645
Views
0
CrossRef citations to date
0
Altmetric
Review

Clinical Implications of Near-Infrared Fluorescence Imaging in Cancer

, , &
Pages 1501-1511 | Published online: 10 Nov 2009

Bibliography

  • Frangioni JV : New technologies for human cancer imaging.J. Clin. Oncol.26(24), 4012–4021 (2008).
  • Brancato R , TrabucchiG: Fluorescein and indocyanine green angiography in vascular chorioretinal diseases.Semin. Ophthalmol.13(4), 189–198 (1998).
  • Flower RW , HochheimerBF: Indocyanine green dye fluorescence and infrared absorption choroidal angiography performed simultaneously with fluorescein angiography.Johns Hopkins Med. J.138(2), 33–42 (1976).
  • Choe R , CorluA, LeeKet al.: Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI.Med. Phys.32(4), 1128–1139 (2005).
  • Demos SG , Gandour-EdwardsR, RamsamoojR, WhiteR: Near-infrared autofluorescence imaging for detection of cancer.J. Biomed. Opt.9(3), 587–592 (2004).
  • Intes X : Time-domain optical mammography SoftScan: initial results.Acad. Radiol.12(8), 934–947 (2005).
  • Poplack SP , TostesonTD, WellsWAet al.: Electromagnetic breast imaging: results of a pilot study in women with abnormal mammograms.Radiology243(2), 350–359 (2007).
  • Rinneberg H , GrosenickD, MoestaKTet al.: Scanning time-domain optical mammography: detection and characterization of breast tumors in vivo.Technol. Cancer Res. Treat.4(5), 483–496 (2005).
  • Tromberg BJ , PogueBW, PaulsenKD, YodhAG, BoasDA, CerussiAE: Assessing the future of diffuse optical imaging technologies for breast cancer management.Med. Phys.35(6), 2443–2451 (2008).
  • van de Ven SM , EliasSG, WiethoffAJet al.: Diffuse optical tomography of the breast: preliminary findings of a new prototype and comparison with magnetic resonance imaging.Eur. Radiol.19(5), 1108–1113 (2009).
  • Weissleder R , PittetMJ: Imaging in the era of molecular oncology.Nature452(7187), 580–589 (2008).
  • Policard A : [Survey on the aspects offered by experimental tumors examined in the light of Wood].C. R. Séances Soc. Biol. Fil.91, 1423–1424 (1924).
  • Hoffman RM : The multiple uses of fluorescent proteins to visualize cancer in vivo.Nat. Rev. Cancer5(10), 796–806 (2005).
  • Ntziachristos V , BremerC, WeisslederR: Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging.Eur. Radiol.13(1), 195–208 (2003).
  • Ntziachristos V , RipollJ, WangLV, WeisslederR: Looking and listening to light: the evolution of whole-body photonic imaging.Nat. Biotechnol.23(3), 313–320 (2005).
  • Benson RC , KuesHA: Fluorescence properties of indocyanine green as related to angiography.Phys. Med. Biol.23(1), 159–163 (1978).
  • Ohnishi S , LomnesSJ, LaurenceRG, GogbashianA, MarianiG, FrangioniJV: Organic alternatives to quantum dots for intraoperative near-infrared fluorescent sentinel lymph node mapping.Mol. Imaging4(3), 172–181 (2005).
  • Ntziachristos V , YodhAG, SchnallM, ChanceB: Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement.Proc. Natl Acad. Sci. USA97(6), 2767–2772 (2000).
  • Achilefu S , DorshowRB, BugajJE, RajagopalanR: Novel receptor-targeted fluorescent contrast agents for in vivo tumor imaging.Invest. Radiol.35(8), 479–485 (2000).
  • Becker A , HesseniusC, LichaKet al.: Receptor-targeted optical imaging of tumors with near-infrared fluorescent ligands.Nat. Biotechnol.19(4), 327–331 (2001).
  • Bugaj JE , AchilefuS, DorshowRB, RajagopalanR: Novel fluorescent contrast agents for optical imaging of in vivo tumors based on a receptor-targeted dye-peptide conjugate platform.J. Biomed. Opt.6(2), 122–133 (2001).
  • Licha K , HesseniusC, BeckerAet al.: Synthesis, characterization, and biological properties of cyanine-labeled somatostatin analogues as receptor-targeted fluorescent probes.Bioconjug. Chem.12(1), 44–50 (2001).
  • Becker A , HesseniusC, BhargavaSet al.: Cyanine dye labeled vasoactive intestinal peptide and somatostatin analog for optical detection of gastroenteropancreatic tumors.Ann. NY Acad. Sci.921, 275–278 (2000).
  • Bhargava S , LichaK, KnauteTet al.: A complete substitutional analysis of VIP for better tumor imaging properties.J. Mol. Recognit.15(3), 145–153 (2002).
  • Folli S , WestermannP, BraichotteDet al.: Antibody-indocyanin conjugates for immunophotodetection of human squamous cell carcinoma in nude mice.Cancer Res.54(10), 2643–2649 (1994).
  • Barrett T , KoyamaY, HamaYet al.: In vivo diagnosis of epidermal growth factor receptor expression using molecular imaging with a cocktail of optically labeled monoclonal antibodies.Clin. Cancer Res.13(22 Pt 1), 6639–6648 (2007).
  • Ke S , WenX, GurfinkelMet al.: Near-infrared optical imaging of epidermal growth factor receptor in breast cancer xenografts.Cancer Res.63(22), 7870–7875 (2003).
  • Koyama Y , BarrettT, HamaY, RavizziniG, ChoykePL, KobayashiH: In vivo molecular imaging to diagnose and subtype tumors through receptor-targeted optically labeled monoclonal antibodies.Neoplasia9(12), 1021–1029 (2007).
  • Soukos NS , HamblinMR, KeelS, FabianRL, DeutschTF, HasanT: Epidermal growth factor receptor-targeted immunophotodiagnosis and photoimmunotherapy of oral precancer in vivo.Cancer Res.61(11), 4490–4496 (2001).
  • Achilefu S : Lighting up tumors with receptor-specific optical molecular probes.Technol. Cancer Res. Treat.3(4), 393–409 (2004).
  • Ogawa M , ReginoCA, ChoykePL, KobayashiH: In vivo target-specific activatable near-infrared optical labeling of humanized monoclonal antibodies.Mol. Cancer Ther.8(1), 232–239 (2009).
  • Bremer C , BredowS, MahmoodU, WeisslederR, TungCH: Optical imaging of matrix metalloproteinase-2 activity in tumors: feasibility study in a mouse model.Radiology221(2), 523–529 (2001).
  • Mahmood U , WeisslederR: Near-infrared optical imaging of proteases in cancer.Mol. Cancer Ther.2(5), 489–496 (2003).
  • Weissleder R , TungCH, MahmoodU, BogdanovAJr: In vivo imaging of tumors with protease-activated near-infrared fluorescent probes.Nat. Biotechnol.17(4), 375–378 (1999).
  • Bremer C , TungCH, BogdanovAJr, WeisslederR: Imaging of differential protease expression in breast cancers for detection of aggressive tumor phenotypes.Radiology222(3), 814–818 (2002).
  • Urano Y , AsanumaD, HamaYet al.: Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes.Nat. Med.15(1), 104–109 (2009).
  • Hama Y , UranoY, KoyamaY, GunnAJ, ChoykePL, KobayashiH: A self-quenched galactosamine-serum albumin-rhodamineX conjugate: a ‘smart’ fluorescent molecular imaging probe synthesized with clinically applicable material for detecting peritoneal ovarian cancer metastases.Clin. Cancer Res.13(21), 6335–6343 (2007).
  • Ogawa M , KosakaN, ChoykePL, KobayashiH: In vivo molecular imaging of cancer with a quenching near-infrared fluorescent probe using conjugates of monoclonal antibodies and indocyanine green.Cancer Res.69(4), 1268–1272 (2009).
  • Ogawa M , KosakaN, LongmireMR, UranoY, ChoykePL, KobayashiH: Fluorophore-quencher based activatable targeted optical probes for detecting in vivo cancer metastases.Mol. Pharm.6(2), 386–395 (2009).
  • Ogawa M , KosakaN, ChoykePL, KobayashiH: H-type dimer formation of fluorophores: a mechanism for activatable, in vivo optical molecular imaging.ACS Chem. Biol.4(7), 535–546 (2009).
  • Barrett T , ChoykePL, KobayashiH: Imaging of the lymphatic system: new horizons.Contrast Media Mol. Imaging.1(6), 230–245 (2006).
  • Kitai T , InomotoT, MiwaM, ShikayamaT: Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer.Breast Cancer12(3), 211–215 (2005).
  • Tagaya N , YamazakiR, NakagawaAet al.: Intraoperative identification of sentinel lymph nodes by near-infrared fluorescence imaging in patients with breast cancer.Am. J. Surg.195(6), 850–853 (2008).
  • Fujiwara M , MizukamiT, SuzukiA, FukamizuH: Sentinel lymph node detection in skin cancer patients using real-time fluorescence navigation with indocyanine green: preliminary experience.J. Plast. Reconstr. Aesthet. Surg.62(10), E373–E378 (2009).
  • Sevick-Muraca EM , SharmaR, RasmussenJCet al.: Imaging of lymph flow in breast cancer patients after microdose administration of a near-infrared fluorophore: feasibility study.Radiology246(3), 734–741 (2008).
  • Soltesz EG , KimS, KimSWet al.: Sentinel lymph node mapping of the gastrointestinal tract by using invisible light.Ann. Surg. Oncol.13(3), 386–396 (2006).
  • Soltesz EG , KimS, LaurenceRGet al.: Intraoperative sentinel lymph node mapping of the lung using near-infrared fluorescent quantum dots.Ann. Thorac. Surg.79(1), 269–277; discussion 269–277 (2005).
  • Tanaka E , ChoiHS, FujiiH, BawendiMG, FrangioniJV: Image-guided oncologic surgery using invisible light: completed pre-clinical development for sentinel lymph node mapping.Ann. Surg. Oncol.13(12), 1671–1681 (2006).
  • Hama Y , KoyamaY, UranoY, ChoykePL, KobayashiH: Two-color lymphatic mapping using Ig-conjugated near infrared optical probes.J. Invest. Dermatol.127(10), 2351–2356 (2007).
  • Hama Y , KoyamaY, UranoY, ChoykePL, KobayashiH: Simultaneous two-color spectral fluorescence lymphangiography with near infrared quantum dots to map two lymphatic flows from the breast and the upper extremity.Breast Cancer Res. Treat.103(1), 23–28 (2007).
  • Kobayashi H , KoyamaY, BarrettTet al.: Multimodal nanoprobes for radionuclide and five-color near-infrared optical lymphatic imaging.ACS Nano1(4), 258–264 (2007).
  • Kobayashi H , HamaY, KoyamaYet al.: Simultaneous multicolor imaging of five different lymphatic basins using quantum dots.Nano Lett.7(6), 1711–1716 (2007).
  • Gotoh K , YamadaT, IshikawaOet al.: A novel image-guided surgery of hepatocellular carcinoma by indocyanine green fluorescence imaging navigation.J. Surg. Oncol.100(1), 75–79 (2009).
  • Haglund MM , BergerMS, HochmanDW: Enhanced optical imaging of human gliomas and tumor margins.Neurosurgery38(2), 308–317 (1996).
  • Alencar H , FunovicsMA, FigueiredoJ, SawayaH, WeisslederR, MahmoodU: Colonic adenocarcinomas: near-infrared microcatheter imaging of smart probes for early detection – study in mice.Radiology244(1), 232–238 (2007).
  • Sheth RA , UpadhyayR, StangenbergL, ShethR, WeisslederR, MahmoodU: Improved detection of ovarian cancer metastases by intraoperative quantitative fluorescence protease imaging in a pre-clinical model.Gynecol. Oncol.112(3), 616–622 (2009).
  • Figueiredo JL , AlencarH, WeisslederR, MahmoodU: Near infrared thoracoscopy of tumoral protease activity for improved detection of peripheral lung cancer.Int. J. Cancer118(11), 2672–2677 (2006).
  • Kirsch DG , DinulescuDM, MillerJBet al.: A spatially and temporally restricted mouse model of soft tissue sarcoma.Nat. Med.13(8), 992–997 (2007).
  • El-Bayoumi E , SilvestriGA: Bronchoscopy for the diagnosis and staging of lung cancer.Semin. Respir. Crit. Care Med.29(3), 261–270 (2008).
  • Spiess PE , GrossmanHB: Fluorescence cystoscopy: is it ready for use in routine clinical practice?Curr. Opin. Urol.16(5), 372–376 (2006).
  • Ito S , MugurumaN, KimuraTet al.: Principle and clinical usefulness of the infrared fluorescence endoscopy.J. Med. Invest.53(1–2), 1–8 (2006).
  • Ito S , MugurumaN, KusakaYet al.: Detection of human gastric cancer in resected specimens using a novel infrared fluorescent anti-human carcinoembryonic antigen antibody with an infrared fluorescence endoscope in vitro.Endoscopy33(10), 849–853 (2001).
  • Tanaka E , ChoiHS, HumbletV, OhnishiS, LaurenceRG, FrangioniJV: Real-time intraoperative assessment of the extrahepatic bile ducts in rats and pigs using invisible near-infrared fluorescent light.Surgery144(1), 39–48 (2008).
  • Tanaka E , OhnishiS, LaurenceRG, ChoiHS, HumbletV, FrangioniJV: Real-time intraoperative ureteral guidance using invisible near-infrared fluorescence.J. Urol.178(5), 2197–2202 (2007).
  • Iga AM , RobertsonJH, WinsletMC, SeifalianAM: Clinical potential of quantum dots.J. Biomed. Biotechnol.2007(10), 76087 (2007).
  • Bentolila LA , EbensteinY, WeissS: Quantum dots for in vivo small-animal imaging.J. Nucl. Med.50(4), 493–496 (2009).
  • Pinaud F , MichaletX, BentolilaLAet al.: Advances in fluorescence imaging with quantum dot bio-probes.Biomaterials27(9), 1679–1687 (2006).
  • Kim S , LimYT, SolteszEGet al.: Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping.Nat. Biotechnol.22(1), 93–97 (2004).
  • Cai W , ShinDW, ChenKet al.: Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects.Nano Lett.6(4), 669–676 (2006).
  • Gao X , CuiY, LevensonRM, ChungLW, NieS: In vivo cancer targeting and imaging with semiconductor quantum dots.Nat. Biotechnol.22(8), 969–976 (2004).
  • Derfus A , ChanW, BhatiaS: Probing the cytotoxicity of semiconductor quantum dots.Nano Lett.4(1), 11–18 (2004).
  • Kirchner C , LiedlT, KuderaSet al.: Cytotoxicity of colloidal CdSe and CdSe/ZnS nanoparticles.Nano Lett.5(2), 331–338 (2005).
  • Lovric J , ChoSJ, WinnikFM, MaysingerD: Unmodified cadmium telluride quantum dots induce reactive oxygen species formation leading to multiple organelle damage and cell death.Chem. Biol.12(11), 1227–1234 (2005).
  • Ballou B : Quantum dot surfaces for use in vivo and in vitro.Curr. Top. Dev. Biol.70, 103–120 (2005).
  • Hoshino A , FujiokaK, OkuTet al.: Physicochemical properties and cellular toxicity of nanocrystal quantum dots depend on their surface modification.Nano Lett.4(11), 2163–2169 (2004).
  • Zhang T , StilwellJL, GerionDet al.: Cellular effect of high doses of silica-coated quantum dot profiled with high throughput gene expression analysis and high content cellomics measurements.Nano Lett.6(4), 800–808 (2006).
  • Choi HS , LiuW, MisraPet al.: Renal clearance of quantum dots.Nat. Biotechnol.25(10), 1165–1170 (2007).
  • Kim SW , ZimmerJP, OhnishiS, TracyJB, FrangioniJV, BawendiMG: Engineering InAs(x)P(1-x)/InP/ZnSe III-V alloyed core/shell quantum dots for the near-infrared.J. Am. Chem. Soc.127(30), 10526–10532 (2005).
  • Saxena V , SadoqiM, ShaoJ: Enhanced photo-stability, thermal-stability and aqueous-stability of indocyanine green in polymeric nanoparticulate systems.J. Photochem. Photobiol. B, Biol.74(1), 29–38 (2004).
  • Xu RX , HuangJ, XuJSet al.: Fabrication of indocyanine green encapsulated biodegradable microbubbles for structural and functional imaging of cancer.J. Biomed. Opt.14(3), 034020 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.