294
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Bifidobacterium SPP: The Promising Trojan Horse in the Era of Precision Oncology

, , , , , , , , , , , & show all
Pages 3861-3876 | Received 28 Jun 2019, Accepted 09 Sep 2019, Published online: 31 Oct 2019

References

  • Zhuang C , GuanX, MaH, CongH, ZhangW, MiaoZ. Small molecule-drug conjugates: a novel strategy for cancer-targeted treatment. Eur. J. Med. Chem.163, 883–895 (2019).
  • Senapati S , MahantaAK, KumarS, MaitiP. Controlled drug delivery vehicles for cancer treatment and their performance. Signal. Transduct. Target. Ther.3(1), 7 (2018).
  • Szakacs G , PatersonJK, LudwigJA, Booth-GentheC, GottesmanMM. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov.5(3), 219–234 (2006).
  • Casi G , NeriD. Antibody–drug conjugates and small molecule–drug conjugates: opportunities and challenges for the development of selective anticancer cytotoxic agents. J. Med. Chem.58(22), 8751–8761 (2015).
  • Chari RV , MillerML, WiddisonWC. Antibody–drug conjugates: an emerging concept in cancer therapy. Angew. Chem. Int. Ed. Engl.53(15), 3796–3827 (2014).
  • Srinivasarao M , GallifordCV, LowPS. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat. Rev. Drug Discov.14(3), 203–219 (2015).
  • Lu ZR , QiaoP. Drug delivery in cancer therapy, quo vadis?Mol. Pharm.15(9), 3603–3616 (2018).
  • Tzakos AG , BriasoulisE, ThalhammerT, JagerW, ApostolopoulosV. Novel oncology therapeutics: targeted drug delivery for cancer. J. Drug Deliv.2013, 918304 (2013).
  • Yun YH , LeeBK, ParkK. Controlled drug delivery: historical perspective for the next generation. J. Control. Rel.219, 2–7 (2015).
  • Allen TM , CullisPR. Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev.65(1), 36–48 (2013).
  • Ljubimova JY , SunT, MashoufLet al. Covalent nano delivery systems for selective imaging and treatment of brain tumors. Adv. Drug Deliv. Rev.113, 177–200 (2017).
  • Zhou Y , KopecekJ. Biological rationale for the design of polymeric anti-cancer nanomedicines. J. Drug Target.21(1), 1–26 (2013).
  • Dong Y , EltoukhyAA, AlabiCAet al. Lipid-like nanomaterials for simultaneous gene expression and silencing in vivo. Adv. Healthc. Mater.3(9), 1392–1397 (2014).
  • Kumar S , SinghS, SenapatiS, SinghAP, RayB, MaitiP. Controlled drug release through regulated biodegradation of poly(lactic acid) using inorganic salts. Int. J. Biol. Macromol.104(Pt A), 487–497 (2017).
  • Li Y , MacielD, RodriguesJ, ShiX, TomasH. Biodegradable polymer nanogels for drug/nucleic acid delivery. Chem. Rev.115(16), 8564–8608 (2015).
  • Mo R , JiangT, GuZ. Recent progress in multidrug delivery to cancer cells by liposomes. Nanomedicine9(8), 1117–1120 (2014).
  • Shih H , LinCC. Photoclick hydrogels prepared from functionalized cyclodextrin and poly(ethylene glycol) for drug delivery and in situ cell encapsulation. Biomacromolecules16(7), 1915–1923 (2015).
  • Shim MS , KwonYJ. Stimuli-responsive polymers and nanomaterials for gene delivery and imaging applications. Adv. Drug Deliv. Rev.64(11), 1046–1059 (2012).
  • Su J , ChenF, CrynsVL, MessersmithPB. Catechol polymers for pH-responsive, targeted drug delivery to cancer cells. J. Am. Chem. Soc.133(31), 11850–11853 (2011).
  • Sun W , GuZ. Engineering DNA scaffolds for delivery of anticancer therapeutics. Biomater. Sci.3(7), 1018–1024 (2015).
  • Ahn S , SeoE, KimK, LeeSJ. Controlled cellular uptake and drug efficacy of nanotherapeutics. Sci. Rep.3, 1997 (2013).
  • Murty S , GillilandT, QiaoPet al. Nanoparticles functionalized with collagenase exhibit improved tumor accumulation in a murine xenograft model. Part. Part. Syst. Charact.31(12), 1307–1312 (2014).
  • Han Z , LuZR. Targeting fibronectin for cancer imaging and therapy. J. Mater. Chem. B5(4), 639–654 (2017).
  • Zhou Z , LuZR. Molecular imaging of the tumor microenvironment. Adv. Drug Deliv. Rev.113, 24–48 (2017).
  • Patyar S , JoshiR, ByravDS, PrakashA, MedhiB, DasBK. Bacteria in cancer therapy: a novel experimental strategy. J. Biomed. Sci.17(1), 21 (2010).
  • Robbins PD , GhivizzaniSC. Viral vectors for gene therapy. Pharmacol. Ther.80(1), 35–47 (1998).
  • Hall DM , BuettnerGR, MatthesRD. A Commotion in the Blood. Henry Holt and Company, Inc., NY, USA (1997).
  • Coley WB II . Contribution to the knowledge of sarcoma. Ann. Surg.14(3), 199–220 (1891).
  • Coley WB . Late results of the treatment of inoperable sarcoma by the mixed toxins of erysipelas and Bacillus prodigiosus. Am. J. Med. Sci.131, 371 (1906).
  • Fehleisen F . Die Aetiologie Des Erysipels.Verlag von Theodor Fischer’s medicinischer Buchhandlung, Berlin, Germany (1883).
  • Nauts HC . The Beneficial Effects of Bacterial Infections on Host Resistance to Cancer End Results in 449 Cases: A Study and Abstracts of Reports in the World Medical Literature (1775-1980) and Personal Communications.Cancer Research Institute, NY, USA (1980).
  • Nauts HC , FowlerGA, BogatkoFH. A review of the influence of bacterial infection and of bacterial products (Coley’s toxins) on malignant tumors in man; a critical analysis of 30 inoperable cases treated by Coley’s mixed toxins, in which diagnosis was confirmed by microscopic examination selected for special study. Acta Med. Scand. Suppl.276, 1–103 (1953).
  • Pawelek JM , LowKB, BermudesD. Bacteria as tumour-targeting vectors. Lancet Oncol.4(9), 548–556 (2003).
  • Chapter 3 – Supragingival microbes. In: Atlas of Oral Microbiology. ZhouX, LiY ( Eds). Academic Press, Oxford, UK, 41–65 (2015).
  • Tissier H . Recherches sur la flore intestinale des nourrissons:(état normal et pathologique). G. Carre et C. Naud, Paris, France (1900).
  • Ventura M , TurroniF, Van SinderenD. Chapter 4 - Bifidobacteria of the human gut: our special friends. In: Diet-Microbe Interactions in the Gut. TuohyK, DelRio D ( Eds). Academic Press, CA, USA, 41–51 (2015).
  • Lee JH , O’SullivanDJ. Genomic insights into bifidobacteria. MMBR74(3), 378–416 (2010).
  • NCBI . The National Center for Biotechnology Information Taxonomy browser (2019). www.ncbi.nlm.nih.gov
  • O’Callaghan A , Van SinderenD. Bifidobacteria and their role as members of the human gut microbiota. Front. Microbiol.7, 925 (2016).
  • Esaiassen E , HjerdeE, CavanaghJP, SimonsenGS, KlingenbergC. Bifidobacterium bacteremia: clinical characteristics and a genomic approach to assess pathogenicity. J. Clin. Microbiol.55(7), 2234–2248 (2017).
  • Mccartney AL . Bifidobacteria in foods. In: Encyclopedia of Food Sciences and Nutrition (2nd Edition). CaballeroB ( Ed.). Academic Press, Oxford, UK, 463–470 (2003).
  • Rašić JL . Microflora of the intestine | probiotics. In: Encyclopedia of Food Sciences and Nutrition (2nd Edition). CaballeroB ( Ed.). Academic Press, Oxford, UK, 3911–3916 (2003).
  • Ouwehand AC , SalminenS, IsolauriE. Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek.82(1-4), 279–289 (2002).
  • Salminen S , Von WrightA, MorelliLet al. Demonstration of safety of probiotics – a review. Int. J. Food Microbiol.44(1-2), 93–106 (1998).
  • Shah N . Yogurt | the product and its manufacture. In: Encyclopedia of Food Sciences and Nutrition (2nd Edition). CaballeroB ( Ed.). Academic Press, Oxford, UK, 6252–6259 (2003).
  • Abratt VR , ReidSJ. Chapter 3 - Oxalate-degrading bacteria of the human gut as probiotics in the management of kidney stone disease. In: Advances in Applied Microbiology. LaskinAI, SariaslaniS, GaddGM ( Eds). Academic Press, Oxford, UK, 63–87 (2010).
  • Bourne KA , BeebeJL, LueYA, EllnerPD. Bacteremia due to Bifidobacterium, Eubacterium or Lactobacillus; twenty-one cases and review of the literature. Yale J. Biol. Med.51(5), 505–512 (1978).
  • Weber E , ReynaudQ, SuyFet al. Bifidobacterium species bacteremia: risk factors in adults and infants. Clin. Infect. Dis.61(3), 482–484 (2015).
  • Quigley EMM . Chapter 12 - Bifidobacteria as probiotic organisms: an introduction. In: The Microbiota in Gastrointestinal Pathophysiology. FlochMH, RingelY, AllanWalker W ( Eds). Academic Press, Boston, USA, 125–126 (2017).
  • Bae E-A , KimD-H, HanM. Anti-Helicobacter pylori activity of Bifidobacterium spp. J. Microbiol. Biotechnol.10(4), 532–534 (2000).
  • Corrêa NB , PéretFilho LA, PennaFJ, LimaFMS, NicoliJR. A randomized formula controlled trial of Bifidobacterium lactis and Streptococcus thermophilus for prevention of antibiotic-associated diarrhea in infants. J. Clin. Gastroenterol.39(5), 385–389 (2005).
  • Ambalam P , RamanM, PuramaRK, DobleM. Probiotics, prebiotics and colorectal cancer prevention. Best Pract. Res. Clin. Gastroenterol.30(1), 119–131 (2016).
  • Hidalgo-Cantabrana C , DelgadoS, RuizL, Ruas-MadiedoP, SanchezB, MargollesA. Bifidobacteria and their health-promoting effects. Microbiol. Spectr.5(3), (2017).
  • Wilkins T , SequoiaJ. Probiotics for gastrointestinal conditions: a summary of the evidence. Am. Fam. Physician96(3), 170–178 (2017).
  • Kleessen B , SykuraB, ZunftHJ, BlautM. Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. Am. J. Clin. Nutrition65(5), 1397–1402 (1997).
  • Kumemura M , HashimotoF, FujiiCet al. Effects of administration of 4G-β-D-galactosylsucrose on fecal microflora, putrefactive products, short-chain fatty acids, weight, moisture and pH, and subjective sensation of defecation in the elderly with constipation. J. Clin. Biochem. Nutrition13(3), 199–210 (1992).
  • Tanaka R , TakayamaH, MorotomiMet al. Effects of administration of TOS and Bifidobacterium breve 4006 on the human fecal flora. Bifidobacteria Microflora2(1), 17–24 (1983).
  • Gionchetti P , RizzelloF, VenturiAet al. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial. Gastroenterology119(2), 305–309 (2000).
  • Patole SK , RaoSC, KeilAD, NathanEA, DohertyDA, SimmerKN. Benefits of Bifidobacterium breve M-16V supplementation in preterm neonates – a retrospective cohort study. PLoS ONE11(3), e0150775 (2016).
  • Venturi A , GionchettiP, RizzelloFet al. Impact on the composition of the faecal flora by a new probiotic preparation: preliminary data on maintenance treatment of patients with ulcerative colitis. Aliment. Pharmacol. Ther.13(8), 1103–1108 (1999).
  • Xu J , MaR, ChenLF, ZhaoLJ, ChenK, ZhangRB. Effects of probiotic therapy on hepatic encephalopathy in patients with liver cirrhosis: an updated meta-analysis of six randomized controlled trials. Hepatobiliary Pancreat. Dis. Int.13(4), 354–360 (2014).
  • Cristofori F , IndrioF, MinielloVL, DeAngelis M, FrancavillaR. Probiotics in celiac disease. Nutrients10(12), (2018).
  • Luoto R , LaitinenK, NermesM, IsolauriE. Impact of maternal probiotic-supplemented dietary counselling on pregnancy outcome and prenatal and postnatal growth: a double-blind, placebo-controlled study. Br. J. Nutr.103(12), 1792–1799 (2010).
  • Yao K , ZengL, HeQ, WangW, LeiJ, ZouX. Effect of probiotics on glucose and lipid metabolism in type 2 diabetes mellitus: a meta-analysis of 12 randomized controlled trials. Med. Sci. Monit.23, 3044–3053 (2017).
  • Rondanelli M , FalivaMA, PernaS, GiacosaA, PeroniG, CastellazziAM. Using probiotics in clinical practice: where are we now? A review of existing meta-analyses. Gut Microbes8(6), 521–543 (2017).
  • Shimizu M , HashiguchiM, ShigaT, TamuraHO, MochizukiM. Meta-analysis: effects of probiotic supplementation on lipid profiles in normal to mildly hypercholesterolemic individuals. PLoS ONE10(10), e0139795 (2015).
  • Borgeraas H , JohnsonLK, SkattebuJ, HertelJK, HjelmesaethJ. Effects of probiotics on body weight, body mass index, fat mass and fat percentage in subjects with overweight or obesity: a systematic review and meta-analysis of randomized controlled trials. Obes. Rev.19(2), 219–232 (2018).
  • Messaoudi M , ViolleN, BissonJF, DesorD, JavelotH, RougeotC. Beneficial psychological effects of a probiotic formulation (Lactobacillus helveticus R0052 and Bifidobacterium longum R0175) in healthy human volunteers. Gut Microbes2(4), 256–261 (2011).
  • Ng QX , PetersC, HoCYX, LimDY, YeoWS. A meta-analysis of the use of probiotics to alleviate depressive symptoms. J. Affect. Disord.228, 13–19 (2018).
  • Okubo R , KogaM, KatsumataNet al. Effect of bifidobacterium breve A-1 on anxiety and depressive symptoms in schizophrenia: a proof-of-concept study. J. Affect. Disord.245, 377–385 (2019).
  • Dermyshi E , WangY, YanCet al. The “Golden Age” of probiotics: a systematic review and meta-analysis of randomized and observational studies in preterm infants. Neonatology112(1), 9–23 (2017).
  • Liboredo JC , AnastacioLR, PeluzioMdo Cet al. Effect of probiotics on the development of dimethylhydrazine-induced preneoplastic lesions in the mice colon. Acta Cir. Bras.28(5), 367–372 (2013).
  • Wei C , XunAY, WeiXXet al. Bifidobacteria expressing tumstatin protein for antitumor therapy in tumor-bearing mice. Technol. Cancer Res. Treat.15(3), 498–508 (2016).
  • Kim KA , JungIH, ParkSH, AhnYT, HuhCS, KimDH. Comparative analysis of the gut microbiota in people with different levels of ginsenoside Rb1 degradation to compound K. PLoS ONE8(4), e62409 (2013).
  • Lai LR , HsiehSC, HuangHY, ChouCC. Effect of lactic fermentation on the total phenolic, saponin and phytic acid contents as well as anti-colon cancer cell proliferation activity of soymilk. J. Biosci. Bioeng.115(5), 552–556 (2013).
  • Schroeder BO , BirchenoughGMH, StahlmanMet al. Bifidobacteria or fiber protects against diet-induced microbiota-mediated colonic mucus deterioration. Cell Host Microbe23(1), 27–40 (2018). e27
  • Yazawa K , FujimoriM, AmanoJ, KanoY, TaniguchiS. Bifidobacterium longum as a delivery system for cancer gene therapy: selective localization and growth in hypoxic tumors. Cancer Gene Ther.7(2), 269–274 (2000).
  • Pool-Zobel BL , NeudeckerC, DomizlaffIet al. Lactobacillus- and bifidobacterium-mediated antigenotoxicity in the colon of rats. Nutr. Cancer26(3), 365–380 (1996).
  • Tavan E , CayuelaC, AntoineJM, TrugnanG, ChaugierC, CassandP. Effects of dairy products on heterocyclic aromatic amine-induced rat colon carcinogenesis. Carcinogenesis23(3), 477–483 (2002).
  • Sekine K , ToidaT, SaitoM, KuboyamaM, KawashimaT, HashimotoY. A new morphologically characterized cell wall preparation (whole peptidoglycan) from Bifidobacterium infantis with a higher efficacy on the regression of an established tumor in mice. Cancer Res.45(3), 1300–1307 (1985).
  • Yasui H , OhwakiM. Enhancement of immune response in Peyer’s patch cells cultured with Bifidobacterium breve. J. Dairy Sci.74(4), 1187–1195 (1991).
  • Sivan A , CorralesL, HubertNet al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science350(6264), 1084–1089 (2015).
  • Kimura NT , TaniguchiS, AokiK, BabaT. Selective localization and growth of Bifidobacterium bifidum in mouse tumors following intravenous administration. Cancer Res.40(6), 2061–2068 (1980).
  • Muz B , DeLa Puente P, AzabF, AzabAK. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia3, 83–92 (2015).
  • Cronin M , MorrisseyD, RajendranSet al. Orally administered bifidobacteria as vehicles for delivery of agents to systemic tumors. 18(7), 1397–1407 (2010).
  • Kitagawa K , OdaT, SaitoHet al. Development of oral cancer vaccine using recombinant Bifidobacterium displaying Wilms’ tumor 1 protein. 66(6), 787–798 (2017).
  • Yin Y , WangRR, WangY, WangJJ, XuGX. Preparation of selenium-enriched Bifidobacterium longum and its effect on tumor growth and immune function of tumor-bearing mice. Asian Pac. J. Cancer Prev.15, 3681–3686 (2014).
  • Li C , ChenX, KouLet al. Selenium–Bifidobacterium longum as a delivery system of endostatin for inhibition of pathogenic bacteria and selective regression of solid tumor. Exp. Ther. Med.1(1), 129–135 (2010).
  • Li X , FuGF, FanYRet al. Bifidobacterium adolescentis as a delivery system of endostatin for cancer gene therapy: selective inhibitor of angiogenesis and hypoxic tumor growth. Cancer Gene Ther.10(2), 105–111 (2003).
  • Fu G-F , LiX, HouY-Y, FanY-R, LiuW-H, XuG-X. Bifidobacterium longum as an oral delivery system of endostatin for gene therapy on solid liver cancer. Cancer Gene Ther.12(2), 133 (2005).
  • Chen B , ZhangY, XiaoS, GuP, LinX. Personalized image-based templates for iliosacral screw insertions: a pilot study. Int. J. Med. Robot.8(4), 476–482 (2012).
  • Zhu H , LiZ, MaoSet al. Antitumor effect of sFlt-1 gene therapy system mediated by Bifidobacterium infantis on Lewis lung cancer in mice. Cancer Gene Ther.18(12), 884–896 (2011).
  • Guo B , XieN, WangY. Cooperative effect of Bifidobacteria lipoteichoic acid combined with 5-fluorouracil on hepatoma-22 cells growth and apoptosis. Bull. Cancer102(3), 204–212 (2015).
  • Hu B , KouL, LiCet al. Bifidobacterium longum as a delivery system of TRAIL and endostatin cooperates with chemotherapeutic drugs to inhibit hypoxic tumor growth. 16(8), 655 (2009).
  • Tang W , HeY, ZhouS, MaY, LiuG. A novel Bifidobacterium infantis-mediated TK/GCV suicide gene therapy system exhibits antitumor activity in a rat model of bladder cancer. J. Exp. Clin. Cancer Res.28, 155 (2009).
  • Wang C , MaY, HuQet al. Bifidobacterial recombinant thymidine kinase–ganciclovir gene therapy system induces FasL and TNFR2 mediated antitumor apoptosis in solid tumors. 16(1), 545 (2016).
  • Wang L , VuleticI, DengDet al. Bifidobacteriumbreve as a delivery vector of IL-24 gene therapy for head and neck squamous cell carcinoma in vivo. 24(11), 699 (2017).
  • Xiao X , JinR, LiJ, BeiY, WeiT. The antitumor effect of suicide gene therapy using Bifidobacterium infantis-mediated herpes simplex virus thymidine kinase/ganciclovir in a nude mice model of renal cell carcinoma. Urology84(4), 982, e915–e920 (2014).
  • Yin X , YuB, TangZet al. Bifidobacterium infantis-mediated HSV-TK/GCV suicide gene therapy induces both extrinsic and intrinsic apoptosis in a rat model of bladder cancer. Cancer Gene Ther.20(2), 77–81 (2013).
  • Zhou H , HeZ, WangCet al. Intravenous administration is an effective and safe route for cancer gene therapy using the bifidobacterium-mediated recombinant HSV-1 thymidine kinase and ganciclovir. Int. J. Mol. Sci.17(6), (2016).
  • Yamamoto S , SuzukiS, HoshinoA, AkimotoM, ShimadaT. Herpes simplex virus thymidine kinase/ganciclovir-mediated killing of tumor cell induces tumor-specific cytotoxic T cells in mice. Cancer Gene Ther.4(2), 91–96 (1997).
  • Johnstone RW , FrewAJ, SmythMJ. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat. Rev. Cancer8(10), 782–798 (2008).
  • Hou X , LiuJE. Construction of Escherichia coli-Bifidobacterium longum shuttle vector and expression of tumor suppressor gene PTEN in B. longum. Wei Sheng Wu Xue Bao46(3), 347–352 (2006).
  • Hollander MC , BlumenthalGM, DennisPA. PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat. Rev. Cancer11(4), 289–301 (2011).
  • Kikuchi T , ShimizuH, AkiyamaY, TaniguchiS. In situ delivery and production system of trastuzumab scFv with Bifidobacterium. Biochem. Biophys. Res. Commun.493(1), 306–312 (2017).
  • Zhuo Z , HuJ, YangXet al. Ailanthone inhibits Huh7 cancer cell growth via cell cycle arrest and apoptosis in vitro and in vivo. Sci. Rep.5, 16185 (2015).
  • Hidaka A , HamajiY, SasakiT, TaniguchiS, FujimoriM. Exogenous cytosine deaminase gene expression in Bifidobacterium breve I-53-8w for tumor-targeting enzyme/prodrug therapy. Biosci. Biotechnol. Biochem.71(12), 2921–2926 (2007).
  • Nakamura T , SasakiT, FujimoriMet al. Cloned cytosine deaminase gene expression of Bifidobacterium longum and application to enzyme/pro-drug therapy of hypoxic solid tumors. Biosci. Biotechnol. Biochem.66(11), 2362–2366 (2002).
  • An LN , LiZH, YueY, WangSR, GuoZY. Gene therapy for melanoma by Bifidobacterium infantis-mediated transfer of CD and UPRT genes with 5-FC in vitro. Sichuan Da Xue Xue Bao Yi Xue Ban38(1), 27–30 (2007).
  • Taniguchi S , ShimataniY, FujimoriM. Tumor-targeting therapy using gene-engineered anaerobic-nonpathogenic Bifidobacterium longum. Methods Mol. Biol.1409, 49–60 (2016).
  • Fox ME , LemmonMJ, MauchlineMLet al. Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered clostridia. Gene Ther.3(2), 173–178 (1996).
  • Liu SC , MintonNP, GiacciaAJ, BrownJM. Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis. Gene Ther.9(4), 291–296 (2002).
  • Minton NP , MauchlineML, LemmonMJet al. Chemotherapeutic tumour targeting using clostridial spores. FEMS Microbiol. Rev.17(3), 357–364 (1995).
  • Boddy A , AaronsL, PetrakK. Efficiency of drug targeting: steady-state considerations using a three-compartment model. Pharm. Res.6(5), 367–372 (1989).
  • Petrak KJ . Precision medicine and site-specific drug delivery. Arch. Cancer Res.3, 1–4 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.