97
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Role of Prolonged Mitotic Checkpoint Activation in the Formation and Treatment of Cancer

&
Pages 1363-1370 | Published online: 10 Nov 2009

Bibliography

  • von Hansemann D : Ueber asymmetrische Zellheilteilung in epithelkrebsen und deren biologische bedeutung.Virschows Arch. Pathol. Anat.119, 299–326 (1890).
  • Dalton WB , YangVW: Mitotic origins of chromosomal instability in colorectal cancer.Curr. Colorectal Cancer Rep.3(2), 59–64 (2007).
  • Kops GJ , WeaverBA, ClevelandDW: On the road to cancer: aneuploidy and the mitotic checkpoint.Nat. Rev. Cancer5(10), 773–785 (2005).
  • Weaver BA , ClevelandDW: Does aneuploidy cause cancer?Curr. Opin. Cell Biol.18(6), 658–667 (2006).
  • Ganem NJ , StorchovaZ, PellmanD: Tetraploidy, aneuploidy and cancer.Curr. Opin. Genet. Dev.17(2), 157–162 (2007).
  • Rieder CL , MaiatoH: Stuck in division or passing through: what happens when cells cannot satisfy the spindle assembly checkpoint.Dev. Cell7(5), 637–651 (2004).
  • Jackson JR , PatrickDR, DarMM, HuangPS: Targeted anti-mitotic therapies: can we improve on tubulin agents?Nat. Rev. Cancer7(2), 107–117 (2007).
  • Therman E , KuhnEM: Mitotic modifications and aberrations in cancer.Crit. Rev. Oncog.1(3), 293–305 (1989).
  • Yang Z , LoncarekJ, KhodjakovA, RiederCL: Extra centrosomes and/or chromosomes prolong mitosis in human cells.Nat. Cell Biol.10(6), 748–751 (2008).
  • Sisken JE , BonnerSV, GraschSD, PowellDE, DonaldsonES: Alterations in metaphase durations in cells derived from human tumours.Cell Tissue Kinet.18(2), 137–146 (1985).
  • Sisken JE , BonnerSV, GraschSD: The prolongation of mitotic stages in SV40-transformed vs nontransformed human fibroblast cells.J. Cell Physiol.113(2), 219–223 (1982).
  • Hernando E , NahleZ, JuanGet al.: Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control.Nature430(7001), 797–802 (2004).
  • Sotillo R , HernandoE, Diaz-RodriguezEet al.: Mad2 overexpression promotes aneuploidy and tumorigenesis in mice.Cancer Cell11(1), 9–23 (2007).
  • Rajagopalan H , JallepalliPV, RagoCet al.: Inactivation of hCDC4 can cause chromosomal instability.Nature428(6978), 77–81 (2004).
  • Keck JM , SummersMK, TedescoDet al.: Cyclin E overexpression impairs progression through mitosis by inhibiting APC(Cdh1).J. Cell Biol.178(3), 371–385 (2007).
  • Austin KM , GuptaML, CoatsSAet al.: Mitotic spindle destabilization and genomic instability in Shwachman-Diamond syndrome.J. Clin. Invest.118(4), 1511–1518 (2008).
  • Perez-Moreno M , SongW, PasolliHA, WilliamsSE, FuchsE: Loss of p120 catenin and links to mitotic alterations, inflammation, and skin cancer.Proc. Natl Acad. Sci. USA105(40), 15399–15404 (2008).
  • Yamauchi T , IshidaoT, NomuraTet al.: A B-Myb complex containing clathrin and filamin is required for mitotic spindle function.EMBO J.27(13), 1852–1862 (2008).
  • Royle SJ , BrightNA, LagnadoL: Clathrin is required for the function of the mitotic spindle.Nature434(7037), 1152–1157 (2005).
  • Menssen A , EpanchintsevA, LodyginDet al.: c-MYC delays prometaphase by direct transactivation of MAD2 and BubR1: identification of mechanisms underlying c-MYC-induced DNA damage and chromosomal instability.Cell Cycle6(3), 339–352 (2007).
  • Cui Y , GuadagnoTM: B-Raf(V600E) signaling deregulates the mitotic spindle checkpoint through stabilizing Mps1 levels in melanoma cells.Oncogene27(22), 3122–3133 (2008).
  • Nguyen CL , MungerK: Human papillomavirus E7 protein deregulates mitosis via an association with nuclear mitotic apparatus protein 1.J. Virol.83(4), 1700–1707 (2009).
  • Diaz-Rodriguez E , SotilloR, SchvartzmanJM, BenezraR: Hec1 overexpression hyperactivates the mitotic checkpoint and induces tumor formation in vivo.Proc. Natl Acad. Sci. USA105(43), 16719–16724 (2008).
  • Shi J , OrthJD, MitchisonT: Cell type variation in responses to antimitotic drugs that target microtubules and kinesin-5.Cancer Res.68(9), 3269–3276 (2008).
  • Weaver BA , ClevelandDW: Decoding the links between mitosis, cancer, and chemotherapy: the mitotic checkpoint, adaptation, and cell death.Cancer Cell8(1), 7–12 (2005).
  • Gascoigne KE , TaylorSS: Cancer cells display profound intra- and interline variation following prolonged exposure to antimitotic drugs.Cancer Cell14(2), 111–122 (2008).
  • Thompson SL , ComptonDA: Examining the link between chromosomal instability and aneuploidy in human cells.J. Cell Biol.180(4), 665–672 (2008).
  • Brito DA , RiederCL: Mitotic checkpoint slippage in humans occurs via cyclin b1 destruction in the presence of an active checkpoint.Curr. Biol.16(12), 1194–1200 (2006).
  • Allan LA , ClarkePR: Phosphorylation of caspase-9 by CDK1.cyclin B1 protects mitotic cells against apoptosis.Mol. Cell26(2), 301–310 (2007).
  • Stukenberg PT : Triggering p53 after cytokinesis failure.J. Cell Biol.165(5), 607–608 (2004).
  • Cross SM , SanchezCA, MorganCAet al.: A p53-dependent mouse spindle checkpoint.Science267(5202), 1353–1356 (1995).
  • Di Leonardo A , KhanSH, LinkeSP, GrecoV, SeiditaG, WahlGM: DNA rereplication in the presence of mitotic spindle inhibitors in human and mouse fibroblasts lacking either p53 or pRb function.Cancer Res.57(6), 1013–1019 (1997).
  • Vogel C , KienitzA, HofmannI, MullerR, BastiansH: Crosstalk of the mitotic spindle assembly checkpoint with p53 to prevent polyploidy.Oncogene23(41), 6845–6853 (2004).
  • Andreassen PR , LohezOD, LacroixFB, MargolisRL: Tetraploid state induces p53-dependent arrest of nontransformed mammalian cells in G1.Mol. Biol. Cell12(5), 1315–1328 (2001).
  • Minn AJ , BoiseLH, ThompsonCB: Expression of Bcl-xL and loss of p53 can cooperate to overcome a cell cycle checkpoint induced by mitotic spindle damage.Genes Dev.10(20), 2621–2631 (1996).
  • Khan SH , WahlGM: p53 and pRb prevent rereplication in response to microtubule inhibitors by mediating a reversible G1 arrest.Cancer Res.58(3), 396–401 (1998).
  • Lanni JS , JacksT: Characterization of the p53-dependent postmitotic checkpoint following spindle disruption.Mol. Cell. Biol.18(2), 1055–1064 (1998).
  • Stewart ZA , LeachSD, PietenpolJA: p21(Waf1/Cip1) inhibition of cyclin E/Cdk2 activity prevents endoreduplication after mitotic spindle disruption.Mol. Cell. Biol.19(1), 205–215 (1999).
  • Galmarini CM , FaletteN, TaboneEet al.: Inactivation of wild-type p53 by a dominant negative mutant renders MCF-7 cells resistant to tubulin-binding agent cytotoxicity.Br. J. Cancer85(6), 902–908 (2001).
  • Kienitz A , VogelC, MoralesI, MullerR, BastiansH: Partial downregulation of MAD1 causes spindle checkpoint inactivation and aneuploidy, but does not confer resistance towards taxol.Oncogene24(26), 4301–4310 (2005).
  • Wu GS , El-DieryWS: p53 and chemosensitivity.Nat. Med.2(3), 255–256 (1996).
  • Yamaguchi H , ChenJ, BhallaK, WangHG: Regulation of Bax activation and apoptotic response to microtubule-damaging agents by p53 transcription-dependent and -independent pathways.J. Biol. Chem.279(38), 39431–39437 (2004).
  • Woods CM , ZhuJ, McQueneyPA, BollagD, LazaridesE: Taxol-induced mitotic block triggers rapid onset of a p53-independent apoptotic pathway.Mol. Med.1(5), 506–526 (1995).
  • Strobel T , SwansonL, KorsmeyerS, CannistraSA: BAX enhances paclitaxel-induced apoptosis through a p53-independent pathway.Proc. Natl Acad. Sci. USA93(24), 14094–14099 (1996).
  • Wahl AF , DonaldsonKL, FairchildCet al.: Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis.Nat. Med.2(1), 72–79 (1996).
  • Bunz F , FauthC, SpeicherMRet al.: Targeted inactivation of p53 in human cells does not result in aneuploidy.Cancer Res.62(4), 1129–1133 (2002).
  • Ganem NJ , GodinhoSA, PellmanD: A mechanism linking extra centrosomes to chromosomal instability.Nature460(7252), 278–282 (2009).
  • Weaver BA , SilkAD, MontagnaC, Verdier-PinardP, ClevelandDW: Aneuploidy acts both oncogenically and as a tumor suppressor.Cancer Cell11(1), 25–36 (2007).
  • van Deursen JM : Rb loss causes cancer by driving mitosis mad.Cancer Cell11(1), 1–3 (2007).
  • Fujiwara T , BandiM, NittaM, IvanovaEV, BronsonRT, PellmanD: Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells.Nature437(7061), 1043–1047 (2005).
  • Duelli DM , Padilla-NashHM, BermanD, MurphyKM, RiedT, LazebnikY: A virus causes cancer by inducing massive chromosomal instability through cell fusion.Curr. Biol.17(5), 431–437 (2007).
  • Roh M , FrancoOE, HaywardSW, van der MeerR, AbdulkadirSA: A role for polyploidy in the tumorigenicity of Pim-1-expressing human prostate and mammary epithelial cells.PLoS ONE3(7), E2572 (2008).
  • Rajagopalan H , NowakMA, VogelsteinB, LengauerC: The significance of unstable chromosomes in colorectal cancer.Nat. Rev. Cancer3(9), 695–701 (2003).
  • Castedo M , CoquelleA, VivetSet al.: Apoptosis regulation in tetraploid cancer cells.EMBO J.25(11), 2584–2595 (2006).
  • Loeb KR , KostnerH, FirpoEet al.: A mouse model for cyclin E-dependent genetic instability and tumorigenesis.Cancer Cell.8(1), 35–47 (2005).
  • Wong C , StearnsT: Mammalian cells lack checkpoints for tetraploidy, aberrant centrosome number, and cytokinesis failure.BMC Cell Biol.6(1), 6 (2005).
  • Dalton WB , NandanMO, MooreRT, YangVW: Human cancer cells commonly acquire DNA damage during mitotic arrest.Cancer Res.67(24), 11487–11492 (2007).
  • Quignon F , RozierL, LachagesAM, BiethA, SimiliM, DebatisseM: Sustained mitotic block elicits DNA breaks: one-step alteration of ploidy and chromosome integrity in mammalian cells.Oncogene26(2), 165–172 (2007).
  • Stevens JB , LiuG, BremerSWet al.: Mitotic cell death by chromosome fragmentation.Cancer Res.67(16), 7686–7694 (2007).
  • Swanton C , NickeB, SchuettMet al.: Chromosomal instability determines taxane response.Proc. Natl Acad. Sci. USA106(21), 8671–8676 (2009).
  • Farmer H , McCabeN, LordCJet al.: Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy.Nature434(7035), 917–921 (2005).
  • Yeasmin S , NakayamaK, IshibashiMet al.: Therapy-related myelodysplasia and acute myeloid leukemia following paclitaxel- and carboplatin-based chemotherapy in an ovarian cancer patient: a case report and literature review.Int. J. Gynecol. Cancer18(6), 1371–1376 (2008).
  • Seymour JF , JunejaSK, CampbellLJ, EllimsPH, EsteyEH, PrinceHM: Secondary acute myeloid leukemia with inv(16): report of two cases following paclitaxel-containing chemotherapy and review of the role of intensified ara-C therapy.Leukemia13(11), 1735–1740 (1999).
  • Dissing M , Le BeauMM, Pedersen-BjergaardJ: Inversion of chromosome 16 and uncommon rearrangements of the CBFB and MYH11 genes in therapy-related acute myeloid leukemia: rare events related to DNA-topoisomerase II inhibitors?J. Clin. Oncol.16(5), 1890–1896 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.