911
Views
1
CrossRef citations to date
0
Altmetric
Review

Mechanisms of the Epithelial–Mesenchymal Transition by TGF-β

, &
Pages 1145-1168 | Published online: 26 Oct 2009

Bibliography

  • Baum B , SettlemanJ, QuinlanMP: Transitions between epithelial and mesenchymal states in development and disease.Semin. Cell Dev. Biol.19, 294–308 (2008).
  • Yang J , WeinbergRA: Epithelial–mesenchymal transition: at the crossroads of development and tumor metastasis.Dev. Cell.14, 818–829 (2008).
  • Elenbaas B , WeinbergRA: Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation.Exp. Cell Res.264, 169–184 (2001).
  • Moustakas A , HeldinCH: Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression.Cancer Sci.98, 1512–1520 (2007).
  • Zavadil J , BottingerEP: TGF-β and epithelial-to-mesenchymal transitions.Oncogene24, 5764–5774 (2005).
  • Thiery JP : Epithelial–mesenchymal transitions in development and pathologies.Curr. Opin. Cell Biol.15, 740–746 (2003).
  • Shook D , KellerR: Mechanisms, mechanics and function of epithelial–mesenchymal transitions in early development.Mech. Dev.120, 1351–1383 (2003).
  • Thiery JP : Epithelial–mesenchymal transitions in tumor progression.Nat. Rev. Cancer2, 442–454 (2002).
  • Willis BC , BorokZ: TGF-β-induced EMT: mechanisms and implications for fibrotic lung disease.Am. J. Physiol. Lung Cell. Mol. Physiol.293, L525–L534 (2007).
  • Blobe GC , SchiemannWP, LodishHF: Role of TGF-β in human disease.N. Engl. J. Med.342, 1350–1358 (2000).
  • Galliher AJ , NeilJR, SchiemannWP: Role of TGF-β in cancer progression.Future Oncol.2, 743–763 (2006).
  • Massague J , GomisRR: The logic of TGF-β signaling.FEBS Lett.580, 2811–2820 (2006).
  • Siegel PM , MassagueJ: Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer.Nat. Rev. Cancer3, 807–821 (2003).
  • Savagner P : Leaving the neighborhood: molecular mechanisms involved during epithelial–mesenchymal transition.Bioessays23, 912–923 (2001).
  • Miettinen PJ , EbnerR, LopezAR, DerynckR: TGF-β induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors.J. Cell Biol.127, 2021–2036 (1994).
  • Kaartinen V , VonckenJW, ShulerCet al.: Abnormal lung development and cleft palate in mice lacking TGF-β3 indicates defects of epithelial–mesenchymal interaction.Nature Genet.11, 415–421 (1995).
  • Romano LA , RunyanRB: Slug is an essential target of TGF-β2 signaling in the developing chicken heart.Dev. Biol.223, 91–102 (2000).
  • Saika S , Kono-SaikaS, OhnishiYet al.: Smad3 signaling is required for epithelial–mesenchymal transition of lens epithelium after injury.Am. J. Pathol.164, 651–663 (2004).
  • Saika S , Kono-SaikaS, TanakaTet al.: Smad3 is required for dedifferentiation of retinal pigment epithelium following retinal detachment in mice.Lab. Invest.84, 1245–1258 (2004).
  • Sato M , MuragakiY, SaikaS, RobertsAB, OoshimaA: Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction.J. Clin. Invest.112, 1486–1494 (2003).
  • Feng XH , DerynckR: Specificity and versatility in TGF-β signaling through Smads.Annu. Rev. Cell Dev. Biol.21, 659–693 (2005).
  • Moustakas A , HeldinCH: Non-Smad TGF-β signals.J. Cell Sci.118, 3573–3584 (2005).
  • Shi Y , MassagueJ: Mechanisms of TGF-β signaling from cell membrane to the nucleus.Cell113, 685–700 (2003).
  • Tsukazaki T , ChiangTA, DavisonAF, AttisanoL, WranaJL: SARA, a FYVE domain protein that recruits Smad2 to the TGF-β receptor.Cell95, 779–791 (1998).
  • Miura S , TakeshitaT, AsaoHet al.: Hgs (Hrs), a FYVE domain protein, is involved in Smad signaling through cooperation with SARA.Mol. Cell Biol.20, 9346–9355 (2000).
  • Hocevar BA , SmineA, XuXX, HowePH: The adaptor molecule Disabled-2 links the TGF-β receptors to the Smad pathway.EMBO J.20, 2789–2801 (2001).
  • Hayashi H , AbdollahS, QiuYet al.: The MAD-related protein Smad7 associates with the TGF-β receptor and functions as an antagonist of TGF-β signaling.Cell89, 1165–1173 (1997).
  • Nakao A , AfrakhtM, MorenAet al.: Identification of Smad7, a TGF-β-inducible antagonist of TGF-β signalling.Nature389, 631–635 (1997).
  • Souchelnytskyi S , NakayamaT, NakaoAet al.: Physical and functional interaction of murine and Xenopus Smad7 with bone morphogenetic protein receptors and TGF-β receptors.J. Biol. Chem.273, 25364–25370 (1998).
  • Ebisawa T , FukuchiM, MurakamiGet al.: Smurf1 interacts with TGF-β type I receptor through Smad7 and induces receptor degradation.J. Biol. Chem.276, 12477–12480 (2001).
  • Kavsak P , RasmussenRK, CausingCGet al.: Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF-β receptor for degradation.Mol. Cell6, 1365–1375 (2000).
  • Datta PK , MosesHL: STRAP and Smad7 synergize in the inhibition of TGF-β signaling.Mol. Cell. Biol.20, 3157–3167 (2000).
  • Ibarrola N , KratchmarovaI, NakajimaDet al.: Cloning of a novel signaling molecule, AMSH-2, that potentiates TGF-β signaling.BMC Cell Biol.5, 2 (2004).
  • Koinuma D , ShinozakiM, KomuroAet al.: Arkadia amplifies TGF-β superfamily signalling through degradation of Smad7.EMBO J.22, 6458–6470 (2003).
  • Liu FY , LiXZ, PengYM, LiuH, LiuYH: Arkadiα-SMAd7-mediated positive regulation of TGF-β signaling in a rat model of tubulointerstitial fibrosis.Am. J. Nephrol.27, 176–183 (2007).
  • Liu W , RuiH, WangJet al.: Axin is a scaffold protein in TGF-β signaling that promotes degradation of Smad7 by Arkadia.EMBO J.25, 1646–1658 (2006).
  • Bakin AV , RinehartC, TomlinsonAK, ArteagaCL: p38 mitogen-activated protein kinase is required for TGF-β-mediated fibroblastic transdifferentiation and cell migration.J. Cell Sci.115, 3193–3206 (2002).
  • Bakin AV , TomlinsonAK, BhowmickNA, MosesHL, ArteagaCL: Phosphatidylinositol 3-kinase function is required for TGF-β-mediated epithelial to mesenchymal transition and cell migration.J. Biol. Chem.275, 36803–36810 (2000).
  • Bhowmick NA , ZentR, GhiassiM, McDonnellM, MosesHL: Integrin β1 signaling is necessary for TGF-β activation of p38MAPK and epithelial plasticity.J. Biol. Chem.276, 46707–46713 (2001).
  • Lamouille S , DerynckR: Cell size and invasion in TGF-β induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway.J. Cell Biol.178, 437–451 (2007).
  • Perlman R , SchiemannWP, BrooksMW, LodishHF, WeinbergRA: TGF-β-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation.Nat. Cell Biol.3, 708–714 (2001).
  • Zavadil J , BitzerM, LiangDet al.: Genetic programs of epithelial cell plasticity directed by TGF-β.Proc. Natl Acad. Sci. USA98, 6686–6691 (2001).
  • Galliher AJ , SchiemannWP: β3 integrin and Src facilitate TGF-β mediated induction of epithelial–mesenchymal transition in mammary epithelial cells.Breast Cancer Res.8, R42 (2006).
  • Galliher AJ , SchiemannWP: Src phosphorylates Tyr284 in TGF-β type II receptor and regulates TGF-β stimulation of p38 MAPK during breast cancer cell proliferation and invasion.Cancer Res.67, 3752–3758 (2007).
  • Galliher-Beckley AJ , SchiemannWP: Grb2 binding to Tyr284 in TGF-β is essential for mammary tumor growth and metastasis stimulated by TGF-β.Carcinogenesis29, 244–251 (2008).
  • Azuma M , MotegiK, AotaK, YamashitaT, YoshidaH, SatoM: TGF-β1 inhibits NF-κB activity through induction of IκBα expression in human salivary gland cells: a possible mechanism of growth suppression by TGF-β1.Exp. Cell Res.250, 213–222 (1999).
  • Neil JR , SchiemannWP: Altered TAB1:IkB kinase interaction promotes TGF-β-mediated NF-κB activation during breast cancer progression.Cancer Res.68, 1462–1470 (2008).
  • Arsura M , PantaGR, BilyeuJDet al.: Transient activation of NF-κB through a TAK1//IKK kinase pathway by TGF-β1 inhibits AP-1//SMAD signaling and apoptosis: implications in liver tumor formation.Oncogene22, 412–425 (2003).
  • Kim DW , SovakMA, ZanieskiGet al.: Activation of NF-κB/Rel occurs early during neoplastic transformation of mammary cells.Carcinogenesis21, 871–879 (2000).
  • Park J-I , LeeM-G, ChoKet al.: TGF-β1 activates interleukin-6 expression in prostate cancer cells through the synergistic collaboration of the Smad2, p38-NF-κB, JNK, and Ras signaling pathways. Oncogene22, 4314–4332 (2003).
  • Rayet B , GelinasC: Aberrant Rel/NF-κB genes and activity in human cancer.Oncogene18, 6938–6947 (1999).
  • Horowitz JC , RogersDS, SharmaVet al.: Combinatorial activation of FAK and AKT by TGF-β1 confers an anoikis-resistant phenotype to myofibroblasts.Cell Signal.19, 761–771 (2007).
  • Thannickal VJ , LeeDY, WhiteESet al.: Myofibroblast differentiation by TGF-β1 is dependent on cell adhesion and integrin signaling via focal adhesion kinase.J. Biol. Chem.278, 12384–12389 (2003).
  • Park SS , EomYW, KimEHet al.: Involvement of c-Src kinase in the regulation of TGF-β1-induced apoptosis.Oncogene23, 6272–6281 (2004).
  • Wang S , WilkesMC, LeofEB, HirschbergR: Imatinib mesylate blocks a non-Smad TGF-β pathway and reduces renal fibrogenesis in vivo.FASEB J.19, 1–11 (2005).
  • Wilkes MC , LeofEB: TGF-β activation of c-Abl is independent of receptor internalization and regulated by phosphatidylinositol 3-kinase and PAK2 in mesenchymal cultures.J. Biol. Chem.281, 27846–27854 (2006).
  • Ebnet K , SuzukiA, OhnoS, VestweberD: Junctional adhesion molecules (JAMs): more molecules with dual functions?J. Cell Sci.117, 19–29 (2004).
  • Schneeberger EE , LynchRD: The tight junction: a multifunctional complex.Am. J. Physiol. Cell. Physiol.286, C1213–C1228 (2004).
  • Itoh M , BissellMJ: The organization of tight junctions in epithelia: implications for mammary gland biology and breast tumorigenesis.J. Mammary Gland Biol. Neoplasia8, 449–462 (2003).
  • Bose R , WranaJL: Regulation of Par6 by extracellular signals.Curr. Opin. Cell Biol.18, 206–212 (2006).
  • Ozdamar B , BoseR, Barrios-RodilesM, WangHR, ZhangY, WranaJL: Regulation of the polarity protein Par6 by TGF-β receptors controls epithelial cell plasticity.Science307, 1603–1609 (2005).
  • Takaishi K , SasakiT, KotaniH, NishiokaH, TakaiY: Regulation of cell–cell adhesion by Rac and Rho small G proteins in MDCK Cells.J. Cell Biol.139, 1047–1059 (1997).
  • Niessen CM : Tight junctions/adherens junctions: basic structure and function.J. Invest. Dermatol.127, 2525–2532 (2007).
  • Ridley AJ , HallA: The small GTP-binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors.Cell70, 389–399 (1992).
  • Bhowmick NA , GhiassiM, BakinAet al.: TGF-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism.Mol. Biol. Cell12, 27–36 (2001).
  • Mueller MM , FusenigNE: Friends or foes - bipolar effects of the tumour stroma in cancer.Nat. Rev. Cancer4, 839–849 (2004).
  • Kaplan RN , RafiiS, LydenD: Preparing the ‘soil‘: the premetastatic niche.Cancer Res.66, 11089–11093 (2006).
  • Tlsty TD , CoussensLM: Tumor stroma and regulation of cancer development.Annu. Rev. Pathol.1, 119–150 (2006).
  • Park CC , BissellMJ, Barcellos-HoffMH: The influence of the microenvironment on the malignant phenotype.Mol. Med. Today6, 324–329 (2000).
  • Egeblad M , WerbZ: New functions for the matrix metalloproteinases in cancer progression.Nat. Rev. Cancer2, 161–174 (2002).
  • Mott JD , WerbZ: Regulation of matrix biology by matrix metalloproteinases.Curr. Opin. Cell Biol.16, 558–564 (2004).
  • Duivenvoorden WC , HirteHW, SinghG: TGF-β1 acts as an inducer of matrix metalloproteinase expression and activity in human bone-metastasizing cancer cells.Clin. Exp. Metastasis17, 27–34 (1999).
  • Kim ES , SohnYW, MoonA: TGF-β-induced transcriptional activation of MMP-2 is mediated by activating transcription factor (ATF)2 in human breast epithelial cells.Cancer Lett.252, 147–156 (2007).
  • Coussens LM , TinkleCL, HanahanD, WerbZ: MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis.Cell103, 481–490 (2000).
  • Paszek MJ , WeaverVM: The tension mounts: mechanics meets morphogenesis and malignancy.J. Mammary Gland Biol. Neoplasia.9, 325–342 (2004).
  • Anderson AR , WeaverAM, CummingsPT, QuarantaV: Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment.Cell127, 905–915 (2006).
  • Sternlicht MD , BissellMJ, WerbZ: The matrix metalloproteinase stromelysin-1 acts as a natural mammary tumor promoter.Oncogene19, 1102–1113 (2000).
  • Sternlicht MD , LochterA, SympsonCJet al.: The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis.Cell98, 137–146 (1999).
  • Radisky DC , LevyDD, LittlepageLEet al.: Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability.Nature436, 123–127 (2005).
  • Radisky DC , KennyPA, BissellMJ: Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT?J. Cell Biochem.101, 830–839 (2007).
  • Huber MA , KrautN, BeugH: Molecular requirements for epithelial–mesenchymal transition during tumor progression.Curr. Opin. Cell Biol.17, 548–558 (2005).
  • Gotzmann J , MikulaM, EgerAet al.: Molecular aspects of epithelial cell plasticity: implications for local tumor invasion and metastasis.Mutat. Res.566, 9–20 (2004).
  • Jechlinger M , GrunertS, BeugH: Mechanisms in epithelial plasticity and metastasis: insights from 3D cultures and expression profiling.J. Mammary Gland Biol. Neoplasia7, 415–432 (2002).
  • Cavallaro U , NiedermeyerJ, FuxaM, ChristoforiG: N-CAM modulates tumour-cell adhesion to matrix by inducing FGF-receptor signalling.Nat. Cell Biol.3, 650–657 (2001).
  • Lehembre F , YilmazM, WickiAet al.: NCAM-induced focal adhesion assembly: a functional switch upon loss of E-cadherin.EMBO J.27, 2603–2615 (2008).
  • Illman SA , LehtiK, Keski-OjaJ, LohiJ: Epilysin (MMP-28) induces TGF-β mediated epithelial to mesenchymal transition in lung carcinoma cells.J. Cell Sci.119, 3856–3865 (2006).
  • Illman SA , LohiJ, Keski-OjaJ: Epilysin (MMP-28) – structure, expression and potential functions.Exp. Dermatol.17, 897–907 (2008).
  • Harbeck N , KatesRE, SchmittMet al.: Urokinase-type plasminogen activator and its inhibitor type 1 predict disease outcome and therapy response in primary breast cancer.Clin. Breast Cancer5, 348–352 (2004).
  • Duffy MJ , DugganC: The urokinase plasminogen activator system: a rich source of tumor markers for the individualized management of patients with cancer.Clin. Biochem.37, 541–548 (2004).
  • Mitra SK , LimST, ChiA, SchlaepferDD: Intrinsic focal adhesion kinase activity controls orthotopic breast carcinoma metastasis via the regulation of urokinase plasminogen activator expression in a syngenetic tumor model.Oncogene25, 4429–4440 (2006).
  • Lin SW , KeFC, HsiaoPW, LeePP, LeeMT, HwangJJ: Critical involvement of ILK in TGF-β1-stimulated invasion/migration of human ovarian cancer cells is associated with urokinase plasminogen activator system.Exp. Cell Res.313, 602–613 (2007).
  • Lester RD , JoM, MontelV, TakimotoS, GoniasSL: uPAR induces epithelial mesenchymal transition in hypoxic breast cancer cells.J. Cell Biol.178, 425–436 (2007).
  • Santibanez JF : JNK mediates TGF-β1-induced epithelial mesenchymal transdifferentiation of mouse transformed keratinocytes.FEBS Lett.580, 5385–5391 (2006).
  • Whitley BR , ChurchFC: Wound-induced migration of MDA-MB-435 and SKOV-3 cancer cells is regulated by plasminogen activator inhibitor-1.Int. J. Oncol.27, 749–757 (2005).
  • Binder BR , ChristG, GruberFet al.: Plasminogen activator inhibitor 1: physiological and pathophysiological roles.News Physiol. Sci.17, 56–61 (2002).
  • Shetty S , ShettyP, IdellS, VelusamyT, BhandaryYP, ShettyRS: Regulation of plasminogen activator inhibitor-1 expression by tumor suppressor protein p53.J. Biol. Chem.283, 19570–19580 (2008).
  • Kortlever RM , BernardsR: Senescence, wound healing and cancer: the PAI-1 connection.Cell Cycle5, 2697–2703 (2006).
  • Whitley BR , PalmieriD, TwerdiCD, ChurchFC: Expression of active plasminogen activator inhibitor-1 reduces cell migration and invasion in breast and gynecological cancer cells.Exp. Cell Res.296, 151–162 (2004).
  • Descotes F , RicheB, SaezSet al.: Plasminogen activator inhibitor type 1 is the most significant of the usual tissue prognostic factors in node-negative breast ductal adenocarcinoma independent of urokinase-type plasminogen activator.Clin. Breast Cancer8, 168–177 (2008).
  • Wienke D , DaviesGC, JohnsonDAet al.: The collagen receptor Endo180 (CD280) is expressed on basal-like breast tumor cells and promotes tumor growth in vivo.Cancer Res.67, 10230–10240 (2007).
  • Kim ES , KimMS, MoonA: TGF-β in conjunction with H-Ras activation promotes malignant progression of MCF10A breast epithelial cells.Cytokine29, 84–91 (2005).
  • Ignotz RA , MassagueJ: TGF-β stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix.J. Biol. Chem.261, 4337–4345 (1986).
  • Xie L , LawB, AakreMet al.: TGF-β-regulated gene expression in a mouse mammary gland epithelial cell line.Breast Cancer Res.5, R187–R198 (2003).
  • Maschler S , WirlG, SpringHet al.: Tumor cell invasiveness correlates with changes in integrin expression and localization.Oncogene24, 2032–2041 (2005).
  • Kang Y , MassagueJ: Epithelial–mesenchymal transitions: Twist in development and metastasis.Cell118, 277–279 (2004).
  • Bremnes RM , VeveR, HirschFR, FranklinWA: The E-cadherin cell–cell adhesion complex and lung cancer invasion, metastasis, and prognosis.Lung Cancer36, 115–124 (2002).
  • Graff JR , GreenbergVE, HermanJGet al.: Distinct patterns of E-cadherin CpG island methylation in papillary, follicular, Hurthle’s cell, and poorly differentiated human thyroid carcinoma.Cancer Res.58, 2063–2066 (1998).
  • Comijn J , BerxG, VermassenPet al.: The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion.Mol. Cell7, 1267–1278 (2001).
  • Peinado H , OlmedaD, CanoA: Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype?Nat. Rev. Cancer7, 415–428 (2007).
  • Cano A , Perez-MorenoMA, RodrigoIet al.: The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression.Nat. Cell Biol.2, 76–83 (2000).
  • Thuault S , ValcourtU, PetersenM, ManfiolettiG, HeldinCH, MoustakasA: TGF-β employs HMGA2 to elicit epithelial–mesenchymal transition.J. Cell Biol.174, 175–183 (2006).
  • Hazan RB , PhillipsGR, QiaoRF, NortonL, AaronsonSA: Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis.J. Cell Biol.148, 779–790 (2000).
  • Gravdal K , HalvorsenOJ, HaukaasSA, AkslenLA: A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer.Clin. Cancer Res.13, 7003–7011 (2007).
  • Pyo SW , HashimotoM, KimYSet al.: Expression of E-cadherin, P-cadherin and N-cadherin in oral squamous cell carcinoma: correlation with the clinicopathologic features and patient outcome.J. Craniomaxillofac. Surg.35, 1–9 (2007).
  • Yang L , HuangJ, RenXet al.: Abrogation of TGF-β signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis.Cancer Cell.13, 23–35 (2008).
  • Nam JS , TerabeM, MamuraMet al.: An anti-TGF-β antibody suppresses metastasis via cooperative effects on multiple cell compartments.Cancer Res.68, 3835–3843 (2008).
  • Grunert S , JechlingerM, BeugH: Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis.Nat. Rev. Mol. Cell Biol.4, 657 (2003).
  • Masszi A , Di CianoC, SirokmanyGet al.: Central role for Rho in TGF-β1-induced α-smooth muscle actin expression during epithelial–mesenchymal transition.Am. J. Physiol. Renal Physiol.284, F911–F924 (2003).
  • Yazhou C , WenlvS, WeidongZ, LicunW: Clinicopathological significance of stromal myofibroblasts in invasive ductal carcinoma of the breast.Tumour Biol.25, 290–295 (2004).
  • Cary LA , GuanJL: Focal adhesion kinase in integrin-mediated signaling.Front. Biosci.4, D102–D113 (1999).
  • Cary LA , HanDC, GuanJL: Integrin-mediated signal transduction pathways.Histol. Histopathol.14, 1001–1009 (1999).
  • Schwartz MA , GinsbergMH: Networks and crosstalk: integrin signalling spreads.Nat. Cell Biol.4, E65–E68 (2002).
  • Hood JD , ChereshDA: Role of integrins in cell invasion and migration.Nat. Rev. Cancer.2, 91–100 (2002).
  • Ginsberg MH , PartridgeA, ShattilSJ: Integrin regulation.Curr. Opin. Cell Biol.17, 509–516 (2005).
  • Guo W , GiancottiFG: Integrin signalling during tumour progression.Nat. Rev. Mol. Cell Biol.5, 816–826 (2004).
  • Sieg DJ , HauckCR, IlicDet al.: FAK integrates growth-factor and integrin signals to promote cell migration.Nat. Cell Biol.2, 249–256 (2000).
  • Chen SY , ChenHC: Direct interaction of focal adhesion kinase (FAK) with Met is required for FAK to promote hepatocyte growth factor-induced cell invasion.Mol. Cell. Biol.26, 5155–5167 (2006).
  • Mizejewski GJ : Role of integrins in cancer: survey of expression patterns.Proc. Soc. Exp. Biol. Med.222, 124–138 (1999).
  • Sheppard D , CohenDS, WangA, BuskM: TGF-β differentially regulates expression of integrin subunits in guinea pig airway epithelial cells.J. Biol. Chem.267, 17409–17414 (1992).
  • Kumar NM , SigurdsonSL, SheppardD, Lwebuga-MukasaJS: Differential modulation of integrin receptors and extracellular matrix laminin by TGF-β1 in rat alveolar epithelial cells.Exp. Cell Res.221, 385–394 (1995).
  • Wang A , YokosakiY, FerrandoR, BalmesJ, SheppardD: Differential regulation of airway epithelial integrins by growth factors.Am. J. Respir. Cell Mol. Biol.15, 664–672 (1996).
  • Munger JS , HuangX, KawakatsuHet al.: The integrin αvβ6 binds and activates latent TGF-β1: a mechanism for regulating pulmonary inflammation and fibrosis.Cell96, 319–328 (1999).
  • Jenkins RG , SuX, SuGet al.: Ligation of protease-activated receptor 1 enhances αvβ6 integrin-dependent TGF-β activation and promotes acute lung injury.J. Clin. Invest.116, 1606–1614 (2006).
  • Neurohr C , NishimuraSL, SheppardD: Activation of TGF-β by the integrin αvβ8 delays epithelial wound closure.Am. J. Respir. Cell Mol. Biol.35, 252–259 (2006).
  • Morris DG , HuangX, KaminskiNet al.: Loss of integrin αvβ6-mediated TGF-β activation causes MMP12-dependent emphysema.Nature422, 169–173 (2003).
  • Mu D , CambierS, FjellbirkelandLet al.: The integrin αvβ8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-β1.J. Cell Biol.157, 493–507 (2002).
  • Knight PA , WrightSH, BrownJK, HuangX, SheppardD, MillerHR: Enteric expression of the integrin αvβ6 is essential for nematode-induced mucosal mast cell hyperplasia and expression of the granule chymase, mouse mast cell protease-1.Am. J. Pathol.161, 771–779 (2002).
  • Kim KK , KuglerMC, WoltersPJet al.: Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix.Proc. Natl Acad. Sci. USA103, 13180–13185 (2006).
  • Bates RC , BellovinDI, BrownCet al.: Transcriptional activation of integrin β6 during the epithelial–mesenchymal transition defines a novel prognostic indicator of aggressive colon carcinoma.J. Clin. Invest.115, 339–347 (2005).
  • Ma LJ , YangH, GaspertAet al.: TGF-β-dependent and -independent pathways of induction of tubulointerstitial fibrosis in β6(-/-) mice.Am. J. Pathol.163, 1261–1273 (2003).
  • Owens DM , BroadS, YanX, BenitahSA, WattFM: Suprabasal α5β1 integrin expression stimulates formation of epidermal squamous cell carcinomas without disrupting TGF-β signaling or inducing spindle cell tumors.Mol. Carcinog.44, 60–66 (2005).
  • Kostenuik PJ , SinghG, OrrFW: TGF-β upregulates the integrin-mediated adhesion of human prostatic carcinoma cells to type I collagen.Clin. Exp. Metastasis15, 41–52 (1997).
  • Giannelli G , FransveaE, MarinosciFet al.: TGF-β1 triggers hepatocellular carcinoma invasiveness via α3β1 integrin.Am. J. Pathol.161, 183–193 (2002).
  • Giannelli G , BergaminiC, FransveaE, SgarraC, AntonaciS: Laminin-5 with TGF-β1 induces epithelial to mesenchymal transition in hepatocellular carcinoma.Gastroenterology129, 1375–1383 (2005).
  • Sloan EK , PouliotN, StanleyKLet al.: Tumor-specific expression of αvβ3 integrin promotes spontaneous metastasis of breast cancer to bone.Breast Cancer Res.8, R20 (2006).
  • Bandyopadhyay A , AgyinJK, WangLet al.: Inhibition of pulmonary and skeletal metastasis by a TGF-β type I receptor kinase inhibitor.Cancer Res.66, 6714–6721 (2006).
  • Nakamura K , YanoH, SchaeferE, SabeH: Different modes and qualities of tyrosine phosphorylation of Fak and Pyk2 during epithelial–mesenchymal transdifferentiation and cell migration: analysis of specific phosphorylation events using site-directed antibodies.Oncogene20, 2626–2635 (2001).
  • Liu S , Shi-wenX, KennedyLet al.: FAK is required for TGF-β-induced JNK phosphorylation in fibroblasts: implications for acquisition of a matrix-remodeling phenotype.Mol. Biol. Cell.18, 2169–2178 (2007).
  • Cicchini C , LaudadioI, CitarellaFet al.: TGF-β-induced EMT requires focal adhesion kinase (FAK) signaling.Exp. Cell Res.314, 143 (2008).
  • Wendt MK , SchiemannWP: Therapeutic targeting of the focal adhesion complex prevents oncogenic TGF-β signaling and metastasis.Breast Cancer Res.11(5), R68 (2009).
  • Kim W , Seok KangY, Soo KimJ, ShinN-Y, HanksSK, SongWK: The integrin-coupled signaling adaptor p130Cas suppresses Smad3 function in TGF-β signaling.Mol. Biol. Cell.19, 2135–2146 (2008).
  • Cabodi S , TinnirelloA, Di StefanoPet al.: p130Cas as a new regulator of mammary epithelial cell proliferation, survival, and HER2-Neu oncogene-dependent breast tumorigenesis.Cancer Res.66, 4672–4680 (2006).
  • Tumbarello DA , BrownMC, HeteySE, TurnerCE: Regulation of paxillin family members during epithelial–mesenchymal transformation: a putative role for paxillin δ.J. Cell Sci.118, 4849–4863 (2005).
  • Fujimoto N , YehS, KangHYet al.: Cloning and characterization of androgen receptor coactivator, ARA55, in human prostate.J. Biol. Chem.274, 8316–8321 (1999).
  • Guerrero-Santoro J , YangL, StallcupMR, DeFrancoDB: Distinct LIM domains of Hic-5/ARA55 are required for nuclear matrix targeting and glucocorticoid receptor binding and coactivation.J. Cell Biochem.92, 810–819 (2004).
  • Yang L , GuerreroJ, HongH, DeFrancoDB, StallcupMR: Interaction of the Tau2 transcriptional activation domain of glucocorticoid receptor with a novel steroid receptor coactivator, Hic-5, which localizes to both focal adhesions and the nuclear matrix.Mol. Biol. Cell.11, 2007–2018 (2000).
  • Tumbarello DA , TurnerCE: Hic-5 contributes to epithelial–mesenchymal transformation through a RhoA/ROCK-dependent pathway.J. Cell Physiol.211, 736–747 (2007).
  • Mok SC , WongKK, ChanRKet al.: Molecular cloning of differentially expressed genes in human epithelial ovarian cancer.Gynecol. Oncol.52, 247–252 (1994).
  • Mok SC , ChanWY, WongKKet al.: DOC-2, a candidate tumor suppressor gene in human epithelial ovarian cancer.Oncogene16, 2381–2387 (1998).
  • Prunier C , HocevarBA, HowePH: Wnt signaling: physiology and pathology.Growth Factors22, 141–150 (2004).
  • Prunier C , HowePH: Disabled-2 (Dab2) is required for TGF-β-induced epithelial to mesenchymal transition (EMT).J. Biol. Chem.280, 17540–17548 (2005).
  • Hocevar BA , PrunierC, HowePH: Disabled-2 (Dab2) mediates TGF-β-stimulated fibronectin synthesis through TGF-β-activated kinase 1 and activation of the JNK pathway.J. Biol. Chem.280, 25920–25927 (2005).
  • Sorrentino A , ThakurN, GrimsbySet al.: The type I TGF-β receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner.Nat. Cell Biol.10, 1199–1207 (2008).
  • Yamashita M , FatyolK, JinC, WangX, LiuZ, ZhangYE: TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-β.Mol. Cell31, 918–924 (2008).
  • Gal A , SjoblomT, FedorovaL, ImrehS, BeugH, MoustakasA: Sustained TGF-β exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis.Oncogene27, 1218–1230 (2008).
  • Hall A : Rho GTPases and the control of cell behaviour.Biochem. Soc. Trans.33, 891–895 (2005).
  • Hall A , NobesCD: Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton.Philos. Trans. R. Soc. Lond. B. Biol. Sci.355, 965–970 (2000).
  • Sander EE , ten KloosterJP, van DelftS, van der KammenRA, CollardJG: Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior.J. Cell Biol.147, 1009–1022 (1999).
  • Cho HJ , YooJ: Rho activation is required for TGF-β-induced epithelial–mesenchymal transition in lens epithelial cells.Cell Biol. Int.31, 1225–1230 (2007).
  • Massague J : How cells read TGF-β signals.Nat. Rev. Mol. Cell. Biol.1, 169–178 (2000).
  • Murillo MM , del CastilloG, SanchezA, FernandezM, FabregatI: Involvement of EGF receptor and c-Src in the survival signals induced by TGF-β1 in hepatocytes.Oncogene24, 4580–4587 (2005).
  • Jechlinger M , SommerA, MorigglRet al.: Autocrine PDGFR signaling promotes mammary cancer metastasis.J. Clin. Invest.116, 1561–1570 (2006).
  • Dedhar S , WilliamsB, HanniganG: Integrin-linked kinase (ILK): a regulator of integrin and growth-factor signalling.Trends. Cell Biol.9, 319–323 (1999).
  • Hannigan G , TroussardAA, DedharS: Integrin-linked kinase: a cancer therapeutic target unique among its ILK.Nat. Rev. Cancer.5, 51–63 (2005).
  • Hehlgans S , HaaseM, CordesN: Signalling via integrins: implications for cell survival and anticancer strategies.Biochim. Biophys. Acta.1775, 163–180 (2007).
  • White DE , CardiffRD, DedharS, MullerWJ: Mammary epithelial-specific expression of the integrin-linked kinase (ILK) results in the induction of mammary gland hyperplasias and tumors in transgenic mice.Oncogene20, 7064–7072 (2001).
  • Somasiri A , HowarthA, GoswamiD, DedharS, RoskelleyCD: Overexpression of the integrin-linked kinase mesenchymally transforms mammary epithelial cells.J. Cell Sci.114, 1125–1136 (2001).
  • Lee YI , KwonYJ, JooCK: Integrin-linked kinase function is required for TGF-β-mediated epithelial to mesenchymal transition.Biochem. Biophys. Res. Commun.316, 997–1001 (2004).
  • Karin M : NF-κB in cancer development and progression.Nature441, 431 (2006).
  • Huber MA , AzoiteiN, BaumannBet al.: NF-κB is essential for epithelial–mesenchymal transition and metastasis in a model of breast cancer progression.J. Clin. Invest.114, 569–581 (2004).
  • Chua HL , Bhat-NakshatriP, ClareSE, MorimiyaA, BadveS, NakshatriH: NF-κB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2.Oncogene26, 711 (2006).
  • Sovak MA , ArsuraM, ZanieskiG, KavanaghKT, SonensheinGE: The inhibitory effects of TGF-β1 on breast cancer cell proliferation are mediated through regulation of aberrant NF-κB/Rel expression.Cell Growth Differ.10, 537–544 (1999).
  • Neil JR , JohnsonKM, NemenoffRA, SchiemannWP: Cox-2 inactivates Smad signaling and enhances EMT stimulated by TGF-β through a PGE2-dependent mechanisms.Carcinogenesis29, 2227–2235 (2008).
  • Xie L , LawBK, ChytilAM, BrownKA, AakreME, MosesHL: Activation of the ERK pathway is required for TGF-β1-induced EMT in vitro.Neoplasia6, 603–610 (2004).
  • Atfi A , DjelloulS, ChastreE, DavisR, GespachC: Evidence for a role of Rho-like GTPases and stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) in TGF-β-mediated signaling.J. Biol. Chem.272, 1429–1432 (1997).
  • Hocevar BA , BrownTL, HowePH: TGF-β induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway.EMBO J.18, 1345–1356 (1999).
  • Shintani Y , WheelockMJ, JohnsonKR: Phosphoinositide-3 kinase-Rac1-c-Jun NH2-terminal kinase signaling mediates collagen I-induced cell scattering and up-regulation of N-cadherin expression in mouse mammary epithelial cells.Mol. Biol. Cell.17, 2963–2975 (2006).
  • Ke Z , LinH, FanZet al.: MMP-2 mediates ethanol-induced invasion of mammary epithelial cells over-expressing ErbB2.Int. J. Cancer119, 8–16 (2006).
  • Buck MB , KnabbeC: TGF-β signaling in breast cancer.Ann. NY Acad. Sci.1089, 119–126 (2006).
  • Hanahan D , WeinbergRA: The hallmarks of cancer.Cell100, 57–70 (2000).
  • Moreno-Bueno G , PortilloF, CanoA: Transcriptional regulation of cell polarity in EMT and cancer.Oncogene27, 6958–6969 (2008).
  • Ikenouchi J , MatsudaM, FuruseM, TsukitaS: Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail.J. Cell Sci.116, 1959–1967 (2003).
  • Alexandrow MG , KawabataM, AakreM, MosesHL: Overexpression of the c-Myc oncoprotein blocks the growth-inhibitory response but is required for the mitogenic effects of TGF-β.Proc. Natl Acad. Sci. USA92, 3239–3243 (1995).
  • Chen CR , KangY, MassagueJ: Defective repression of c-Myc in breast cancer cells: a loss at the core of the TGF-β growth arrest program.Proc. Natl Acad. Sci. USA98, 992–999 (2001).
  • Smith AP , VerrecchiaA, FagaGet al.: A positive role for Myc in TGF-β-induced Snail transcription and epithelial-to-mesenchymal transition.Oncogene28, 422–430 (2008).
  • Bromberg JF , WrzeszczynskaMH, DevganGet al.: Stat3 as an oncogene.Cell98, 295–303 (1999).
  • Yang Y , PanX, LeiWet al.: Regulation of TGF-β1-induced apoptosis and epithelial-to-mesenchymal transition by protein kinase A and signal transducers and activators of transcription 3.Cancer Res.66, 8617–8624 (2006).
  • Zhao S , VenkatasubbaraoK, LazorJWet al.: Inhibition of STAT3Tyr705 phosphorylation by Smad4 suppresses TGF-β-mediated invasion and metastasis in pancreatic cancer cells.Cancer Res.68, 4221–4228 (2008).
  • Lo HW , HsuSC, XiaWet al.: Epidermal growth factor receptor cooperates with signal transducer and activator of transcription 3 to induce epithelial–mesenchymal transition in cancer cells via up-regulation of TWIST gene expression.Cancer Res.67, 9066–9076 (2007).
  • Ali S , CoombesRC: Endocrine-responsive breast cancer and strategies for combating resistance.Nat. Rev. Cancer2, 101–112 (2002).
  • Coombes RC , GibsonL, HallE, EmsonM, BlissJ: Aromatase inhibitors as adjuvant therapies in patients with breast cancer.J. Steroid Biochem. Mol. Biol.86, 309–311 (2003).
  • Fujita N , JayeDL, KajitaM, GeigermanC, MorenoCS, WadePA: MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer.Cell113, 207–219 (2003).
  • Dhasarathy A , KajitaM, WadePA: The transcription factor snail mediates epithelial to mesenchymal transitions by repression of estrogen receptor-α.Mol. Endocrinol.21, 2907–2918 (2007).
  • Silveri L , TillyG, VilotteJL, Le ProvostF: MicroRNA involvement in mammary gland development and breast cancer.Reprod. Nutr. Dev.46, 549–556 (2006).
  • Croce CM , CalinGA: miRNAs, cancer, and stem cell division.Cell122, 6–7 (2005).
  • Iorio MV , FerracinM, LiuCGet al.: MicroRNA gene expression deregulation in human breast cancer.Cancer Res.65, 7065–7070 (2005).
  • Blenkiron C , MiskaEA: miRNAs in cancer: approaches, etiology, diagnostics and therapy.Hum. Mol. Genet.16, R106–R113 (2007).
  • Dalmay T , EdwardsDR: MicroRNAs and the hallmarks of cancer.Oncogene25, 6170–6175 (2006).
  • Blenkiron C , GoldsteinLD, ThorneNPet al.: MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype.Genome Biol.8, R214 (2007).
  • Hurteau GJ , CarlsonJA, SpivackSD, BrockGJ: Overexpression of the microRNA Hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin.Cancer Res.67, 7972–7976 (2007).
  • Korpal M , LeeES, HuG, KangY: The miR-200 family inhibits epithelial–mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEβ1 and ZEB2.J. Biol. Chem.283, 14910–14914 (2008).
  • Gregory PA , BertAG, PatersonELet al.: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEβ1 and SIP1.Nat. Cell Biol.10, 593–601 (2008).
  • Park SM , GaurAB, LengyelE, PeterME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEβ1 and ZEB2.Genes Dev.22, 894–907 (2008).
  • Burk U , SchubertJ, WellnerUet al.: A reciprocal repression between ZEβ1 and members of the miR-200 family promotes EMT and invasion in cancer cells.EMBO Rep.9, 582–589 (2008).
  • Ma L , Teruya-FeldsteinJ, WeinbergRA: Tumour invasion and metastasis initiated by microRNA-10b in breast cancer.Nature449, 682–688 (2007).
  • Kong W , YangH, HeLet al.: MicroRNA-155 is regulated by the TGF-β/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA.Mol. Cell. Biol.28, 6773–6784 (2008).
  • Si ML , ZhuS, WuH, LuZ, WuF, MoYY: miR-21-mediated tumor growth.Oncogene26, 2799–2803 (2007).
  • Zhu S , SiML, WuH, MoYY: MicroRNA-21 targets the tumor suppressor gene tropomyosin 1 (TPM1).J. Biol. Chem.282, 14328–14336 (2007).
  • Zhu S , WuH, WuF, NieD, ShengS, MoYY: MicroRNA-21 targets tumor suppressor genes in invasion and metastasis.Cell Res.18, 350–359 (2008).
  • Zavadil J , NarasimhanM, BlumenbergM, SchneiderRJ: TGF-β and microRNA: mRNA regulatory networks in epithelial plasticity.Cells Tissues Organs185, 157–161 (2007).
  • Bakin AV , SafinaA, RinehartC, DaroquiC, DarbaryH, HelfmanDM: A critical role of tropomyosins in TGF-β regulation of the actin cytoskeleton and cell motility in epithelial cells.Mol. Biol. Cell15, 4682–4694 (2004).
  • Varga AE , StourmanNV, ZhengQet al.: Silencing of the tropomyosin-1 gene by DNA methylation alters tumor suppressor function of TGF-β.Oncogene24, 5043–5052 (2005).
  • Zheng Q , SafinaA, BakinAV: Role of high-molecular weight tropomyosins in TGF-β-mediated control of cell motility.Int. J. Cancer122, 78–90 (2008).
  • Lombaerts M , van WezelT, PhilippoKet al.: E-cadherin transcriptional downregulation by promoter methylation but not mutation is related to epithelial-to-mesenchymal transition in breast cancer cell lines.Br. J. Cancer94, 661 (2006).
  • Reynolds PA , SigaroudiniaM, ZardoGet al.: Tumor suppressor p16INK4A regulates polycomb-mediated DNA hypermethylation in human mammary epithelial cells.J. Biol. Chem.281, 24790–24802 (2006).
  • Dumont N , WilsonMB, CrawfordYG, ReynoldsPA, SigaroudiniaM, TlstyTD: Sustained induction of epithelial to mesenchymal transition activates DNA methylation of genes silenced in basal-like breast cancers.Proc. Natl Acad Sci. USA105, 14867–14872 (2008).
  • Singh M , SpoelstraNS, JeanAet al.: ZEβ1 expression in type I versus type II endometrial cancers: a marker of aggressive disease.Mod. Pathol.21, 912 (2008).
  • Shackleton M , VaillantF, SimpsonKJet al.: Generation of a functional mammary gland from a single stem cell.Nature439, 84–88 (2006).
  • Stingl J , RaoufA, EirewP, EavesCJ: Deciphering the mammary epithelial cell hierarchy.Cell Cycle5, 1519–1522 (2006).
  • Villadsen R , FridriksdottirAJ, Ronnov-JessenLet al.: Evidence for a stem cell hierarchy in the adult human breast.J. Cell Biol.177, 87–101 (2007).
  • Mishra L , DerynckR, MishraB: TGF-β signaling in stem cells and cancer.Science310, 68–71 (2005).
  • Ben-Porath I , ThomsonMW, CareyVJet al.: An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors.Nat. Genet.40, 499–507 (2008).
  • Mani SA , GuoW, LiaoMJet al.: The epithelial–mesenchymal transition generates cells with properties of stem cells.Cell133, 704–715 (2008).
  • Morel AP , LievreM, ThomasC, HinkalG, AnsieauS, PuisieuxA: Generation of breast cancer stem cells through epithelial–mesenchymal transition.PLoS ONE3, e2888 (2008).
  • Shipitsin M , CampbellLL, ArganiPet al.: Molecular definition of breast tumor heterogeneity.Cancer Cell11, 259–273 (2007).
  • Farina AR , CoppaA, TiberioAet al.: TGF-β1 enhances the invasiveness of human MDA-MB-231 breast cancer cells by up-regulating urokinase activity.Int. J. Cancer.75, 721–730 (1998).
  • Piek E , JuWJ, HeyerJet al.: Functional characterization of TGF-β signaling in Smad2- and Smad3-deficient fibroblasts.J. Biol. Chem.276, 19945–19953 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.