J. Vasc. Interv. Radiol.19(7), 1087–1092 (2008).
  • Brace CL . Radiofrequency and microwave ablation of the liver, lung, kidney, and bone: what are the differences?Curr. Probl. Diagn. Radiol.38(3), 135–143 (2009).
  • O’rourke AP , LazebnikM, BertramJMet al. Dielectric properties of human normal, malignant and cirrhotic liver tissue: in vivo and ex vivo measurements from 0.5 to 20 GHz using a precision open-ended coaxial probe. Phys. Med. Biol.52(15), 4707–4719 (2007).
  • Curto S , Taj-EldinM, FairchildD, PrakashP. Microwave ablation at 915 MHz vs 2.45 GHz: a theoretical and experimental investigation. Med. Phys.42(11), 6152–6161 (2015).
  • Siriwardana PN , SinghS, JohnstonEWet al. Effect of hepatic perfusion on microwave ablation zones in an ex vivo porcine liver model. J. Vasc. Interv. Radiol.28(5), 732–739 (2016).
  • Goldberg SN , HahnPF, TanabeKKet al. Percutaneous radiofrequency tissue ablation: does perfusion-mediated tissue cooling limit coagulation necrosis? J. Vasc. Interv. Radiol. 9(1 Pt 1), 101–111 (1998).
  • Goldberg SN , CharboneauJW, DoddGD3rdet al. Image-guided tumor ablation: proposal for standardization of terms and reporting criteria. Radiology228(2), 335–345 (2003).
  • Ratanaprasatporn L , CharpentierKP, ResnickM, LuS, DupuyD. Intra-operative microwave ablation of liver malignancies with tumour permittivity feedback control: a prospective ablate and resect study. HPB (Oxford)15(12), 997–1001 (2013).
  • Ohno T , KawanoK, SasakiA, AramakiM, YoshidaT, KitanoS. Expansion of an ablated site and induction of apoptosis after microwave coagulation therapy in rat liver. J. Hepatobiliary Pancreat. Surg.8(4), 360–366 (2001).
  • Correa-Gallego C , KarkarAM, MonetteS, EzellPC, JarnaginWR, KinghamTP. Intraoperative ultrasound and tissue elastography measurements do not predict the size of hepatic microwave ablations. Acad. Radiol.21(1), 72–78 (2014).
  • Ringe KI , WackerF, RaatschenHJ. Is there a need for MRI within 24 hours after CT-guided percutaneous thermoablation of the liver?Acta Radiol.56(1), 10–17 (2015).
  • Awad MM , DevganL, KamelIR, TorbensenM, ChotiMA. Microwave ablation in a hepatic porcine model: correlation of CT and histopathologic findings. HPB (Oxford)9(5), 357–362 (2007).
  • Brace CL , DiazTA, HinshawJL, LeeFTJr. Tissue contraction caused by radiofrequency and microwave ablation: a laboratory study in liver and lung. J. Vasc. Interv. Radiol.21(8), 1280–1286 (2010).
  • Sommer CM , SommerSA, MokryTet al. Quantification of tissue shrinkage and dehydration caused by microwave ablation: experimental study in kidneys for the estimation of effective coagulation volume. J. Vasc. Interv. Radiol.24(8), 1241–1248 (2013).
  • Lee JK , SiripongsakunS, BahramiS, RamanSS, SayreJ, LuDS. Microwave ablation of liver tumors: degree of tissue contraction as compared to RF ablation. Abdom. Radiol. (NY)41(4), 659–666 (2016).
  • Vogl TJ , HagarA, Nour-EldinNAet al. High-frequency versus low-frequency microwave ablation in malignant liver tumours: evaluation of local tumour control and survival. Int. J. Hyperthermia32(8), 868–875 (2016).
  • Hoffmann R , RemppH, ErhardLet al. Comparison of four microwave ablation devices: an experimental study in ex vivo bovine liver. Radiology268(1), 89–97 (2013).
  • Saccomandi P , SchenaE, MassaroniCet al. Temperature monitoring during microwave ablation in ex vivo porcine livers. Eur. J. Surg. Oncol.41(12), 1699–1705 (2015).
  • Harari CM , MagagnaM, BedoyaMet al. Microwave ablation: comparison of simultaneous and sequential activation of multiple antennas in liver model systems. Radiology278(1), 95–103 (2016).
  • Amabile C , AhmedM, SolbiatiLet al. Microwave ablation of primary and secondary liver tumours: ex vivo, in vivo, and clinical characterisation. Int. J. Hyperthermia33(1), 34–42 (2017).
  • Winokur RS , DuJY, PuaBBet al. Characterization of in vivo ablation zones following percutaneous microwave ablation of the liver with two commercially available devices: are manufacturer published reference values useful? J. Vasc. Interv. Radiol. 25(12), 1939e1931–1946e1931 (2014).
  • Shyn PB , BirdJR, KochRMet al. Hepatic microwave ablation zone size: correlation with total energy, net energy, and manufacturer-provided chart predictions. J. Vasc. Interv. Radiol.27(9), 1389–1396 (2016).
  • Bedoya M , Del RioAM, ChiangJ, BraceCL. Microwave ablation energy delivery: influence of power pulsing on ablation results in an ex vivo and in vivo liver model. Med. Phys.41(12), 123301 (2014).
  • Cavagnaro M , AmabileC, CassarinoS, TosorattiN, PintoR, LoprestoV. Influence of the target tissue size on the shape of ex vivo microwave ablation zones. Int. J. Hyperthermia31(1), 48–57 (2015).
  • Yu J , LiangP, YuXLet al. Local tumour progression after ultrasound-guided microwave ablation of liver malignancies: risk factors analysis of 2529 tumours. Eur. Radiol.25(4), 1119–1126 (2015).
  • Dou JP , YuJ, YangXHet al. Outcomes of microwave ablation for hepatocellular carcinoma adjacent to large vessels: a propensity score analysis. Oncotarget8(17), 28758–28768 (2017).
  • Huang S , YuJ, LiangPet al. Percutaneous microwave ablation for hepatocellular carcinoma adjacent to large vessels: a long-term follow-up. Eur. J. Radiol.83(3), 552–558 (2014).
  • Vogl TJ , RomanA, Nour-EldinNA, Hohenforst-SchmidtW, BednarovaI, KaltenbachB. A comparison between 915 MHz and 2450 MHz microwave ablation systems for the treatment of small diameter lung metastases. Diagn. Interv. Radiol.24(1), 31–37 (2018).
  • Howk K , LadtkowC, PetersonD, CafaroA. Consistent and predictable spherical ablation shape in both liver and lung: performance of the emprint ablation system with thermosphere technology in an in vivo porcine model. [Poster 129]. J. Vasc. Interv. Radiol.26(5), e89–e90 (2015).