188
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Beyond BCG: The Approaching Era of Personalised Bladder-Sparing Therapies for Non-Muscle-Invasive Urothelial Cancers

, &
Pages 409-420 | Received 28 Jul 2018, Accepted 26 Sep 2018, Published online: 10 Oct 2018

References

  • Ross JS , GreeneB. Targeted therapy in oncology: the agony and ecstasy of personalized medicine. Expert Rev. Anticancer Ther.1(3), 321–322 (2001).
  • Herrmann JL , RastelliL, BurgessCEet al. Implications of oncogenomics for cancer research and clinical oncology. Cancer J.7(1), 40–51 (2001).
  • Zoon KC . Future directions in cancer research: impact of the completion of the human genome. Toxicol. Pathol.32(Suppl. 1), 1–2 (2004).
  • Epstein RJ . Growth of the Asian health-care market: global implications for the pharmaceutical industry. Nat. Rev. Drug Discov.6(10), 785–792 (2007).
  • Basik M , MoussesS, TrentJ. Integration of genomic technologies for accelerated cancer drug development. BioTechniques35(3), 580–582; 584–586 passim (2003).
  • Epstein RJ . Unblocking blockbusters: using boolean text-mining to optimise clinical trial design and timeline for novel anticancer drugs. Cancer Inform.7, 231–238 (2009).
  • Epstein RJ . Has discovery-based cancer research been a bust?Clin. Transl. Oncol.15(11), 865–870 (2013).
  • Berger T , SaundersME, MakTW. Beyond the oncogene revolution: four new ways to combat cancer. Cold Spring Harb. Symp. Quant. Biol.81, 85–92 (2016).
  • Eagles JR , JimenoA. Cobimetinib: inhibiting MEK1/2 in BRAF V600-mutant melanoma. Drugs Today52(11), 593–605 (2016).
  • Baselga J , CortésJ, KimS-Bet al. Pertuzumab plus trastuzumab plus docetaxel for metastatic breast cancer. N. Engl. J. Med.366(2), 109–119 (2012).
  • Logan C , BrownM, HayneD. Intravesical therapies for bladder cancer - indications and limitations. BJU Int.110(Suppl. 4), 12–21 (2012).
  • Babjuk M , BöhleA, BurgerMet al. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2016. Eur. Urol.71(3), 447–461 (2017).
  • Yang LS , ShanBL, ShanLLet al. A systematic review and meta-analysis of quality of life outcomes after radical cystectomy for bladder cancer. Surg. Oncol.25(3), 281–297 (2016).
  • Witjes JA , CompératE, CowanNCet al. EAU guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2013 guidelines. Eur. Urol.65(4), 778–792 (2014).
  • Sahu D , LotanY, WittmannB, NeriB, HanselDE. Metabolomics analysis reveals distinct profiles of nonmuscle-invasive and muscle-invasive bladder cancer. Cancer Med.6(9), 2106–2120 (2017).
  • Piyarathna DWB , RajendiranTM, PutluriVet al. Distinct lipidomic landscapes associated with clinical stages of urothelial cancer of the bladder. Eur. Urol. Focus doi:https://doi.org/10.1016/j.euf.2017.04.005 (2017).
  • Ilijazi D , AbufarajM, HasslerMR, ErtlIE, D’AndreaD, ShariatSF. Waiting in the wings: the emerging role of molecular biomarkers in bladder cancer. Expert Rev. Mol. Diagn.18(4), 347–356 (2018).
  • Castillo-Martin M , Domingo-DomenechJ, Karni-SchmidtO, MatosT, Cordon-CardoC. Molecular pathways of urothelial development and bladder tumorigenesis. Urol. Oncol.28(4), 401–408 (2010).
  • Khandelwal P , AbrahamSN, ApodacaG. Cell biology and physiology of the uroepithelium. Am. J. Physiol. Renal Physiol.297(6), F1477–F1501 (2009).
  • Kobayashi T , OwczarekTB, McKiernanJM, Abate-ShenC. Modelling bladder cancer in mice: opportunities and challenges. Nat. Rev. Cancer15(1), 42–54 (2014).
  • Chan KS , EspinosaI, ChaoMet al. Identification, molecular characterization, clinical prognosis, and therapeutic targeting of human bladder tumor-initiating cells. Proc. Natl Acad. Sci. USA106(33), 14016–14021 (2009).
  • Ohishi T , KogaF, MigitaT. Bladder cancer stem-like cells: their origin and therapeutic perspectives. Int. J. Mol. Sci.17(1), pii: E43 (2015).
  • Colopy SA , BjorlingDE, MulliganWA, BushmanW. A population of progenitor cells in the basal and intermediate layers of the murine bladder urothelium contributes to urothelial development and regeneration. Dev. Dyn.243(8), 988–998 (2014).
  • Brandt WD , MatsuiW, RosenbergJEet al. Urothelial carcinoma: stem cells on the edge. Cancer Metastasis Rev.28(3–4), 291–304 (2009).
  • Czerniak B , DinneyC, McConkeyD. Origins of bladder cancer. Annu. Rev. Pathol.11(1), 149–174 (2016).
  • Balsara ZR , LiX. Sleeping beauty: awakening urothelium from its slumber. Am. J. Physiol. Renal Physiol.312(4), F732–F743 (2017).
  • Vartolomei MD , Porav-HodadeD, FerroMet al. Prognostic role of pretreatment neutrophil-to-lymphocyte ratio (NLR) in patients with non-muscle-invasive bladder cancer (NMIBC): a systematic review and meta-analysis. Urol. Oncol.36(9), 389–399 (2018).
  • Kang M , JeongCW, KwakC, KimHH, KuJH. Preoperative neutrophil-lymphocyte ratio can significantly predict mortality outcomes in patients with non-muscle invasive bladder cancer undergoing transurethral resection of bladder tumor. Oncotarget8(8), 12891–12901 (2017).
  • Paner GP , StadlerWM, HanselDE, MontironiR, LinDW, AminMB. Updates in the eighth edition of the Tumor-Node-Metastasis staging classification for urologic cancers. Eur. Urol.73(4), 560–569 (2018).
  • Eble JN , YoungRH. Carcinoma of the urinary bladder: a review of its diverse morphology. Semin. Diagn. Pathol.14(2), 98–108 (1997).
  • Sauter G , AlgabaF, AminMet al. Tumours of the urinary system: non-invasive urothelial neoplasias. In: WHO Classification of Tumours of the Urinary System and Male Genital Organs. EbleJN, SauterG, EpsteinJI, SesterhennIA ( Eds). IARCC Press, Lyon, France, 90–150 (2004).
  • Epstein JI , AminMB, ReuterVR, MostofiFK. The World Health Organization/International Society of Urological Pathology consensus classification of urothelial (transitional cell) neoplasms of the urinary bladder. Bladder Consensus Conference Committee. Am. J. Surg. Pathol.22(12), 1435–1448 (1998).
  • Sylvester RJ , Van Der MeijdenAP, OosterlinckWet al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials. Eur. Urol.49(3), 466–465; discussion 475–467 (2006).
  • McKenney JK , GomezJA, DesaiS, LeeMW, AminMB. Morphologic expressions of urothelial carcinoma in situ: a detailed evaluation of its histologic patterns with emphasis on carcinoma in situ with microinvasion. Am. J. Surg. Pathol.25(3), 356–362 (2001).
  • Van Batavia J , YamanyT, MolotkovAet al. Bladder cancers arise from distinct urothelial sub-populations. Nat. Cell Biol.16(10), 982–991 (2014).
  • Shin K , LimA, OdegaardJIet al. Cellular origin of bladder neoplasia and tissue dynamics of its progression to invasive carcinoma. Nat. Cell Biol.16(5), 469–478 (2014).
  • Woldu SL , BagrodiaA, LotanY. Guideline of guidelines: non-muscle-invasive bladder cancer. BJU Int.119(3), 371–380 (2017).
  • Chang SS , BoorjianSA, ChouRet al. Diagnosis and treatment of non-muscle invasive bladder cancer: AUA/SUO guideline. J. Urol.196(4), 1021–1029 (2016).
  • Jäger W , ThomasC, HaagSet al. Early vs delayed radical cystectomy for ‘high-risk’ carcinoma not invading bladder muscle: delay of cystectomy reduces cancer-specific survival. BJU Int.108(8 Pt 2), e284–e288 (2011).
  • Khochikar M . Early vs delayed radical cystectomy for ‘high-risk’ carcinoma not invading bladder muscle: delay of cystectomy reduces cancer-specific survival. BJU Int.108(8 Pt 2), e288–e289 (2011).
  • Hartmann A , RösnerU, SchlakeGet al. Clonality and genetic divergence in multifocal low-grade superficial urothelial carcinoma as determined by chromosome 9 and p53 deletion analysis. Lab. Invest.80(5), 709–718 (2000).
  • Jones TD , WangM, EbleJNet al. Molecular evidence supporting field effect in urothelial carcinogenesis. Clin. Cancer Res.11(18), 6512–6519 (2005).
  • Stoehr R , HartmannA, HiendlmeyerE, MürleK, WielandW, KnuechelR. Oligoclonality of early lesions of the urothelium as determined by microdissection-supported genetic analysis. Pathobiology68(4-5), 165–172 (2000).
  • Acar Ö , ÖzkurtE, DemirGet al. Determining the origin of synchronous multifocal bladder cancer by exome sequencing. BMC Cancer15(1), 871 (2015).
  • Nordentoft I , LamyP, Birkenkamp-DemtröderKet al. Mutational context and diverse clonal development in early and late bladder cancer. Cell Rep.7(5), 1649–1663 (2014).
  • Lamy P , NordentoftI, Birkenkamp-DemtröderKet al. Paired exome analysis reveals clonal evolution and potential therapeutic targets in urothelial carcinoma. Cancer Res.76(19), 5894–5906 (2016).
  • Kawanishi H , TakahashiT, ItoMet al. Genetic analysis of multifocal superficial urothelial cancers by array-based comparative genomic hybridisation. Br. J. Cancer97(2), 260–266 (2007).
  • Kawanishi H , TakahashiT, ItoMet al. High throughput comparative genomic hybridization array analysis of multifocal urothelial cancers. Cancer Sci.97(8), 746–752 (2006).
  • Hartmann A , MoserK, KriegmairM, HofstetterA, HofstaedterF, KnuechelR. Frequent genetic alterations in simple urothelial hyperplasias of the bladder in patients with papillary urothelial carcinoma. Am. J. Pathol.154(3), 721–727 (1999).
  • Obermann EC , MeyerS, HellgeDet al. Fluorescence in situ hybridization detects frequent chromosome 9 deletions and aneuploidy in histologically normal urothelium of bladder cancer patients. Oncol. Rep.11(4), 745–751 (2004).
  • Junker K , BoernerD, SchulzeW, UttingM, SchubertJ, WernerW. Analysis of genetic alterations in normal bladder urothelium. Urology62(6), 1134–1138 (2003).
  • Guo Y , ChekalukY, ZhangJet al. TSC1 involvement in bladder cancer: diverse effects and therapeutic implications. J. Pathol.230(1), 17–27 (2013).
  • Rebouissou S , HéraultA, LetouzéEet al. CDKN2A homozygous deletion is associated with muscle invasion in FGFR3-mutated urothelial bladder carcinoma. J. Pathol.227(3), 315–324 (2012).
  • Simoneau M , LarueH, AboulkassimTO, MeyerF, MooreL, FradetY. Chromosome 9 deletions and recurrence of superficial bladder cancer: identification of four regions of prognostic interest. Oncogene19(54), 6317–6323 (2000).
  • Majewski T , LeeS, JeongJet al. Understanding the development of human bladder cancer by using a whole-organ genomic mapping strategy. Lab. Invest.88(7), 694–721 (2008).
  • Czerniak B , ChaturvediV, LiLet al. Superimposed histologic and genetic mapping of chromosome 9 in progression of human urinary bladder neoplasia: implications for a genetic model of multistep urothelial carcinogenesis and early detection of urinary bladder cancer. Oncogene18(5), 1185–1196 (1999).
  • Chaturvedi V , LiL, HodgesSet al. Superimposed histologic and genetic mapping of chromosome 17 alterations in human urinary bladder neoplasia. Oncogene14(17), 2059–2070 (1997).
  • Chai H , BrownRE. Field effect in cancer – an update. Ann. Clin. Lab. Sci.39(4), 331–337 (2009).
  • Wolff EM , ChiharaY, PanFet al. Unique DNA methylation patterns distinguish noninvasive and invasive urothelial cancers and establish an epigenetic field defect in premalignant tissue. Cancer Res.70(20), 8169–8178 (2010).
  • Rentsch CA , MüllerDC, RuizC, BubendorfL. Comprehensive molecular characterization of urothelial bladder carcinoma: a step closer to clinical translation?Eur. Urol.72(6), 960–961 (2017).
  • Sánchez-Carbayo M . Hypermethylation in bladder cancer: biological pathways and translational applications. Tumour Biol.33(2), 347–361 (2012).
  • Nordling CO . A new theory on cancer-inducing mechanism. Br. J. Cancer7(1), 68–72 (1953).
  • Hedegaard J , LamyP, NordentoftIet al. Comprehensive transcriptional analysis of early-stage urothelial carcinoma. Cancer Cell30(1), 27–42 (2016).
  • Glaser AP , FantiniD, ShilatifardA, SchaefferEM, MeeksJJ. The evolving genomic landscape of urothelial carcinoma. Nat. Rev. Urol.14(4), 215–229 (2017).
  • Pietzak EJ , BagrodiaA, ChaEKet al. Next-generation sequencing of nonmuscle invasive bladder cancer reveals potential biomarkers and rational therapeutic targets. Eur. Urol.72(6), 952–959 (2017).
  • Lindgren D , FrigyesiA, GudjonssonSet al. Combined gene expression and genomic profiling define two intrinsic molecular subtypes of urothelial carcinoma and gene signatures for molecular grading and outcome. Cancer Res.70(9), 3463–3472 (2010).
  • Lindgren D , SjödahlG, LaussMet al. Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma. PLoS ONE7(6), e38863 (2012).
  • Cordon-Cardo C . Molecular alterations associated with bladder cancer initiation and progression. Scand. J. Urol. Nephrol. Suppl.42(218), 154–165 (2008).
  • Kim M-S , JeongJ, MajewskiTet al. Evidence for alternative candidate genes near RB1 involved in clonal expansion of in situ urothelial neoplasia. Lab. Invest.86(2), 175–190 (2006).
  • Lee S , JeongJ, MajewskiTet al. Forerunner genes contiguous to RB1 contribute to the development of in situ neoplasia. Proc. Natl Acad. Sci. USA104(34), 13732–13737 (2007).
  • Yuan L , GuX, ShaoJet al. Cyclin D1 G870A polymorphism is associated with risk and clinicopathologic characteristics of bladder cancer. DNA Cell Biol.29(10), 611–617 (2010).
  • Di Martino E , TomlinsonDC, KnowlesMA. A decade of FGF receptor research in bladder cancer: past, present, and future challenges. Adv. Urol.2012(6), 1–10 (2012).
  • Iyer G , MilowskyMI. Fibroblast growth factor receptor-3 in urothelial tumorigenesis. Urol. Oncol.31(3), 303–311 (2013).
  • Breyer J , WirtzRM, OttoWet al. Predictive value of molecular subtyping in NMIBC by RT-qPCR of ERBB2, ESR1, PGR and MKI67 from formalin fixed TUR biopsies. Oncotarget8(40), 67684–67695 (2017).
  • Di Martino E , L’HôteCG, KennedyW, TomlinsonDC, KnowlesMA. Mutant fibroblast growth factor receptor 3 induces intracellular signaling and cellular transformation in a cell type- and mutation-specific manner. Oncogene28(48), 4306–4316 (2009).
  • Jebar AH , HurstCD, TomlinsonDC, JohnstonC, TaylorCF, KnowlesMA. FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma. Oncogene24(33), 5218–5225 (2005).
  • López-Knowles E , HernándezS, MalatsNet al. PIK3CA mutations are an early genetic alteration associated with FGFR3 mutations in superficial papillary bladder tumors. Cancer Res.66(15), 7401–7404 (2006).
  • López-Knowles E , HernándezS, KogevinasMet al. The p53 pathway and outcome among patients with T1G3 bladder tumors. Clin. Cancer Res.12(20 Pt 1), 6029–6036 (2006).
  • Zieger K , MarcussenN, BorreM, OrntoftTF, Dyrskj⊘tL. Consistent genomic alterations in carcinoma in situ of the urinary bladder confirm the presence of two major pathways in bladder cancer development. Int. J. Cancer125(9), 2095–2103 (2009).
  • Cordon-Cardo C , ZhangZF, DalbagniGet al. Cooperative effects of p53 and pRB alterations in primary superficial bladder tumors. Cancer Res.57(7), 1217–1221 (1997).
  • Van Rhijn BW , LurkinI, RadvanyiF, KirkelsWJ, Van Der KwastTH, ZwarthoffEC. The fibroblast growth factor receptor 3 (FGFR3) mutation is a strong indicator of superficial bladder cancer with low recurrence rate. Cancer Res.61(4), 1265–1268 (2001).
  • Burger M , Van Der AaMN, Van OersJMet al. Prediction of progression of non-muscle-invasive bladder cancer by WHO 1973 and 2004 grading and by FGFR3 mutation status: a prospective study. Eur. Urol.54(4), 835–843 (2008).
  • Van Kessel KE , Van Der KeurKA, Dyrskj⊘tLet al. Molecular markers increase precision of the European Association of Urology non-muscle invasive bladder cancer progression risk groups. Clin. Cancer Res.24(7), 1586–1593 (2018).
  • Van Rhijn BW , ZuiverloonTC, VisANet al. Molecular grade (FGFR3/MIB-1) and EORTC risk scores are predictive in primary non-muscle-invasive bladder cancer. Eur. Urol.58(3), 433–441 (2010).
  • Duenas M , Martinez-FernandezM, Garcia-EscuderoRet al. PIK3CA gene alterations in bladder cancer are frequent and associate with reduced recurrence in non-muscle invasive tumors. Mol. Carcinog.54(7), 566–576 (2015).
  • Breyer J , WirtzRM, OttoWet al. High PDL1 mRNA expression predicts better survival of stage pT1 non-muscle-invasive bladder cancer (NMIBC) patients. Cancer Immunol. Immunother.144(11), 646 (2017).
  • Sjödahl G , LaussM, LövgrenKet al. A molecular taxonomy for urothelial carcinoma. Clin. Cancer Res.18(12), 3377–3386 (2012).
  • Network CGaR . Comprehensive molecular characterization of urothelial bladder carcinoma. Nature507(7492), 315–322 (2014).
  • Damrauer JS , HoadleyKA, ChismDDet al. Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc. Natl. Acad. Sci. USA111(8), 3110–3115 (2014).
  • Choi W , PortenS, KimSet al. Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell25(2), 152–165 (2014).
  • Lerner SP , McConkeyDJ, HoadleyKAet al. Bladder cancer molecular taxonomy: summary from a consensus meeting. Bladder Cancer2(1), 37–47 (2016).
  • Perou CM , S⊘rlieT, EisenMBet al. Molecular portraits of human breast tumours. Nature406(6797), 747–752 (2000).
  • Choi W , OchoaA, McConkeyDJet al. Genetic alterations in the molecular subtypes of bladder cancer: illustration in the cancer genome atlas dataset. Eur. Urol.72(3), 354–365 (2017).
  • Sjödahl G , LövgrenK, LaussMet al. Toward a molecular pathologic classification of urothelial carcinoma. Am. J. Pathol.183(3), 681–691 (2013).
  • Dadhania V , ZhangM, ZhangLet al. Meta-analysis of the luminal and basal subtypes of bladder cancer and the identification of signature immunohistochemical markers for clinical use. EBioMedicine12, 105–117 (2016).
  • Rebouissou S , Bernard-PierrotI, De ReynièsAet al. EGFR as a potential therapeutic target for a subset of muscle-invasive bladder cancers presenting a basal-like phenotype. Sci. Transl. Med.6(244), 244ra291 (2014).
  • Sjödahl G , ErikssonP, LiedbergF, HöglundM. Molecular classification of urothelial carcinoma: global mRNA classification versus tumour-cell phenotype classification. J. Pathol.242(1), 113–125 (2017).
  • Sharron Lin X , HuL, SandyKet al. Differentiating progressive from nonprogressive T1 bladder cancer by gene expression profiling: applying RNA-sequencing analysis on archived specimens. Urol Oncol32(3), 327–336 (2014).
  • Dyrskj⊘t L , ZiegerK, KruhofferMet al. A molecular signature in superficial bladder carcinoma predicts clinical outcome. Clin. Cancer Res.11(11), 4029–4036 (2005).
  • Dyrskj⊘t L , ZiegerK, RealFXet al. Gene expression signatures predict outcome in non-muscle-invasive bladder carcinoma: a multicenter validation study. Clin. Cancer Res.13(12), 3545–3551 (2007).
  • Wang R , MorrisDS, TomlinsSAet al. Development of a multiplex quantitative PCR signature to predict progression in non-muscle-invasive bladder cancer. Cancer Res.69(9), 3810–3818 (2009).
  • Mo Q , NikolosF, ChenFet al. Prognostic power of a tumor differentiation gene signature for bladder urothelial carcinomas. J. Natl Cancer Inst.8(11), 631 (2018).
  • Dyrskj⊘t L , ReinertT, AlgabaFet al. Prognostic impact of a 12-gene progression score in non-muscle-invasive bladder cancer: a prospective multicentre validation study. 72(3), 461–469 (2017).
  • Dubosq F , PloussardG, SolimanHet al. Identification of a three-gene expression signature of early recurrence in non-muscle-invasive urothelial cell carcinoma of the bladder. Urol. Oncol.30(6), 833–840 (2012).
  • Breyer J , WirtzRM, OttoWet al. In stage pT1 non-muscle-invasive bladder cancer (NMIBC), high KRT20 and low KRT5 mRNA expression identify the luminal subtype and predict recurrence and survival. Virchows Arch.470(3), 267–274 (2017).
  • Guagnano V , FuretP, SpankaCet al. Discovery of 3-(2,6-dichloro-3,5-dimethoxy-phenyl)-1-{6-[4-(4-ethyl-piperazin-1-yl)-phenylamino]-pyrimidin-4-yl}-1-methyl-urea (NVP-BGJ398), a potent and selective inhibitor of the fibroblast growth factor receptor family of receptor tyrosine kinase. J. Med. Chem.54(20), 7066–7083 (2011).
  • Di Stefano AL , FucciA, FrattiniVet al. Detection, characterization, and inhibition of FGFR–TACC fusions in IDH wild-type glioma. Clin. Cancer Res.21(14), 3307–3317 (2015).
  • Hahn NM , BivalacquaTJ, RossAEet al. A Phase II trial of dovitinib in bcg-unresponsive urothelial carcinoma with FGFR3 mutations or overexpression: Hoosier Cancer Research Network Trial HCRN 12-157. Clin. Cancer Res.23(12), 3003–3011 (2017).
  • Chen C-H , ChangouC, HsiehT-Het al. Dual inhibition of PIK3C3 and FGFR as a new therapeutic approach to treat bladder cancer. Clin. Cancer Res. doi:https://doi.org/10.1158/1078-0432.CCR-17-2066 clincanres.2066.2017 (2017).
  • Davarpanah NN , YunoA, TrepelJB, ApoloAB. Immunotherapy: a new treatment paradigm in bladder cancer. Curr. Opin. Oncol.29(3), 184–195 (2017).
  • Rosenberg JE , Hoffman-CensitsJ, PowlesTet al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, Phase 2 trial. Lancet387(10031), 1909–1920 (2016).
  • Sharma P , RetzM, Siefker-RadtkeAet al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, Phase 2 trial. Lancet Oncol.18(3), 312–322 (2017).
  • Siddiqui MR , GrantC, SanfordT, AgarwalPK. Current clinical trials in non-muscle invasive bladder cancer. Urol. Oncol.35(8), 516–527 (2017).
  • Hurst CD , AlderO, PlattFMet al. Genomic subtypes of non-invasive bladder cancer with distinct metabolic profile and female gender bias in KDM6A mutation frequency. Cancer Cell32(5), 701–715.e707 (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.