749
Views
12
CrossRef citations to date
0
Altmetric
Review

CD38 as an Immunomodulator in Cancer

, , &
Pages 2853-2861 | Received 24 Apr 2020, Accepted 24 Jul 2020, Published online: 28 Aug 2020

References

  • Reinherz EL , KungPC, GoldsteinG, LeveyRH, SchlossmanSF. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc. Natl. Acad. Sci. USA77(3), 1588–1592 (1980).
  • Terhorst C , van AgthovenA, LeclairK, SnowP, ReinherzE, SchlossmanS. Biochemical studies of the human thymocyte cell-surface antigens T6, T9 and T10. Cell23(3), 771–780 (1981).
  • Malavasi F , FunaroA, AlessioMet al. CD38: a multi-lineage cell activation molecule with a split personality. Int. J. Clin. Lab. Res.22(2), 73–80 (1992).
  • Jackson DG , BellJI. Isolation of a cDNA encoding the human CD38 (T10) molecule, a cell surface glycoprotein with an unusual discontinuous pattern of expression during lymphocyte differentiation. J. Immunol.144(7), 2811–2815 (1990).
  • Malavasi F , FunaroA, RoggeroS, HorensteinA, CalossoL, MehtaK. Human CD38: a glycoprotein in search of a function. Immunol. Today15(3), 95–97 (1994).
  • Funaro A , HorensteinAL, CalossoLet al. Identification and characterization of an active soluble form of human CD38 in normal and pathological fluids. Int. Immunol.8(11), 1643–1650 (1996).
  • Vences-Catalan F , Santos-ArgumedoL. CD38 through the life of a murine B lymphocyte. IUBMB Life63(10), 840–846 (2011).
  • Lund F , SolvasonN, GrimaldiJC, ParkhouseRM, HowardM. Murine CD38: an immunoregulatory ectoenzyme. Immunol. Today16(10), 469–473 (1995).
  • Mehta K , ShahidU, MalavasiF. Human CD38, a cell-surface protein with multiple functions. FASEB J.10(12), 1408–1417 (1996).
  • Guse AH , DaSilva CP, BergIet al. Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose. Nature398(6722), 70–73 (1999).
  • Lund FE , Muller-SteffnerHM, YuN, StoutCD, SchuberF, HowardMC. CD38 signaling in B lymphocytes is controlled by its ectodomain but occurs independently of enzymatically generated ADP-ribose or cyclic ADP-ribose. J. Immunol.162(5), 2693–2702 (1999).
  • Nishina H , InagedaK, TakahashiK, HoshinoS, IkedaK, KatadaT. Cell surface antigen CD38 identified as ecto-enzyme of NAD glycohydrolase has hyaluronate-binding activity. Biochem. Biophys. Res. Commun.203(2), 1318–1323 (1994).
  • Deaglio S , MalloneR, BajGet al. CD38/CD31, a receptor/ligand system ruling adhesion and signaling in human leukocytes. Chem. Immunol.75(1015-0145), 99–120 (2000).
  • Nata K , TakamuraT, KarasawaTet al. Human gene encoding CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase): organization, nucleotide sequence and alternative splicing. Gene186(2), 285–292 (1997).
  • Liu Q , KriksunovIA, GraeffR, MunshiC, LeeHC, HaoQ. Crystal structure of human CD38 extracellular domain. Structure13(9), 1331–1339 (2005).
  • Malavasi F , DeaglioS, FunaroAet al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol. Rev.88(3), 841–886 (2008).
  • Morra M , ZubiaurM, TerhorstC, SanchoJ, MalavasiF. CD38 is functionally dependent on the TCR/CD3 complex in human T cells. FASEB J.12(7), 581–592 (1998).
  • Janossy G , TidmanN, PapageorgiouES, KungPC, GoldsteinG. Distribution of T lymphocyte subsets in the human bone marrow and thymus: an analysis with monoclonal antibodies. J. Immunol.126(4), 1608–1613 (1981).
  • Bataille R , JegoG, RobillardNet al. The phenotype of normal, reactive and malignant plasma cells. Identification of “many and multiple myelomas” and of new targets for myeloma therapy. Haematologica91(9), 1234–1240 (2006).
  • Cesano A , VisonneauS, DeaglioS, MalavasiF, SantoliD. Role of CD38 and its ligand in the regulation of MHC-nonrestricted cytotoxic T cells. J. Immunol.160(3), 1106–1115 (1998).
  • Dixit S , SinghA, Mamatha GS, Desai RS, JajuP. Apert’s syndrome: report of a new case and its management. Int. J. Clin. Pediatr. Dent.1(1), 48–53 (2008).
  • Laubach JP , TaiYT, RichardsonPG, AndersonKC. Daratumumab granted breakthrough drug status. Expert Opin. Investig. Drugs23(4), 445–452 (2014).
  • Lin P , OwensR, TricotG, WilsonCS. Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma. Am. J. Clin. Pathol.121(4), 482–488 (2004).
  • van De Donk NW , JanmaatML, MutisTet al. Monoclonal antibodies targeting CD38 in hematological malignancies and beyond. Immunol. Rev.270(1), 95–112 (2016).
  • Boslett J , HemannC, ChristofiFL, ZweierJL. Characterization of CD38 in the major cell types of the heart: endothelial cells highly express CD38 with activation by hypoxia/reoxygenation depleting NAD(P)H. Am. J. Physiol. Cell Physiol.314(3), C297–C309 (2017).
  • Guan XH , HongX, ZhaoNet al. CD38 promotes angiotensin II-induced cardiac hypertrophy. J. Cell. Mol. Med.21(8), 1492–1502 (2017).
  • Schiavoni I , ScagnolariC, HorensteinALet al. CD38 modulates respiratory syncytial virus-driven proinflammatory processes in human monocyte-derived dendritic cells. Immunology154(1), 122–131 (2017).
  • Lins L , FariasE, Brites-AlvesC, TorresA, NettoEM, BritesC. Increased expression of CD38 and HLADR in HIV-infected patients with oral lesion. J. Med. Virol.89(10), 1782–1787 (2017).
  • Wursch D , OrmsbyCE, Romero-RodriguezDPet al. CD38 expression in a subset of memory T cells is independent of cell cycling as a correlate of HIV disease progression. Dis. Markers2016, 9510756 (2016).
  • Deshpande DA , GuedesAG, LundFE, SubramanianS, WalsethTF, KannanMS. CD38 in the pathogenesis of allergic airway disease: potential therapeutic targets. Pharmacol. Ther.172, 116–126 (2017).
  • Henriques A , SilvaI, InesLet al. CD38, CD81 and BAFFR combined expression by transitional B cells distinguishes active from inactive systemic lupus erythematosus. Clin. Exp. Med.16(2), 227–232 (2016).
  • Mallone R , OrtolanE, PinachSet al. Anti-CD38 autoantibodies: characterisation in new-onset Type I diabetes and latent autoimmune diabetes of the adult (LADA) and comparison with other islet autoantibodies. Diabetologia45(12), 1667–1677 (2002).
  • Mallone R , PerinPC. Anti-CD38 autoantibodies in type? diabetes. Diabetes Metab. Res. Rev.22(4), 284–294 (2006).
  • Kim BJ , ChoiYM, RahSYet al. Seminal CD38 is a pivotal regulator for fetomaternal tolerance. Proc. Natl. Acad. Sci. USA112(5), 1559–1564 (2015).
  • Higashida H , MunesueT. [CD38 and autism spectrum disorders]. No To Hattatsu45(6), 431–435 (2013).
  • Boini KM , XiaM, XiongJ, LiC, PayneLP, LiPL. Implication of CD38 gene in podocyte epithelial-to-mesenchymal transition and glomerular sclerosis. J. Cell. Mol. Med.16(8), 1674–1685 (2012).
  • Joosse ME , MenckebergCL, DeRuiter LFet al. Frequencies of circulating regulatory TIGIT+CD38+ effector T cells correlate with the course of inflammatory bowel disease. Mucosal Immunol.12(1), 154–163 (2019).
  • Wang H , LiS, ZhangG, WuH, ChangX. Potential therapeutic effects of cyanidin-3-O-glucoside on rheumatoid arthritis by relieving inhibition of CD38+ NK cells on Treg cell differentiation. Arthritis Res. Ther.21(1), 220–220 (2019).
  • Deaglio S , MehtaK, MalavasiF. Human CD38: a (r)evolutionary story of enzymes and receptors. Leuk. Res.25(1), 1–12 (2001).
  • Quarona V , ZaccarelloG, ChillemiAet al. CD38 and CD157: a long journey from activation markers to multifunctional molecules. Cytometry B Clin. Cytom.84(4), 207–217 (2013).
  • Zeijlemaker W , GrobT, MeijerRet al. CD34+CD38- leukemic stem cell frequency to predict outcome in acute myeloid leukemia. Leukemia33(5), 1102–1112 (2019).
  • Malavasi F , DeaglioS, DamleR, CutronaG, FerrariniM, ChiorazziN. CD38 and chronic lymphocytic leukemia: a decade later. Blood118(13), 3470–3478 (2011).
  • Damle RN , WasilT, FaisFet al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood94(6), 1840–1847 (1999).
  • Liu X , GroganTR, HieronymusHet al. Low CD38 identifies progenitor-like inflammation-associated luminal cells that can initiate human prostate cancer and predict poor outcome. Cell Rep.17(10), 2596–2606 (2016).
  • Stone L . Prostate cancer: on the down-low – low luminal cell CD38 expression is prognostic. Nat. Rev. Urol.14(3), 133 (2017).
  • Zhang M , YangJ, ZhouJet al. Prognostic values of CD38+CD101+PD1+CD8+ T cells in pancreatic cancer. Immunol. Invest.48(5), 466–479 (2019).
  • Jiang Z , WuD, LinS, LiP. CD34 and CD38 are prognostic biomarkers for acute B lymphoblastic leukemia. Biomark. Res.4, 23 (2016).
  • Xu L , ChenD, LuC, LiuX, WuG, ZhangY. Advanced lung cancer is associated with decreased expression of perforin, CD95, CD38 by circulating CD3+CD8+ T lymphocytes. Ann. Clin. Lab. Sci.45(5), 528–532 (2015).
  • Lam JH , NgHHM, LimCJet al. Expression of CD38 on macrophages predicts improved prognosis in hepatocellular carcinoma. Front. Immunol.10, 2093 (2019).
  • Yeong J , LimJCT, LeeBet al. High densities of tumor-associated plasma cells predict improved prognosis in triple negative breast cancer. Front. Immunol.9, 1209–1209 (2018).
  • Perenkov AD , NovikovDV, SakharnovNAet al. [Heterogeneous expression of CD38 gene in tumor tissue in patients with colorectal cancer]. Mol. Biol.46(5), 786–791 (2012).
  • Zheng D , LiaoS, ZhuGet al. CD38 is a putative functional marker for side population cells in human nasopharyngeal carcinoma cell lines. Mol. Carcinog.55(3), 300–311 (2016).
  • Ge Y , LongY, XiaoSet al. CD38 affects the biological behavior and energy metabolism of nasopharyngeal carcinoma cells. Int. J. Oncol.54(2), 585–599 (2019).
  • Blacher E , BenBaruch B, LevyAet al. Inhibition of glioma progression by a newly discovered CD38 inhibitor. Int. J. Cancer136(6), 1422–1433 (2015).
  • Chmielewski JP , BowlbySC, WheelerFBet al. CD38 inhibits prostate cancer metabolism and proliferation by reducing cellular NAD(+) pools. Mol. Cancer Res.16(11), 1687–1700 (2018).
  • Liao S , XiaoS, ZhuGet al. CD38 is highly expressed and affects the PI3K/Akt signaling pathway in cervical cancer. Oncol. Rep.32(6), 2703–2709 (2014).
  • Liao S , XiaoS, ChenHet al. CD38 enhances the proliferation and inhibits the apoptosis of cervical cancer cells by affecting the mitochondria functions. Mol. Carcinog.56(10), 2245–2257 (2017).
  • Li Y , LuZ, CheYet al. Immune signature profiling identified predictive and prognostic factors for esophageal squamous cell carcinoma. Oncoimmunology6(11), e1356147 (2017).
  • Karimi-Busheri F , ZadorozhnyV, LiT, LinH, ShawlerDL, FakhraiH. Pivotal role of CD38 biomarker in combination with CD24, EpCAM, and ALDH for identification of H460 derived lung cancer stem cells. J. Stem Cells6(1), 9–20 (2011).
  • Bu X , KatoJ, HongJAet al. CD38 knockout suppresses tumorigenesis in mice and clonogenic growth of human lung cancer cells. Carcinogenesis39(2), 242–251 (2018).
  • Ehlerding EB , EnglandCG, JiangDet al. CD38 as a PET imaging target in lung cancer. Mol. Pharm.14(7), 2400–2406 (2017).
  • Cotner T , WilliamsJM, ChristensonL, ShapiroHM, StromTB, StromingerJ. Simultaneous flow cytometric analysis of human T cell activation antigen expression and DNA content. J. Exp. Med.157(2), 461–472 (1983).
  • Fox R , McMillanR, SpruceW, TaniP, MasonD. Analysis of T lymphocytes after bone marrow transplantation using monoclonal antibodies. Blood60(3), 578–582 (1982).
  • Burel JG , ApteSH, GrovesPL, KleinK, McCarthyJS, DoolanDL. Reduced plasmodium parasite burden associates with CD38+ CD4+ T cells displaying cytolytic potential and impaired IFN-gamma production. PLoS Pathog.12(9), e1005839 (2016).
  • Chatterjee S , DaenthanasanmakA, ChakrabortyPet al. CD38-NAD+axis regulates immunotherapeutic anti-tumor T cell response. Cell Metab.27(1), 85–100.e108 (2018).
  • Bettelli E , CarrierY, GaoWet al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature441(7090), 235–238 (2006).
  • Chen J , ChenYG, ReifsnyderPCet al. Targeted disruption of CD38 accelerates autoimmune diabetes in NOD/Lt mice by enhancing autoimmunity in an ADP-ribosyltransferase 2-dependent fashion. J. Immunol.176(8), 4590–4599 (2006).
  • Hubert S , RissiekB, KlagesKet al. Extracellular NAD+ shapes the Foxp3+ regulatory T cell compartment through the ART2-P2X7 pathway. J. Exp. Med.207(12), 2561–2568 (2010).
  • Feng X , ZhangL, AcharyaCet al. Targeting CD38 suppresses induction and function of T regulatory cells to mitigate immunosuppression in multiple myeloma. Clin. Cancer Res.23(15), 4290–4300 (2017).
  • Patton DT , WilsonMD, RowanWC, SoondDR, OkkenhaugK. The PI3K p110delta regulates expression of CD38 on regulatory T cells. PLoS ONE6(3), e17359 (2011).
  • Krejcik J , CasneufT, NijhofISet al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood128(3), 384–394 (2016).
  • Tai YT , AndersonKC. A new era of immune therapy in multiple myeloma. Blood128(3), 318–319 (2016).
  • Tai YT , AndersonKC. Targeting CD38 alleviates tumor-induced immunosuppression. Oncotarget8(68), 112166–112167 (2017).
  • Romero-Ramirez H , Morales-GuadarramaMT, PelayoR, Lopez-SantiagoR, Santos-ArgumedoL. CD38 expression in early B-cell precursors contributes to extracellular signal-regulated kinase-mediated apoptosis. Immunology144(2), 271–281 (2015).
  • Kumagai M , Coustan-SmithE, MurrayDJet al. Ligation of CD38 suppresses human B lymphopoiesis. J. Exp. Med.181(3), 1101–1110 (1995).
  • Quach TD , HopkinsTJ, HolodickNEet al. Human B-1 and B-2 B cells develop from Lin-CD34+CD38lo stem cells. J. Immunol.197(10), 3950–3958 (2016).
  • Liu XQ , HartDN, MacPhersonGG, GoodMF, WykesMN. Soluble CD38 significantly prolongs the lifespan of memory B-cell responses. Immunology125(1), 14–20 (2008).
  • Hwang HS , SongJH, HyoungBJet al. Clinical impacts of CD38+ B cells on acute cellular rejection with CD20+ B cells in renal allograft. Transplantation89(12), 1489–1495 (2010).
  • Fedele G , FrascaL, PalazzoR, FerreroE, MalavasiF, AusielloCM. CD38 is expressed on human mature monocyte-derived dendritic cells and is functionally involved in CD83 expression and IL-12 induction. Eur. J. Immunol.34(5), 1342–1350 (2004).
  • Frasca L , FedeleG, DeaglioSet al. CD38 orchestrates migration, survival, and Th1 immune response of human mature dendritic cells. Blood107(6), 2392–2399 (2006).
  • Viegas MS , DoCarmo A, SilvaTet al. CD38 plays a role in effective containment of mycobacteria within granulomata and polarization of Th1 immune responses against Mycobacterium avium. Microbes Infect.9(7), 847–854 (2007).
  • Partida-Sanchez S , GasserA, FliegertRet al. Chemotaxis of mouse bone marrow neutrophils and dendritic cells is controlled by adp-ribose, the major product generated by the CD38 enzyme reaction. J. Immunol.179(11), 7827–7839 (2007).
  • Shu B , FengY, GuiYet al. Blockade of CD38 diminishes lipopolysaccharide-induced macrophage classical activation and acute kidney injury involving NF-κB signaling suppression. Cell. Signal.42, 249–258 (2018).
  • Kang J , ParkKH, KimJJ, JoEK, HanMK, KimUH. The role of CD38 in Fcγ receptor (FcγR)-mediated phagocytosis in murine macrophages. J. Biol. Chem.287(18), 14502–14514 (2012).
  • Mallone R , FunaroA, ZubiaurMet al. Signaling through CD38 induces NK cell activation. Int. Immunol.13(4), 397–409 (2001).
  • Sconocchia G , TitusJA, MazzoniAet al. CD38 triggers cytotoxic responses in activated human natural killer cells. Blood94(11), 3864–3871 (1999).
  • Casneuf T , XuXS, AdamsHC3rdet al. Effects of daratumumab on natural killer cells and impact on clinical outcomes in relapsed or refractory multiple myeloma. Blood Adv.1(23), 2105–2114 (2017).
  • Deaglio S , ZubiaurM, GregoriniAet al. Human CD38 and CD16 are functionally dependent and physically associated in natural killer cells. Blood99(7), 2490–2498 (2002).
  • Gabrilovich DI , Ostrand-RosenbergS, BronteV. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol.12(4), 253–268 (2012).
  • Krejcik J , CasneufT, NijhofISet al. Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood128(3), 384–394 (2016).
  • Karakasheva TA , WaldronTJ, EruslanovEet al. CD38-expressing myeloid-derived suppressor cells promote tumor growth in a murine model of esophageal cancer. Cancer Res.75(19), 4074–4085 (2015).
  • Dilillo DJ , RavetchJV. Fc-receptor interactions regulate both cytotoxic and immunomodulatory therapeutic antibody effector functions. Cancer Immunol. Res.3(7), 704–713 (2015).
  • Stevenson FK , BellAJ, CusackRet al. Preliminary studies for an immunotherapeutic approach to the treatment of human myeloma using chimeric anti-CD38 antibody. Blood77(5), 1071–1079 (1991).
  • Boussi L , NiesvizkyR. Advances in immunotherapy in multiple myeloma. Curr. Opin. Oncol.29(6), 460–466 (2017).
  • De Weers M , TaiYT, VanDer Veer MSet al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J. Immunol.186(3), 1840–1848 (2011).
  • Overdijk MB , VerploegenS, BogelsMet al. Antibody-mediated phagocytosis contributes to the anti-tumor activity of the therapeutic antibody daratumumab in lymphoma and multiple myeloma. MAbs7(2), 311–321 (2015).
  • Van De Donk NW , MoreauP, PlesnerTet al. Clinical efficacy and management of monoclonal antibodies targeting CD38 and SLAMF7 in multiple myeloma. Blood127(6), 681–695 (2016).
  • Laubach JP , RichardsonPG. CD38-targeted immunochemotherapy in refractory multiple myeloma: a new horizon. Clin. Cancer Res.21(12), 2660–2662 (2015).
  • Magarotto V , SalviniM, BonelloF, BringhenS, PalumboA. Strategy for the treatment of multiple myeloma utilizing monoclonal antibodies: a new era begins. Leuk. Lymphoma57(3), 537–556 (2016).
  • Raje N , LongoDL. Monoclonal antibodies in multiple myeloma come of age. N. Engl. J. Med.373(13), 1264–1266 (2015).
  • Bride KL , VincentTL, ImSYet al. Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia (T-ALL). Blood131(9), 995–999 (2018).
  • Verma V , ShrimaliRK, AhmadSet al. PD-1 blockade in subprimed CD8 cells induces dysfunctional PD-1+CD38hi cells and anti-PD-1 resistance. Nat. Immunol.20(9), 1231–1243 (2019).
  • Chen L , DiaoL, YangYet al. CD38-mediated immunosuppression as a mechanism of tumor cell escape from PD-1/PD-L1 blockade. Cancer Discov.8(9), 1156–1175 (2018).
  • Malavasi F , FainiAC. Mechanism of action of a new anti-CD38 antibody: enhancing myeloma immunotherapy. Clin. Cancer Res.25(10), 2946–2948 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.